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Abstract—In this paper, a nonmonotone adaptive trust
region algorithm is proposed to solve a classical optimiza-
tion problem with orthogonal constraints. Specifically, the
optimization problem is transformed into an unconstrained
optimization problem on the Stiefel manifold aiming at reduc-
ing computational complexity and cost. Theoretical analysis
confirms the global and local convergence of this algorithm
under specific conditions. Additionally, numerical simulations
are performed and the corresponding experimental results
demonstrate the effectiveness of our proposed method.

Index Terms—Orthogonal Constraints, Stiefel Manifold,
Nonmonotone Adaptive Trust Region Algorithm, Numerical
Simulation.

I. Introduction

CONSIDER an optimization problem with orthogo-
nal constraints, which is as follows,

min
X∈Rn×r

f(X)

s.t. XTX = Ir
(I.1)

where f(X):Rn×r → R is a continuously differentiable
real-valued function, Ir ∈ Rr×r represents the r-th order
identity matrix. The feasible set St

(
n, r
)

:=
{
X ∈

Rn×r : XTX = Ir
}
, r ≤ n constrained by orthogonal

conditions is referred to as the Stiefel manifold, which
is an embedded submanifold in linear space Rn×r and
its dimension is rn − 1

2r (r + 1) . For further details of
Stiefel manifold, one can refer to monograph [1], [2], [3],
[4]. Specifically, Stiefel manifold will be simplified to an
unit sphere Sn−1

r when r = 1, which dimension is n = 1.
In this case, problem I.1 is transformed into a spherical
constrained optimization problem. In addition, Stiefel
manifold can be simplified to an orthogonal group o

(
n
)

when r = n, which dimension is n
2

(
n− 1

)
.
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Problem I.1 has widespread applications in various
fields including medicine, machine learning, and au-
tomation technologies. It encompasses applications such
as the Kohn-Sham total energy minimization problem
[5], [6], [7], the orthogonal procrustes problem [8], [9],
sparse principal component analysis problem [10], [11],
eigenvalue problem [12], and matrix singular value de-
composition problem [13]. The orthogonal constrained
optimization problem exhibits non-convex and non-linear
characteristics, which makes analytical computation of
it face tremendous challenges. In scientific and engineer-
ing applications, the problems are not only large-scale
but also involve core mathematical models subject to
orthogonality constraints. Currently existing algorithms
for solving this problem still have some shortcomings. For
instance, these algorithms may only guarantee finding a
local optimal solution for most optimization problems,
and ensuring that the computation at each iteration
point remains within the feasible domain can be compu-
tationally expensive, this has sparked a strong research
interest among numerous experts and scholars in this
field.

The existing algorithms for solving orthogonal con-
strained optimization problems can be broadly catego-
rized into feasible algorithms [14], [15], [16] and infeasible
algorithms [12]. Feasible algorithms require that the
iteration point satisfies the orthogonal constraints at each
iteration, with a key challenge being the definition of a
suitable contraction mapping. Currently, the geodesic-
based and projection-based methods are two prominent
categories of algorithms for effectively computing the
contraction mapping. Geodesic-based methods select
an appropriate iteration step size and search for the
next iteration point along the geodesic direction of the
manifold. In contrast, projection algorithms are a type of
algorithm that search for the next iteration point of the
current point in the tangent space and project the iter-
ation point back into the manifold. In practical applica-
tions of large-scale orthogonal constrained optimization
problems, feasible algorithms suffer from a significant
increase in computational complexity. In such cases, it
is prudent to consider employing appropriate infeasible
algorithms to circumvent this drawback of excessive com-
putational demands. Infeasible algorithms do not strictly
demand that the points obtained during the iteration
process to satisfy the orthogonal constraints. However,
the sequence of iterates should gradually converge to a
stationary point that satisfies the orthogonal constraints.

II. Preliminary Preparation
In this section, some relevant background on Trust

Region algorithm and Stiefel manifold has been intro-
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duced, including basic definition and conditions. For
more details, one can refer to the monograph [17].
In subsection 2.1, the needed theoretical foundations
of Trust Region algorithm will be presented. Specif-
ically, since Stiefel manifold is a typical Riemannian
manifold in smooth tangent space, the unconstrained
optimization problem on Stiefel manifold can be solved
by the existing optimization algorithms on Riemannian
manifold, including Riemannian Newton (RN), Rieman-
nian Trust Region (RTR), and Riemannian Stochastic
Descent (RSD) algorithms. Different from Trust Region
algorithm in Euclidean space, Riemannian trust region
algorithm should be provided the manifold information,
tangent space and the Riemannian metric, at each itera-
tion. Then, the above information is utilized to calculate
the Hessian matrix and step size for each trust region
subproblem, ensuring each iteration remains on the
manifold. Thus, in subsection 2.2, the needed theoretical
foundations of Riemannian manifold optimization will
be provided. In Subsection 2.3, the built method will be
proposed, that is, the improved nonmonotone adaptive
trust region algorithm on manifolds.

A. Trust Region Algorithm
Its basic idea is to transform optimization problems

into several local optimization subproblems. In each
iteration, a specific trust region is delineated, and the
optimal solution is determined within the confines of
this trust region of the model. This method solves the
minimization problem of a quadratic model in each
iteration step and checks whether the function value has
improved after updating to adjust the radius of the local
region.

The Trust Region algorithm is a numerical method
used to solve nonlinear optimization problems, which
iteratively captures the minimum value of the objective
function. The details of Trust Region algorithm will
be presented as follows. By given an unconstrained
optimization problem min

x∈Rn
f(x), where f : Rn → R

denote the objective function, which is real-valued and
quadratic continuously differentiable.

To obtain each iteration step, trust region methods
compute a trial step dk by solving a subproblem:

min
d∈Rn

mk (d) = f (xk) + g (gradf (xk) , d) +
1

2
g (Hk [d] , d)

s.t.g (d, d) ≤ ∆2
k

(II.1)

where g(·, ·) represents the inner product on Rn, Hk ∈
Rn×n is a symmetric approximation of Hessf (xk) , and
∆k > 0 is the trust region radius. Special assumption
gk = gradf(xk), when Hk � 0 and

∥∥H−1k gk
∥∥ ≤ ∆k, the

trial step dHk = −H−1k gk in equation II.1. The ratio ρk
is defined as:

ρk̇ =
Aredk̇
Predk̇

=
f
(
xk̇

)
− f

(
xk̇ + dk̇

)
mk̇ (0)−mk̇

(
dk̇
) (II.2)

in equation II.2, Aredk is referred to as the actual
reduction of the objective function, and Predk is the
predicted reduction. If ρk is close to 1, it indicates that

the second-order approximation model closely matches
the objective function. In this case, the current iteration
step is accepted. If ρk is close to 0, it indicates that the
second-order approximation model deviates significantly
from the actual objective function. The current iteration
step is rejected as a result. In the next iteration, the
trust region radius should be reduced, and a new trial
step dk needs to be recalculated[18].

B. Standard Results in Riemannian Geometry
Riemannian manifold is mainly based on Riemannian

Geometry, thus some basic definitions and foundations
of Riemannian geometry will be provided in following
[19], [20], [21], [22], [23].

Setting M is a smooth differentiable manifold C∞,
the smooth bijection φ in Euclidean Space is defined
as ∀x ∈ M, ∃U ⊂ M,x ∈ U, and ∃V ⊂ Rn, such that
φ : U 7→ V, where is an open neighborhood containing the
point x, V is an open set in the n−dimensional Euclidean
space Rn.

The tangent vector at point x on Riemannian manifold
is formed by the velocity vector of a smooth curve at
point x. When the all tangent vectors at point x is de-
noted as the tangent space TxM, the tangent bundle of M
is constructed by the disjoint union of all tangent spaces,
shown as: TM =

{(
x, v
)
: x ∈ M, v ∈ TxM

}
, where the

tangent bundle TM is a vector bundle associated with
the Riemannian manifold M. In addition, when a smooth
projection is mapped by π : TM 7→ M, the base of vector
can be extracted by π (x, ν) = x.

The Riemannian metric defines an inner product
on the tangent space TxM, which we denote as
gx(·, ·):TxM × TxM → R, for ∀s, w, u ∈ TxM and
a, b ∈ R, the inner product gx(s, w) satisfies symmetry,
bilinearity, and positive definiteness, i.e.:

(1)gx (s, w) = gx (w, s) ,

(2)gx (as+ bw, u) = agx (s, u) + bgx (w, u) ,

(3)gx (s, s) ≥ 0, gx (s, s) = 0 ⇐⇒ s = 0.

Specifically, the Riemannian metric can be represented
by defining a symmetric positive definite quadratic form
on each tangent space TxM, the norm of a tangent vector
w ∈ TxM is denoted as ‖w‖x =

√
gx (w,w). Based on

[19], an affine connection is defined to describe the way
in which tangent spaces on the manifold are connected.

Definition II.1. An affine connection ∇ on a manifold M
is a mapping ∇ : ε(M)×ε(M) → ε(M) : (X,Y ) → ∇XY,
that satisfies the following three properties:

(1)σ(M)-linear:∇fX+gY Z = f∇XZ + g∇Y Z,

(2)Rlinear:∇X

(
aY + bZ

)
= a∇XY + b∇XZ,

(3)Leibniz’s Rule:∇X(fY ) = (Xf)Y + f∇XY.

Where ε(M) represents the set of smooth vector fields
on the manifold M, σ(M) denotes the set of smooth
scalar fields on the manifold, the vector field ∇XY
represents the covariant derivative of Y with respect
to x and is associated with the corresponding affine
connection ∇, X, Y, Z ∈ ε(M), f, g ∈ σ(M) and a, b ∈ R,
the affine connection ∇ is also known as the Levi-Civita
connection or Riemannian connection.
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A smooth curve defined on manifold M, where p, p̃ ∈
R. The length of this curve is denoted as L

(
γ
)

=∫ p̃

p

∥∥γ′(t)∥∥
γ(t)

dt, and is used to connect points x and y on
the manifold M, i.e., γ(p) = x and γ (p̃) = y. The curve
γ(t) = x is a geodesic on M if and only if ∇γ′(t)γ

′ (t) = 0
holds, ∇γ′(t)ξ

(
t
)
= 0 represents the parallel transport of

the tangent vector ξ(t) along the curve γ(t), where ∇ is
the Levi-Civita connection on the manifold, γ′(t) is the
tangent vector of the curve γ, and ∇γ′(t)γ

′(t) represents
the covariant derivative of the tangent vector.

Definition II.2. Riemannian distance on manifold M:

dR : M ×M → R+ : (x, y) → dR (x, y) = inf
γ∈ς

L (γ) ,

where ς is the set of all C1 curves γ : [p, p̃] → M.

Definition II.3. Let f be a scalar function on manifold M.
The gradient of f at point x ∈ M, denoted as gradf(x),
is defined as the unique element in TxM satisfying:

gx

(
gradf

(
x
)
, ξ
)
= Df

(
x
)[

ξ
]
, ∀ξ ∈ TxM.

Where Df(x)[ξ] represents the directional derivative
of f at point x in the direction of ξ.

Definition II.4. For a given scalar function f on manifold
M, the Riemannian Hessian operator of f at point x ∈
M, is a linear mapping Hessf(x) from TxM to itself,
satisfying:

∇ξgradf (x) = Hessf (x) [ξ], ∀ξ ∈ TxM,

where ∇ represents the Levi-Civita connection. In
fact, the Riemannian Hessian operator is a symmetric
operator with respect to the Riemannian metric, i.e.:

gx (Hessf(x)[ξ], η) = gx (ξ,Hessf(x)[η]) , ∀ξ, η ∈ TxM.

One of the important applications of the exponential
map in Riemannian geometry is to map tangent vectors
in the tangent space to curves or points on the manifold,
and project them along geodesics on the manifold.
Specifically, for ∀x ∈ M and an arbitrary tangent vector
ϖ ∈ TxM at point x, the exponential map projects ϖ
onto a point on the manifold M which is obtained by
moving along the direction of the tangent vector ϖ from
the point x by a specified distance. The exponential map
at point x is defined as follows:

Expx : TxM → M : ξ → Expxξ = γ (1;x, ξ) ,

where ξ ∈ TxM , and γ is a geodesic that satisfies
γ (0) = x and γ′(0) = ξ.The application of the ex-
ponential map allows us to uniquely define local trust
region subproblems on the manifold by locally mapping
the Riemannian manifold to the Euclidean space TxM
[24].

The prerequisite for the exponential map is the re-
quirement to calculate geodesics, which usually involves
solving differential equation problems. This leads to
an escalation in computational cost [25]. In practical
applications, systematic use of the exponential map is
not always applicable in every situation. Therefore, we
substitute the exponential map with a class of mappings

known as retractions [1], [26], [27], [28], [29]. On one
hand, retractions no longer rely on the curve γ being
a geodesic, which significantly reduces computational
costs. On the other hand, retractions exhibit most of the
properties of the exponential map in the optimization
process.
Definition II.5. The retraction R on the manifold M is a
C2 smooth mapping from the tangent bundle TM to M.
Given x ∈ M , let Rx : TxM → M denote the restriction
of R to TxM , satisfying:
(1)R is continuously differentiable,
(2)Rx (0x) = x,where0xdenotes the zero element ofTxM,

(3)DRx (0x) = idTxM ,

where id denotes the identity mapping on TxM ,
possessing the canonical identification T0xTxM ' TxM .

In a manifold, parallel transport can move a tangent
vector from one tangent space to another while pre-
serving the original information of the tangent vector.
This allows for the comparison of tangent vectors from
different points by transporting them to a common tan-
gent space. Similar to retractions serving as a substitute
for the exponential map, parallel transport incurs high
computational costs. Hence, we contemplate utilizing
retraction-based vector transport as an alternative to
parallel transport, as referenced in [1].
Definition II.6. The vector transport associated with the
retraction Rx is a smooth mapping:

V : TM ⊕ TM → TM : (ηx, ξx) 7→ Tηx
(ξx),

where TM ⊕ TM =
{
(ηx, ξx) : ηx, ξx ∈ TxM,x ∈ M

}
,

and satisfies the properties of contraction adjoint ness,
consistency, and linearity, i.e.:

(1)Vηx
(ξx) ∈ TRx(ηx)M,

(2)V0x (ξx) = ξx, ∀ξx ∈ TxM,

(3)Vηx
(aξx + bζx) = aVηx

(ξx) + bVηx
(ζx) ,

where ∀ηx, ξx, ζx ∈ TxM and a, b ∈ R.
In particular, if the vector transport V also satisfies

gx
(
VE(ηx)(ξx), VE(ηx)(ζx)

)
= gx (ξx, ζx) ,

it is referred to as an isometric vector transport, denoted
as VE . Furthermore, we use VRx to denote the differential
retraction, i.e.:

VRx(ηx)ξx = DRx (ηx) [ξx] =
d

dt
Rx (ηx + tξx)

∣∣∣
t=0

.

C. Improved Nonmonotone Adaptive Trust Region Al-
gorithm on Manifolds

If each obtained point in any iteration is feasible,
the problem I.1 is a typical unconstrained optimization
problem on the Stiefel manifold. Specifically, since any
orthogonal matrix can be regarded as a point on the
Stiefel manifold, i.e., Q ∈ St

(
n, r
)

:=
{
X ∈ Rn×r :

XTX = Ir
}

, the problem I.1 can be transformed into as
an unconstrained optimization problem on the manifold,
shown as

min
Q∈St(n,r)

f(Q) = min
X∈Rn×r

f(X)

s.t. XTX = Ir
(II.3)
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In the Riemannian Trust-Region (RTR) algorithm, the
approximated model m̂xk

:= mxk
◦ Rxk

around xk̇ ∈
M of objective function f̂xk

in problem II.1 is obtained
by the second-order Taylor expansion of f̂xk

:= fxk
◦

Rxk
[30]. Subsequently, by using the retraction Rxk

, the
minimization problem of fxk

on manifold M is locally
mapped to the minimization problem of the objective
function:

f̂xk
: Txk

M → R : ξ 7→ fxk
(Rxk

(ξ)) ,

where f̂xk
is a real-valued function on Txk

M .Meanwhile,
the trust region subproblem on Txk

M is defined as,

min
d∈Txk

M
m̂xk

(d) = f̂xk
(xk) + gx

(
gradf̂xk

(xk) , d
)

+
1

2
gx (Hxk

[d], d)

s.t. gx
(
d, d
)
≤ ∆̂2

k̇
(II.4)

where Hxk
: Txk

M → Txk
M is a symmetric linear

operator, i.e.,

gx (Hxk
ξ, χ) = gx

(
χ,Hxk

ξ
)
, ∀ξ, χ ∈ TxM. (II.5)

To simplify the notation, m̂ (d), f̂(xk) and ĝk are
applied to represent m̂xk

(d), f̂xk
(xk) and gradf̂xk

(xk)
respectively in the context. Let qk satisfy

qk =

{
−ĝk, ifk = 0or−gx(ĝk,dk−1)

∥ĝk∥·∥dk−1∥ ≤ τ

dk−1, otherwise
, (II.6)

where dk−1 is the solution of the trust region subproblem
II.4, τ ∈

(
0, 1
)

is a constant. To prevent the radius of
trust region from being too small, sk is supposed as

sk =


− gx(ĝk,qk)

qTk Hxk
qk
‖qk‖, ifk = 0

max
{
− gx(ĝk,qk)

qTk Hxk
qk
‖qk‖, λ∆̂k−1

}
, ifk ≥ 1

,

(II.7)

where λ > 1. Thus, the radius of trust region is shown
as

∆κ̇ = ρα min {sκ̇, κ} , (II.8)

where ρ ∈ (0, 1), α is a non-negative integer, and κ > 0
is a real-valued constant.

Therefore, we need to solve the following subproblem
in the nonmonotone trust region algorithm at the itera-
tion point xk.

min
d∈Txk

M
m̂ (d) = f̂ (xk) + gx (ĝk, d) +

1

2
gx (Hxk

[d] , d)

s.t. gx (d, d) ≤ (ρα min {sκ̇, κ})2
(II.9)

Similar to trust region algorithms in Euclidean spaces,
the trial step d̂k obtained through subproblem II.9 holds
the following definition,

ρ̂k̇ =
Dk̇ − f̂

(
Rxk

(
d̂k̇

))
m̂ (0)− m̂

(
d̂k̇

) =
Dk̇ − f̂

(
xk̇+1

)
m̂ (0)− m̂

(
d̂k̇

) . (II.10)

The purpose of approximating f̂(xk) − f̂
(
Rxk

(
d̂k

))
by Dk − f̂

(
Rxk

(
d̂k

))
in equation II.10 is to prevent the

objective function from monotonically decreasing during
the iteration process, while ensuring that Dk satisfies

Dk̇ =

{
f̂
(
xk̇

)
, ifk = 0

ηk̇Dk̇−1 +
(
1− ηk̇

)
f̂
(
xk̇

)
, ifk ≥ 1

, (II.11)

where ηk ∈ [ηmin, ηmax], ηmin ∈ (0, 1), and ηmax ∈
[ηmin, 1). Consider ρ̂κ̇ ≥ µ and µ ∈ (0, 1), and set
xk+1 = x+

k+1 = Rxk

(
d̂κ̇

)
, the iteration of RTR is

ensured feasibility [31], [32], [33], [34], [35], [36], [37].
The detail of nonmonotone adaptive trust region

algorithm on manifolds is shown in Algorithm 1.
In practical applications, the dimension l of the mani-

fold M is very large, which makes solving a linear system
(Hxk

+ µ∗id) dk−1 = −ĝk of size l or check the positive
definiteness of an l×l matrix Hxk

+ µ∗id is infeasible,
where dk−1 is the global solution to problem II.4 if and
only if µ∗ > 0 [1]. The existed algorithms aiming at
alleviating numerical burdens, the truncated conjugate
gradient method (t-CG) is one of the most popular [24],
which is designed to ensure that when Hxk

� 0 and∥∥H−1xk
ĝk
∥∥ ≤ ∆k, we can obtain an approximate solution

dk−1 = − (Hxk
)
−1

ĝk to subproblem II.4 under the suffi-
cient number of iterations. In addition, for the proposed
algorithm, it is necessary to improve the similarity com-
pared with the Cauchy point in each iteration, which can
ensure that the algorithm gradually obtain the optimal
solution. Thus, the inequation

∥∥∥d̂k∥∥∥ ≤ ρα min {sk, κ} will
be satisfied, i.e.,

m̂ (0)− m̂
(
d̂k

)
≥ β ‖ĝk‖min

{
∆k,

‖ĝk‖
‖Hxk

‖

}
, (II.12)

gx

(
d̂k, ĝk

)
≤ −β‖ĝk‖min

{
∆k,

‖ĝk‖
‖Hxk

‖

}
, (II.13)

where β ∈ (0, 1).

III. The Convergence
This section provides an overview w.r.t. the conver-

gence of proposed algorithm, including global conver-
gence and local convergence.

A. Global Convergence
Since the objective function is quadradic continuously

differential and bounded in manifold space, we provide
the following standard assumptions to make the global
convergence identifiable.

Assumption 1. Given a level set C (x0) =
{x ∈ M : f (x) ≤ f (x0)} ⊂ Ω, x0 ∈ M , where Ω is
an open convex set. When the objective function f is
quadradic continuously differentiable on C(x0) and has
a lower bounded value on M, gradf(x) is uniformly
continuous on Ω.

Assumption 2. For all xk ∈ N∪{0}, there exists a positive
constant Q1 such that the symmetric linear operator Hxk

is uniformly bounded, i.e., ‖Hxk
‖ ≤ Q1.
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Algorithm 1 Nonmonotone Adaptive Trust Region Algorithm on Manifolds(NATRAM)
Input: Riemannian manifold (M, g), retraction R. Set x0 ∈ M,µ, ρ, τ ∈ (0, 1), λ > 1, κ > 0, ∆̂k > 0, δ > 0, D0 =

f̂ (x0) , ηk ∈ [ηmin, ηmax] with ηmin ∈ (0, 1) and ηmax ∈ [ηmin, 1), k := 0, α := 0
Step 1. If ‖ĝk‖ ≤ δ, then stop, otherwise, go to step2,
Step 2. Solve Eq.II.4 to determine dk−1, compute qk according to Eq.II.6, and calculate qk through Eq.II.7, go
to step 3,
Step 3. Compute the trust region radius ∆̄k through Eq.II.8, solve Eq.II.9 to determine d̂k, and set x+

k+1 =

Rxk

(
d̂k

)
, go to step 4,

Step 4. Compute ρ̂k using Eq.II.10. If ρ̂κ̇ < µ, set α := α+ 1 and go to step 3, otherwise, proceed to step 5,
Step 5. Set xk+1 = x+

k+1 and compute Dk+1 using Eq.II.11. Update Hxk
using the BFGS quasi-Newton method

according to [27]. Set k := k + 1 and go back to step 1.

Establishing the global convergence of Algorithm 1
demonstrates that, under appropriate assumptions, the
sequence {xk}k≥0 generated by Algorithm 1 satisfies
limk→∞‖ĝk‖ = 0. The following crucial conclusion is
a necessary result in proving the global convergence of
Algorithm 1.

Our approach to global convergence essentially consists
of the nonlinear optimization in Trust Region algorithm.
This approach is justified by the following lemma.

Lemma III.1. [24] Suppose that the injectivity radius
of the Riemannian manifold (M, g) is i

(
M
)
> 0, and

the real-valued function f on M is Lipschitz continuously
differentiable. If ∀x, y ∈ M , holding that dR (x, y) <
i (M), then∥∥P 0←1

γ gradf (y)− gradf (x)
∥∥ ≤ β1dR (y, x) , (III.1)

where γ is the unique geodesic with γ (0) = x and
γ (1) = y, the vector P 0←1

γ gradf(y) in TxM can be ob-
tained by parallel transporting gradf(y) along γ, β1 > 0
is a constant, and dR(·, ·) represents the Riemannian
distance.

Lemma III.2. Suppose that dk−1 is the solution of Trust
Region subproblem II.4, and the trust region radius ∆̄k

is given by II.8. According to Assumption 2, for all k ∈ N
we have

m̂ (0)− m̂
(
d̂k̇

)
≥

1

2
ραmin

 1

Q1

(
−gx

(
ĝk̇, qk̇

)∥∥qk̇∥∥
)2

, κ

(
−gx

(
ĝk̇, qk̇

)∥∥qk̇∥∥
)
(III.2)

Proof: Due to ∆κ̇ = ρα min {sκ̇, κ}, the proof of
Lemma III.2 mainly consists of two cases,

Case 1: If sk ≤ κ, then ∆κ̇ = ραsκ̇. By given the
value sκ̇(k ≥ 1) shown in equation II.7, we have

∆k = ρα max

{
−gx(ĝk, qk)

qTk Hxk
qk

‖qk‖, λ∆̂k−1

}
≥ −ρα

gx(ĝκ̇, qκ̇)

qTκ̇Hxk
qκ̇

‖qκ̇‖.
(III.3)

Then, it implies that

d∗κ̇ = −ρα
gx(ĝκ̇, qκ̇)

qTκ̇Hxk
qκ̇

qκ̇ (III.4)

is a feasible solution of Trust Region subproblem II.9.

According to the Assumption 2, we have ‖Hxk
‖ ≤ Q1,

thus we obtain that

m̂ (0)− m̂
(
d̂k̇

)
≥ m̂ (0)− m̂

(
d∗
k̇

)
= −gx

(
ĝk̇, d

∗
k̇

)
− 1

2
gx
(
Hxk

[
d∗
k̇

]
, d∗

k̇

)
= ρα

(gx (ĝk, qk))
2

qTk Hxk
qk

(
1− 1

2
ρα
)

≥ ρα
(gx (ĝk, qk))

2

qTk Hxk
qk

(
1− 1

2

)

=
1

2
ρα
(
gx
(
ĝk̇, qk̇

))2
qT
k̇
Hxk̇

qk̇
≥ ρα

2Q1

(
gx
(
ĝk̇, qk̇

)∥∥qk̇∥∥
)2

.

(III.5)

Case 2: If sk > κ, then ∆κ̇ = ρακ. Considering
− gx

(
ĝk,qk

)
qTk Hxk

qk

∥∥qk∥∥ ≤ κ shown in equation II.7, we have

d∗κ̇ = −ρα
gx(ĝκ̇, qκ̇)

qTκ̇Hxk
qκ̇

qκ̇ (III.6)

where d∗k is a feasible solution of Trust Region subprob-
lem II.9.

From the equation III.5, it holds that

m̂ (0)− m̂
(
d̂k̇

)
≥ ρα

2Q1

(
gx
(
ĝk̇, qk̇

)∥∥qk̇∥∥
)2

. (III.7)

Accordingly, considering − gx

(
ĝk,qk

)
qTk Hxk

qk

∥∥qk∥∥ > κ shown in
equation II.7, we can have that

− qTk Hxk
qkκ

gx(ĝk, qk)‖qk‖
< 1. (III.8)

Hence, the point d+κ̇ = ρα qκ̇κ
∥qκ̇∥ is a feasible solution

of Trust Region subproblem II.9. Suppose the equation
III.8 holds, we have

m̂ (0)− m̂
(
d̂k

)
≥ m̂ (0)− m̂

(
d+k
)

= −gx

(
ĝk, d

+
k

)
− 1

2
gx

(
Hxk

[
d+k

]
, d+k

)
≥ ρακ

(
−gx

(
ĝk, qk

)∥∥qk∥∥
)(

1− 1

2
ρα

)

≥ 1

2
ρακ

(
−gx

(
ĝk, qk

)∥∥qk∥∥
)
.

(III.9)

Thus, the conclusion is established.
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Lemma III.3. Suppose that the sequence {xk}k≥0 is
generated by Algorithm 1, then we have

∀k ∈ N, f̂
(
Rxk

(
d̂k

))
≤ Dk+1 ≤ Dk (III.10)

Proof: Assume that F =
{
k : ρ̂k ≥ µ

}
and G ={

k : ρ̂κ̇ < µ
}

, and suppose Dk in equation II.11 holds,
we can obtain
Dk+1 −Dk =

(
1− ηk+1

)
f̂
(
Rxk

(
d̂k
))

+ ηk+1Dk −Dk

=
(
ηk+1 − 1

)(
Dk − f̂

(
Rxk

(
d̂k
)))

(III.11)

and

Dk+1 − f̂
(
Rxk

(
d̂k

))
= ηk+1

(
Dk − f̂

(
Rxk

(
d̂k

)))
.

(III.12)

In addition, the proof of Lemma III.3 mainly consists
of two cases,

Case 1: Suppose that k ∈ F , equations II.10 and III.2
holds, we have

Dk − f̂
(
Rxk

(
d̂k

))
= Dk̇ − f̂

(
xk̇+1

)
≥ µ

(
m̂ (0)− m̂

(
d̂k

))
≥ 1

2
µρα min

 1

Q1

(
−gx

(
ĝk̇, qk̇

)∥∥qk̇∥∥
)2

, κ

(
−gx

(
ĝk̇, qk̇

)∥∥qk̇∥∥
)

≥ 0
(III.13)

Accordingly, by combining III.11, III.12, and III.13,
we can obtain that

f̂
(
Rxk

(
d̂k

))
≤ Dk+1 ≤ Dk, ∀k ∈ F. (III.14)

Case 2: Suppose that k ∈ G and k − 1 ∈ F . When
the equation III.14 holds, we obtain f̂

(
x(k−1)+1

)
≤ Dk.

Then f̂
(
Rxk

(
d̂k

))
= f̂

(
xk

)
is satisfied, then

Dk+1 =
(
1− ηk+1

)
f̂
(
Rxk

(
d̂k

))
+ ηk+1Dk

≥ (1− ηk+1) f̂
(
Rxk

(
d̂k

))
+ ηk+1f̂

(
Rxk

(
d̂k

))
= f̂

(
Rxk

(
d̂k

))
.

(III.15)

Combining III.11, III.12, with III.15, we have

f̂
(
Rxk

(
d̂k

))
≤ Dk+1 ≤ Dk, ∀k − 1 ∈ F. (III.16)

If k−1 ∈ G, set J =
{
u : 1 < u < k, k − u ∈ F

}
. When

J = ∅, the function satisfies f̂
(
Rxk

(
d̂k

))
= f̂

(
xk−i

)
=

f̂
(
x0

)
, where i = 0, 1, 2, · · · , k− 1. Therefore, according

to the Dk shown in equation II.11, f̂
(
Rxk

(
d̂k

))
=

Dk+1 = Dk. When J 6= ∅, set b = min {u : u ∈ J},
the function satisfies f̂

(
Rxk

(
d̂k

))
= f̂

(
xk−l

)
= f̂

(
xk

)
,

where l = 0, 1, 2, · · · , u − 1, and k − b ∈ F . Therefore,
by employing III.14, we obtain f̂(xk−b+1) ≤ Dk−b+1 ≤
Dk−b.

Simultaneously, when

Dk−b+2 =
(
1− ηk−b+2

)
f̂
(
xk−b+2

)
+ ηk−b+2Dk−b+1

≥
(
1− ηk−b+2

)
f̂
(
xk−b+2

)
+ ηk−b+2f̂

(
xk−b+2

)
= f̂

(
xk−b+2

)
.

(III.17)

Holds, by utilizing III.11, III.12, and III.17, we can
deduce that f̂

(
Rxk

(
d̂k

))
≤ Dk+1 ≤ Dk. Combining

Cases 1 and 2, the conclusion is established.

Lemma III.4. Suppose that the sequence {xk}k≥0 is
generated by Algorithm 1. Then, we have∣∣∣f̂ (Rxk

(
d̂k

))
− f̂ (xk)− m̂ (0) + m̂

(
d̂k

)∣∣∣ ≤ o

(∥∥∥d̂k∥∥∥2) .

(III.18)

Proof: The proof has been shown in reference [38].

Lemma III.5. Suppose that the sequence {xk}k≥0 is
generated by Algorithm 1 and Assumption 1 and 2 hold,
then the Steps 3, 4, and 5 of Algorithm 1 are well-defined,
which means that each step can be completed within the
finite time in each iteration, regardless of the size of input
data.

Proof: Set d̂jk be the approximate solution of the
trust region subproblem II.9 at xk for j ∈ N, it is evident
that xk is not the optimal solution, thus we have ‖ĝk‖ ≥
δ. Then, according to − gx(ĝk̇,qk̇)

‖ĝk̇‖·‖qk̇‖
≥ τ , we obtain

−
gx
(
ĝk̇, qk̇

)∥∥qk̇∥∥ ≥ τδ. (III.19)

Based on the equation III.19, Lemma III.2 and Lemma
III.4, the equation satisfies∣∣∣∣∣∣

f̂(xk)− f̂
(
Rxk

(
d̂jk

))
m̂ (0)− m̂

(
d̂jk

) − 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
f̂
(
xk̇

)
− f̂

(
Rxk̇

(
d̂j
k̇

))
− m̂ (0) + m̂

(
d̂j
k̇

)
m̂ (0)− m̂

(
d̂j
k̇

)
∣∣∣∣∣∣

≤
o

(∥∥∥d̂jk∥∥∥2)
1
2ρ

αj
k min

{
1
Q1

(
−gx(ĝk,qk)
∥qk∥

)2
, κ
(
−gx(ĝk,qk)
∥qk∥

)}

≤
o
(
ραjκ̇ min

{
sκ̇, κ

}2)
1
2ρ

αj
κ̇ min

{(
τδ
)2

Q1
, κ
(
τδ
)} .

(III.20)

Since lim
j→∞

(
∆

j

k̇ = ραj
k̇

min
{
sk̇, κ

})
→ 0, combing with

the inequation III.20, we have

lim
j→∞

f̂ (xk)− f̂
(
Rxk

(
d̂jk

))
m̂ (0)− m̂

(
d̂jk

) = 1. (III.21)

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 1194-1204

 
______________________________________________________________________________________ 



Additionally, according to Lemma III.3, we can obtain

ρ̂j
k̇
=

Dk̇ − f̂
(
Rxk

(
d̂j
k̇

))
m̂ (0)− m̂

(
d̂j
k̇

) ≥
f̂
(
xk̇

)
− f̂

(
Rxk

(
d̂j
k̇

))
m̂ (0)− m̂

(
d̂j
k̇

) ,

(III.22)

which implies that lim
j→∞

ρ̂jk ≥ 1 > µ ∈
(
0, 1
)
, hence the

step 5 are well-defined.

Theorem III.1. Suppose Assumption 1 and 2 hold true,
then Algorithm 1 either halts at a fixed point or generates
an infinite sequence {xk}k≥0 such that

lim
k→∞

−
gx
(
ĝk̇, qk̇

)∥∥qk̇∥∥ = 0. (III.23)

Proof: When Algorithm 1 does not halt at a fixed
point, the equation III.23 should be true. Suppose that
there exist constants ε0 > 0 and an infinite subset θ ⊆
N ∪

{
0
}

such that

−
gx
(
ĝk̇, qk̇

)∥∥qk̇∥∥ ≥ ε0, k ∈ θ, (III.24)

by employing Lemma III.2 and equation III.24, we obtain

f̂ (xk)− f̂
(
Rxk

(
d̂k

))
≥ µ

(
m̂ (0)− m̂

(
d̂k

))
≥ 1

2
µρα min

 1

Q1

(
−gx

(
ĝk̇, qk̇

)∥∥qk̇∥∥
)2

, κ

(
−gx

(
ĝk̇, qk̇

)∥∥qk̇∥∥
)

≥ 1

2
µρα min

{
ε20
Q1

, κε0

}
.

(III.25)

Suppose the sequence {xk}k≥0 enerated by Algorithm
1, then

{
xk

}
k≥0 ⊆ C(x0). By utilizing ρ̂k ≥ µ, we have

f̂ (xk) ≥ µ
(
m̂ (0)− m̂

(
d̂k

))
+ f̂

(
Rxk

(
d̂k

))
≥ f̂

(
Rxk

(
d̂k

))
,

(III.26)

which indicates that the sequence
{
f̂(xk)

}
is monoton-

ically decreasing. Moreover, according to Assumption 1,
the sequence

{
f̂(xk)

}
converges.

Thus, 1
2µρ

α min
{

ε20
Q1

, κε0

}
≤ 0, which contradicts the

conclusion of Lemma III.5, that us, there does not exist
an infinite subset θ ⊆ N ∪

{
0
}

such that III.24 holds
true. Overall, the conclusion is established.

Theorem III.2 (Global Convergence). Suppose that all
the conditions of Theorem III.1 hold true, then Algo-
rithm 1 either terminates in a finite number of steps,
or it generates an infinite sequence {xk}k≥0 such that
lim
k→∞

‖ĝk‖ = 0.

Proof: Case 1: If Algorithm 1 terminates under
finite iterations, then the conclusion obviously holds true.

Case 2: Assuming Algorithm 1 generates an infinite
sequence {xk}k≥0, and qk̇ satisfies −gx(ĝk̇,qk̇)

‖ĝk̇‖·‖qk̇‖
≥ τ ,

sequence {xk}k≥0, and qk̇ satisfies the infinite sequence
{xk}k≥0 satisfies III.23. When k → ∞, we obtain

0 ≤ τ ‖ĝk‖ ≤ −
gx
(
ĝk̇, qk̇

)∥∥ĝk̇∥∥ · ∥∥qk̇∥∥
∥∥ĝk̇∥∥ = −

gx
(
ĝk̇, qk̇

)∥∥qk̇∥∥ → 0.

(III.27)

Therefore, the conclusion lim
k→∞

‖ĝk‖ = 0 holds.

B. Local Convergence
In this section, we analyze the local convergence

rate of Algorithm 1, which includes proving R-linear
convergence and super-linear convergence. The proof
methodology is based on references [38], [39].

Lemma III.6. Reference [24] suppose that f is a twice con-
tinuously differentiable function on M and is uniformly
contractively convex, meaning that f satisfies convexity
and contractivity properties on M. Suppose that

D

dt

(
d

dt
Rx (tξ)

)∣∣∣∣
t=0

= 0, ∀x ∈ M, ξ ∈ TxM, (III.28)

where D
dt represents the covariant derivative along the

curve t 7→ Rx(tξ).
Consider now the existence of 0 < p ≤ q such that

p‖ξ‖2 ≤ gx (Hessf(x)[ξ], ξ) ≤ q‖ξ‖2. (III.29)

By Lemma III.1, we have

p
(
dR(y, x)

)2
≤ gx

(
P 0←1
γ gradf

(
y
)
− gradf

(
x
)
, dR

(
y, x
))

≤ q
(
dR
(
y, x
))2

, ∀x, y ∈ M
(III.30)

and

p
(
dR

(
x, x+

))
≤
∥∥∥gradf(x)∥∥∥, ∀x ∈ M (III.31)

where x+ is a stationary point of f.

Theorem III.3 (R-linear Convergence). Suppose that all
the assumptions and conclusions of Lemma III.6 hold
true, as well as Assumption 1 and Assumption 2. And
d
dtRxk

is equally continuous on a neighborhood δn of the
stationary point x+. There exists L > 0 such that for
sufficiently large k, it holds that L

∥∥∥ĝk∥∥∥ ≤
√
gx

(
d̂k, d̂k

)
.

Then, the sequence {xk}k≥0 generated by Algorithm 1
converges R-linearly to the stationary point x+.

Proof: According to Theorem III.2 and equation
III.31, we have

lim
k→∞

p
(
dR

(
xk, x

+
))

≤ lim
k→∞

∥∥∥ĝk∥∥∥ = 0, (III.32)

thus, lim
k→∞

xk = x+. By utilizing II.10 and II.12, we
obtain

Dk − f̂
(
Rxk

(
d̂k

))
≥ µ

(
m̂
(
0
)
− m̂

(
d̂k

))
≥ µβ

∥∥ĝk̇∥∥min

{
∆k̇,

∥∥ĝk̇∥∥
‖Hxk

‖

}

= µβ ‖ĝκ̇‖min

{
ραmin {sκ̇, κ} ,

‖ĝκ̇‖
‖Hxk

‖

}
.

(III.33)
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By the conclusion of Assumption 2 and gx

(
d̂k̇, d̂k̇

)
≤(

ρα min
{
sk̇, κ

})2, we have

f̂
(
Rxk

(
d̂k

))
≤ Dk − µβ ‖ĝk‖min

{
ρα min {sk, κ} ,

‖ĝk‖
‖Hxk

‖

}

≤ Dk̇ − µβ
∥∥ĝk̇∥∥2 min


√
gx

(
d̂k̇, d̂k̇

)
∥∥ĝk̇∥∥ ,

1

Q1


≤ Dκ̇ − µβ ‖ĝκ̇‖2 min

{
L,

1

Q1

}
,

(III.34)

set ∂ = µβmin
{
L, 1

Q1

}
, then III.34 is equal to

f̂
(
Rxk

(
d̂k

))
≤ Dk − ∂

∥∥∥ĝk∥∥∥2. (III.35)

For k ∈ N, there exists < > 0 such that√
gx

(
d̂k, d̂k

)
≤ <‖ĝk‖, then

d
(
Rxk

(
d̂k

)
, xk

)
=

√
gx

(
d̂k, d̂k

)
≤ <‖ĝk‖, (III.36)

according to Assumption 1 and equation III.36, there
exists <1 > 0 such that

‖ĝk+1‖ ≤
∥∥ĝk+1 − P xk+1←xk

γ ĝk
∥∥+ ‖ĝk‖

≤ <1d
(
xk, xkRxk

(
d̂k

))
+ ‖ĝk‖

= <1

√
gx

(
d̂k, d̂k

)
+ ‖ĝk‖ ≤ (L<1 + 1) ‖ĝk‖ .

(III.37)

We consider the validity of III.38, i.e.,

Dk+1 − f
(
x+
)
≤ TP

(
Dk − f

(
x+
))

, (III.38)

where TP =
(
1− ∂

)
∈
(
0, 1
)
.

Suppose that ‖ĝk‖2 ≤ Dk − f (x+), by using II.11, we
have

Dk+1 − f
(
x+
)

= ηk+1Dk + (1− ηk+1) f̂
(
Rxk

(
d̂k

))
− f

(
x+
)
,

(III.39)

according to the conclusion of Lemma III.3, we have

Dk+1 − f
(
x+
)
≤ ηk+1f̂

(
Rxk

(
d̂k

))
+

(1− ηk+1) f̂
(
Rxk

(
d̂k

))
− f

(
x+
)

= f̂
(
Rxk

(
d̂k

))
− f

(
x+
)
,

(III.40)

by using III.35, we obtain

Dk+1 − f
(
x+

)
≤ Dk − ∂ ‖ĝk‖2 − f

(
x+

)
≤ (1− ∂)

(
Dk − f

(
x+
)) (III.41)

and
Dk+1 − f

(
x+
)
≤ TP

(
Dk − f

(
x+
))

≤ · · · ≤ T k−1
P

(
D0 − f

(
x+
))

.
(III.42)

Furthermore, assume that condition III.43 holds, i.e.,
p

2

(
d

R

(
x, x+

))2
≤ f

(
x
)
− f

(
x+
)

≤ q

2

(
d

R

(
x, x+

))2
, ∀x ∈ M.

(III.43)

Combining III.43 with Lemma III.3, we can deduce(
dR
(
xk+1, x

+
))2 ≤ 2

p

(
f̂
(
Rxk

(
d̂k

))
− f

(
x+
))

≤ 2

p

(
Dk+1 − f

(
x+
))

≤ · · · ≤ 2

p
T k+1
P

(
D0 − f

(
x+
))

=
2

p
T k+1
P

(
f̂ (x0)− f

(
x+
))

(III.44)

then,

lim
k→∞

(
d
(
xk+1, x

+
)) 1

k+1 ≤ lim
k→∞

(
dR

(
xk+1, x

+
)) 1

k+1

≤ lim
k→∞

(√
2

p
T k+1
P

(
f̂ (x0)− f (x+)

)) 1
k+1

< 1.

(III.45)

This implies that the sequence {xk}k≥0 generated by
Algorithm 1 converges R-linearly to the stationary point
x+.

Theorem III.4 (Super-Linear Convergence). Suppose
that all the assumptions and conclusions of Lemma III.1,
Lemma III.6 hold true, as well as Assumption 1 and
Assumption 2, Hxk

is symmetric positive definite. The
sequence generated {xk}k≥0 by Algorithm 1 converges to
x+, and d

dtRxk
is equally continuous on a neighborhood

δn of the stationary point x+, possessing

lim
k→∞

∥∥∥Hxk
qk̇ − P xk←x+

γ

(
Hessf (x+)

(
P x+←xk
γ qk̇

))∥∥∥∥∥qk̇∥∥
= 0

(III.46)

where qk = − (Hxk
)
−1

ĝk. Then, the sequence {xk}k≥0
converges super-linearly to x+, such that∥∥∥Rxk

(
d̂k

)
− x+

∥∥∥ = o
(
xk − x+

)
. (III.47)

Proof: Due to ∆κ̇ = ρα min {sκ̇, κ}, Case 1: If sκ̇ ≤
κ, thus ∆κ̇ = ραsκ̇, according to the definition of sk

(
k ≥

1
)

in equation II.7:

∆k = ρα max

{
−gx(ĝk, qk)

qTk Hxk
qk

‖qk‖, λ∆̂k−1

}
≥ −ρα

gx(ĝk̇, qk̇)

qT
k̇
Hxk

qk̇
‖qk̇‖.

(III.48)

For α = 0, we have ∆k̇ ≥ −ρα
gx(ĝk̇,qk̇)

qT
k̇
Hxk

qk̇
‖qk̇‖ = ‖qk̇‖,

which implies that the trust region subproblem II.9 has
an approximate solution d̂∗k = qk.In the following section,
we will analyze the validity of III.49:

Dk̇ − f̂
(
Rxk

(
d̂∗
k̇

))
m̂ (0)− m̂

(
d̂∗
k̇

) ≥ µ, ∃k0 ∈ N, ∀k ≥ k0, (III.49)
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according to qk = − (Hxk
)
−1

ĝk and the conclusion
‖Hxk

‖ ≤ Q1 of Assumption 2, we have∥∥∥d̂∗
k̇

∥∥∥ =
∥∥qk̇∥∥ =

∥∥∥− (Hxk
)
−1

ĝk̇

∥∥∥ ≤ 1

Q1

∥∥ĝk̇∥∥ . (III.50)

Equation III.32 indicates that lim
k̇→∞

‖ĝk̇‖ = 0, which

implies limκ̇→∞

∥∥∥d̂∗κ̇∥∥∥ = 0. Since qk = − (Hxk
)
−1

ĝk, it
is evident that −gx (ĝk, qk) = qTk Hxk

qk, according to the
conclusion of III.5 and α = 0, we obtain

m̂(0)− m̂
(
d̂∗k

)
≥ 1

2

(gx (ĝk, qk))
2

qTk Hxk
qk

=
1

2
qTk Hxk

qk,

(III.51)
simultaneously, Lemma III.4 implies∣∣∣f̂ (Rxk

(
d̂∗k

))
− f̂ (xk)− m̂ (0) + m̂

(
d̂∗k

)∣∣∣ ≤ o

(∥∥∥d̂∗k∥∥∥2) .

(III.52)
Therefore, based on the above discussion, we have∣∣∣∣∣∣
f̂ (xk)− f̂

(
Rxk

(
d̂∗k

))
m̂ (0)− m̂

(
d̂∗k

) − 1

∣∣∣∣∣∣ ≤
2o

(∥∥∥d̂∗k∥∥∥2)
qTk Hxk

qk
≤

o

(∥∥∥d̂∗k∥∥∥2)
Q1

∥∥∥d̂∗k∥∥∥2 ,

(III.53)

i.e., limk→∞
f̂(xk)−f̂(Rxk(d̂

∗
k))

m̂(0)−m̂(d̂∗
k)

= 1. Then, considering
∃k0 ∈ N, ∀k ≥ k0, we obtain

Dκ̇ − f̂
(
Rxk

(
d̂∗κ̇

))
m̂ (0)− m̂

(
d̂∗κ̇

) ≥

f̂ (xk)− f̂
(
Rxk

(
d̂∗
k̇

))
m̂ (0)− m̂

(
d̂∗
k̇

) ≥ µ ∈ (0, 1) .

(III.54)

Case 2: If sκ̇ > κ, then ∆κ̇ = ρακ, set α = 0,
considering − gx(ĝk,qk)

qTk Hxk
qk

‖qk‖ ≤ κ. Using the same proof
technique as in Case 1, we can derive equation III.54,
which implies that the sequence {xk}k≥0 converges
super-linearly to the stationary point x+, such that∥∥∥Rxk

(
d̂k

)
− x+

∥∥∥ = o (xk − x+).

IV. Numerical Experiments
In this section, Independent Component Analysis

(ICA) problem [40], [41] is applied to verify the effective-
ness of the proposed Algorithm 1. To further illustrate its
performance, we compare the numerical performance of
Algorithm 1 with RTR [24] and NMRTR algorithm [38]
in solving ICA problem. ICA is a mathematical technique
which is mainly used to decompose a multivariate mixed
signal into different source signals, which fundamental
assumption is that the multivariate mixed signal is
combined by the linear independent components. The
goal of ICA is to decompose the multivariate mixed
signal into its original source signals. In practical, the
covariance matrix of the signals may not be completely
diagonalized. To address this issue, a ”soft-whitening”
step is introduced to simultaneously diagonalize the
source condition and the mixed covariance matrix, which
can help enhance the stability and accuracy of ICA. The

ICA problem is addressed by minimizing the objective
function on the Stiefel manifold, shown as

fd(X):St(n, r) → R : X 7→ fd(X)

= −
N∑
i=1

∥∥∥diag(XTCiX)
∥∥∥2
F
,

(IV.1)

where ‖diag(W )‖2F represents the sum of squares of
the diagonal elements of W, and Ci is a symmetric
cumulant or time-lagged covariance matrix. For ϖ1, ϖ2 ∈
TXSt(n, r) the canonical inner product g

(
ϖ1, ϖ2

)
=

trace
(
ϖT

1 ϖ2

)
is used to define the Riemannian metric g

on the manifold. The metric g is commonly referred to
as the Frobenius inner product. The retraction is defined
as
RX : TXSt(n, r) → St(n, r) : ϖ 7→ RXϖ := hk (X +ϖ)

(IV.2)
where hk(X) represents the matrix Q obtained by the
QR decomposition of matrix X, and the tangent space
of St(n, r) at point X is given by the following formula,

TXSt(n, r) =
{
Y ∈ Rn×r : XTY + Y TX = 0

}
(IV.3)

In addition, the gradient of the objective function
fd(X) is defined as [40], [41],

gradfd(X) = PX(−
N∑
i

4CiXdiag(XTCiX)), (IV.4)

where PX denotes the orthogonal projection of X onto
TXSt(n, r), which is defined as,

PX

(
ϖ
)
= ϖ −Xsym

(
XTϖ

)
, (IV.5)

where sym(K) represents a diagonal matrix, which
diagonal elements is the diagonal elements of matrix K.
And the initial Hessian matrix of fd(X) is given by the
following

Hessfd(X)[ϖ] = −4
N∑
i

(PX (φ1 + 2φ2)− φ3) , (IV.6)

where

φ1 = Ciϖdiag
(
XTCiX

)
,

φ2 = CiXdiag
(
XTCiϖ

)
,

φ3 = ϖsym
(
XTCiXdiag

(
XTCiX

))
,

and ϖ ∈ TXSt(n, r).
In Algorithm 1, the termination criterion is set as

‖ĝk‖ ≤ 10−6 ‖ĝ0‖ or k ≥ max k, where the number of
maximum iteration is no more than 30000. The settled
parameters of Algorithm 1 are as follows ∆̂k = 0.8, µ =
0.5, τ = 0.7, λ = 1.5, κ = 1.0. Furthermore, we
choose a small-scale problem with dimension

(
n, r,N

)
=(

12, 4, 256
)
. In the experiment, we mainly study the

numerical performance of Algorithm 1 on a full Hessian
matrix. Simultaneously, we set up three different LBFGS
memory buffers and adjust the size of the memory
buffer by setting the corresponding parameter m, which
effectively governs the storage of historical information
about the approximate Hessian matrix. Moreover, let ni

denote the number of iterations in gradient updating,
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TABLE I: Numerical Comparison with Full Hessian in
Algorithm

Algorithm RTR NMRTR Our Algorithm
ni 44 36 30
nh 379 341 321

nf (s) 22.68 19.53 17.82
iteration 44 36 30

nh represent the number of iterations in Hessian matrix
updating, and nf indicate the average loading time of
CPU.

The numerical experiments reveal that Algorithm 1
outperforms RTR and NMRTR algorithms in terms of
the number of iterations in gradient updating, iterations
in Hessian matrix updating, and average loading time of
CPU. The results demonstrate our algorithm takes the
better performance in solving small-scale ICA problem.

V. Conclusion
This paper introduces a novel approach, the Non-

monotone Adaptive Trust Region Algorithm on Man-
ifolds(NATRAM), which demonstrates significant ad-
vantages over the RTR and NMRTR algorithms in
addressing optimization problems with orthogonal con-
straints. We transform the optimization problem into an
unconstrained optimization problem on the Stiefel mani-
fold, enabling unconstrained optimization algorithms on
manifolds can be applied to solve the problem. According
to the proof of convergence, we have demonstrated that
NATRAM exhibits both global and local convergence
properties. And the numerical experiments indicate that
NATRAM takes advantages in solving small-scale ICA
problems. In the future, we will further validate the
performance of the proposed method in a broader range
of optimization problems with orthogonal constraints.
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