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Abstract—The features extracted by deep networks have
strong semantic information of high-level features, but the fea-
tures of small target regions cannot be correctly described after
downsampling for many times, so that it is difficult to generate
stable discriminant features. In remote sensing images, multiple
small targets coexist and the scale changes greatly, which
makes it easier to lose small targets’ information. In order to
describe the features of each small target with different scales in
remote sensing images more accurately, adaptive deformations
convolution and LSKNet dynamic adjustment field strategies
were proposed to fuse multi-view feature information. At the
same time, in order to locate the small target boundary more
accurately, a more comprehensive loss function was proposed
to guide the optimization direction. The experiment result on 2
common datasets (such as COCO) and 4 remote sensing data
sets (such as HRRSD) shown: The detection accuracy of small
targets have been improved by three to five percent point.

Index Terms—Adaptive receptive field, Adaptive deformable
conv, LSKNet, SWIOU loss function

I. INTRODUCTION

In the field of computer vision, object detection is mainly
involved in precise positioning and identification of spe-

cific objects in images or videos. Small target detection
is one of the most challenging problems in the field of
computer vision. Compared with large targets, small targets
have smaller coverage area, lower spatial resolution and
fewer usable features. The results are usually not satisfactory.
In recent years, small target detection algorithms based on
deep convolutional neural networks are also developed on
common data sets. Here it is necessary to review the main
algorithms in object detection.

A. Traditional universal target detection algorithm

Small target detection in high-resolution remote sensing
images is a long-standing difficulty in detection tasks. Since
most of the mainstream target detection algorithms are based
on common data sets, it is necessary to review the traditional
target detection algorithms. These methods have three main
steps. First, the ROI of the region that may contain the target
is screened and extracted; Then, the feature vector of each
ROI is extracted; finally, the target category of the region is
classified by the feature vector of ROI. The specific object
classification’s workflow is shown in Figure 1.
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Fig. 1. Traditional common object classification’s workflow

First, the whole image is scanned by sliding window[1],
[2], [3], [4], [5], and then some fixed features are artificially
set to describe the features of specific targets(For example:
Haar[1], [2], [3], HOG[4], [5], SIFT[6], [7], SURF[8], etc.).
In the identification phase, SVM(support vector machine)[9]
can be used for object classification. Later scholars used
bagging[10], cascade learning[11], adaboost[1], [2], [5] and
other classification techniques to improve the accuracy and
speed of target detection.

Dalal N et.al. used Hog[2], [12], [13], [14], [15] (essen-
tially, it is the texture) to extract the target; Then, SVM
classifiers were used to distinguish targets[4], [9], [10];
Drayer B et. al. proposed DPM, whose main principle is
to construct a component detection method based on local
features combined with textures[12], [13], [14]. A machine
based on deformable parts[14] is a multipart model that
learns and integrates with deformable losses. It shows strong
robustness to deformed targets; In the detection phase, each
characteristic component is excluded in turn, the target
of interest is eventually detected. Later, scholars used the
most advanced target detection system combined with other
technologies to improve target detection’s accuracy (For
example: multi-scale detection, bounding box regression,
context launching[8], etc.). The core of the mainstream
algorithm is to extract multi-scale features by using feature
pyramid; At the same time, the sliding window was com-
pared with the key features on the image, which is also the
basic framework of general target detection and pedestrian
detection[10], [15]. However, the detection results are always
much lower than those of deep learning-based methods[16].
Later, some scholars proposed semi-supervised learning and
training methods[17], but, The efficiency of detection was
not satisfactory. The attention mechanism[18], clustering[19]
and selective search mechanism[20]were constructed in order
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to extract significant features from images with a particular
focus. However, the real-time detection of the target have not
been well improved.

B. Object detection algorithm based on deep learning

At the 2012 Image Classification Challenge, the world’s
AlexNet algorithm based on GPU training was presented[21].
It opened a new era of deep learning(the detection accuracy
exceeded the second place by several orders of magnitude).
So the AlexNet[22] deep network was a milestone and laid
a solid foundation for deep learning in the later stage, the
efficiency of target identification was greatly improved.

Later, inspired by AlexNet network, some scholars de-
signed a VGG model to increase the number of layers to
19[23] and used it for target detection. The feature maps
extracted by VGG provided assurance for later detection, so
it was an excellent early model in the field of target detec-
tion(The VGG model only expands in depth.). GoogLeNet
proposed a network within a network structure[24], [25] to
deepen the network. Later, some scholars added identical
network layers in width[26], and the most influential one was
ResNet which directly deepens the depth to 152 layers[26].
Later, a large number of target detection technologies were
emerged, which were classified according to the detection
principle. They are as shown in Figure 2.
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Fig. 2. Classification diagram of target detection technology based on
different principle

(1)Two-stage target detection algorithm
Girshirk et. al.[27] proposed the RCNN target detection

model, which had greatly improved the accuracy. However,
the training model is too complex, which seriously affects
the real-time target detection. Inspired by space pyramid
matching, He et al.[28] proposed space pyramid network to
adapt the size of input image. Faster RCNN model using
RPN can effectively shorten the detection time[29], [30].
FastRCNN and Faster RCNN are often used as a baseline
method to implement other improved algorithms. However,
Faster RCNN has many problems such as large number of
anchor frames, unbalanced positive and negative samples of
anchor frames, high model complexity, long training time and
low efficiency. A large number of proposal regions need to
be calculated, which becomes the computational bottleneck
of the Faster RCNN model. In order to solve the above

problems, representative methods include RFCN[30] and
Mask RCNN[31], [32], which eliminated these drawbacks to
a certain extent. However, no special attention has been paid
to the detection of small targets and multi-targets, especially
for small targets with occluded, crowded images and less
than 50 pixels, the detection effect was poor, and there was no
experimental data for small targets in remote sensing images.

(2) Single-stage target detection algorithm
For example, for 224*224 images, the speed of detection

based on the two-stage algorithm is less than 22 frames per
second. Later, scholars put forward the representative method
of YOLO series(YOLOv1[33],YOLOv2[34],YOLOv3[35],
[36], [37], [38], [39]). The detection speed of YOLOv3
model can reach 20 FPS(Only slightly less accurate). Later,
scholars took CSPDarknet-53[40], [41], [42] as the skeleton
network and PANet as the fusion network to carry out the
end-to-end target detection algorithm of multi-scale feature
fusion. The CSP module were proposed to solve the problem
of a large amount of forward computation in the network[40],
whose general idea is to divide the input features into two
ways at the time of input. Then, carry out cross-layer, multi-
scale and multi-feature fusion at the end. The YOLOv4
algorithm proposed that the PAN structure can transfer
features from bottom to top, and then carry out feature
fusion for different network layers. YOLOv4 is superior
to the one-stage algorithm in real-time detection speed[41],
[42]. However, after analyzing the COCO data set, it was
found that there are still many small targets that are not
detected. And, the targets in the multi-target crowded state
still have false detection or missing detection. Later, many
improved YOLOv5[43], [44], [45], [46] introduced multiple
CSP small modules embedded in the backbone network;
In YOLOv5, the more superior GIOU Loss is used as the
loss of regression frame, the accuracy of detection has been
improved. However, there were still some small targets that
were not detected. And there were still some false detection
or missing detection for multi-target occlusion or crowded
targets.

SSD algorithm is divided into six scales for target
detection[47], and the accuracy of small target detection was
improved to a certain extent. Later, some scholars proposed
that DSSD[48] realized small target detection, but it was not
applied to small target detection in remote sensing images.
The transformer model has quickly gained traction in the
computer vision space, especially in the field of object
recognition and detection. After investigating the results of
the most advanced target detection methods, the authors
noted that transformer model was superior to mature CNN-
based detectors in almost every video or image dataset[49],
[50], [51], [52], but it was not used for small target detection
in remote sensing images because the original spatial infor-
mation of small targets was disrupted when image subblocks
were split.

These models fix structure and can not change the recep-
tive field size adaptively. This does not meet the need of
high level networks to encode semantic features in spatial
locations. An image may have multiple objects of different
scales, and different positions of the image correspond to
objects of different scales. The convolution filter encodes
semantic features in spatial positions, so it is expected to
have an object detection model of the adaptive convolu-
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tion filter’s receptor field. Inspired by literature[53], [54],
[55], we proposed to extract shallow features by adaptive
adjustment of receptive field to fuse multi-scale features.
In the later stage, adaptive deformable convolution and
LSKNet that dynamically adjusted receptive field strategies
were introduced to enhance the interaction of multi-scale
feature information. Finally, in order to locate small targets
faster and more accurately, a comprehensive SWIOU loss
function [56], [57], [58], [59], [60], [61] combined with the
above improved backbone network was proposed to achieve
accurate detection of small targets in remote sensing images.

II. MODEL CONSTRUCTION

A. Dynamic receptive field based on adaptive three-way
deformable convolution and LSKNet

The convolution kernel of the convolution filter in the
traditional CNN layer is independent of the scale of the input
image (generally fixed to 3*3), and the receptive field of the
convolution kernel is also fixed. It was found that CNN wihch
is the closer the positive sample scaleis to the optimal input
image scale of the convolutional filter. the larger the output
of the convolutional filter, the higher the detection accuracy
[53], [54].

In order to more accurately describe the characteristics
of small targets with different scales in the same scene, an
adaptive receptive field was proposed[53]. The semantic in-
formation of high-level features is strong, but the description
ability of low-level features is insufficient, which makes it
impossible to generate stable discriminative features by using
deep or shallow features alone. In respect of the above issues,
adaptive deformable convolution and LSKNet dynamically
adjusted receptive field strategies were proposed to fuse the
discriminative features of small targets.

B. Adaptive three-way deformable convolution

Adaptive convolution was added different dilatation values
to the standard convolution filter, calculate the convolution
separately, and then select the maximum activation value as
the output. It was as shown in Figure 3.

y1=w1(x) y2=w2(x) y2=w3(x)
y=Max(y1,y2,y3)

x

Fig. 3. Adaptive convolution structure with step sizes of 1, 2 and 3
respectively

The selected dilatation value is determined autonomously
by the input feature map, and the process is carried out
without adding any other parameters. The information in-
cludes the size of the receptive field corresponding to the
current feature point (r), the distance between two adjacent

feature points(j) and the step size of the current convolutional
filter(S). Formula (1) calculates the feature distance in the
output feature map, which is equal to the feature distance
of the input feature map multiplied by the step size of the
convolutional filter, k is the convolution kernel scale, formula
(2) calculates the receptive field.

jout = jin × S (1)

rout = rin + jin × (k − 1) (2)

The difference between standard 2D convolution and 2D
deformable convolution are shown in Figure 4.

Fig. 4. Standard convolution and deformable convolution (Note: (a) is
standard convolution, (a) -(c) is deformable convolution, and c was chosen
as the deformable convolution kernel in this paper.)

In order to extract more information in the small target
domain, two-dimensional deformable convolution was intro-
duced for feature extraction. This is shown in Figure 5.

Fig. 5. Schematic diagram of deformable convolution

The operation of two-dimensional deformable convolution
is shown in Figure 6.

Fig. 6. Schematic diagram of standard convolution and deformable
convolution that applied to image operation
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DCN adds 2D offset to sample the position of the rect-
angular grid in the standard convolution. Combining the ad-
vantages of deformable convolution and adaptive deformable
convolution, adaptive deformable convolution was designed
to incorporate multi-scale information. Convolution with
fixed step and adaptive deformable convolution are shown
in Figure 7.
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(a: Convolution with fixed step)

(b: adaptive deformable convolution)

Fig. 7. Schematic diagram of deformable convolution with fixed step size
and adaptive step size

C. Adjust spatial receptive field based on improved LSKNet

It is easy to misdetect small targets in remote sensing
image because of the large scale change and the existence
of many different kinds of small targets in the same scene
during downsampling. We embed the CABM module into
LSKNet. The LSKNet module scales its spatial receptive
field in real time. And, the CABM module can pay more
attention to the characteristics of the small target itself.
Therefore, various small objects in remote sensing scenarios
can be better modeled, where: CABM represents the spatial
channel attention mechanism. LSKNet(Large K) means large
convolution kernel. In this paper, the convolution kernel sizes
are 5*5 and 7*7 respectively; F 1∗1

1 and F 1∗1
2 respectively

indicate the different-channel convolution whose convolution
kernel is 1. LSKNet is shown in Figure 8. Where: CBAM (

CABM
Max
Pool

C

LargeK

LargeK

+

X

X
Y

F1
1X1

F2
1X1

X

X C Channel Concatenation + Element Addition X Element Product S Sigmoid

SConv

Fig. 8. Schematic diagram of LSKNet module

Convolutional Block Attention Module) is a hybrid attention
mechanism that can simultaneously consider the channel and
direction information of an image. The CBAM module can
effectively improve the efficiency and performance of target
detection.

Finally, the receptive field is dynamically adjusted based
on adaptive three-way deformable convolution and LSKNet

module. The module is a plug and play lightweight compo-
nent that can be placed in any network for use. This is shown
in Figure 9. The adaptive three-way deformable convolution

LSKNet  branch

Input

Adaptive Deformable 
Conv2D

Fig. 9. Adaptive deformable convolution and adaptive LSKNet module

and LSKNet modules can extract more significant features
and boundary information, so they can well deal with the
multi-scale small target detection problem of remote sensing
image.

D. Improved SWIOU loss function

At the same time, in order to locate the small target
boundary faster and more accurately, a comprehensive loss
function combined in our improved deep neural network was
proposed to achieve accurate detection of small targets in
remote sensing images.

1) Loss function of classical target detection: The loss
function of target detection is shown in Equation 3 [56],
[57], [58], [59], [60], [61].

Loss =

λcoord

s2∑
i=0

B∑
j=0

Iobjij

[(
xi− x̂ji

)2
+
(
yi−̂yji

)2]
+

λcoord

s2∑
i=0

B∑
j=0

Iobjij

[(√
wj

i −
√
ŵj

i

)2

+

(√
hji−

√
ĥji

)2
]
−
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B∑
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[(
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i log
(
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i

)
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1−Ĉj

i

)
log
(
1−Ĉj

i

)]
−
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i=0

B∑
j=0

I
noobj
ij

[(
Ĉj

i log
(
Cj

i

)
+
(
1−Ĉj

i

)
log
(
1−Ĉj

i

)]
−

s2∑
i=0

Iobjij

B∑
j∈class

[(
P̂ j
i log

(
P j
i

)
+
(
1−P̂ j

i

)
log
(
1−P̂ j

i

)]

(3)

2) SIoU Loss Function: SIoU further considers the mul-
tiple differences between real box and predicted box. For
example, angle cost, distance cost, shape cost, IoU cost, etc.
We redefined loss function which is related to the bounding
box’s coordinate, it is as shown in Figure 10.
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Fig. 10. Vector angle between real box and prediction box

The relevant parameters in SIoU are shown in formula
(4)-(13).

Λ = 1 − 2∗ sin2
(

arcsin
(ch
σ

)
− π

4

)
= cos

(
2∗
(

arcsin
(ch
σ

)
− π

4

))
(4)

Where
ch
σ

= sin(α) (5)

σ =

√(
bgtcx − bcx

)2
+
(
bgtcy − bcy

)2
(6)

ch = max
(
bgtcy , bcy

)
− min

(
bgtcy , bcy

)
(7)

∆ =
∑
t=x,y

(
1 − e−γρt

)
= 2 − e−γρx − e−γρy (8)

ρx =

(
bgtcx − bcx

cw

)2

(9)

ρy =

(
bgtcy − bcy

cw

)2

(10)

r = 2 − Λ (11)

Ω =
∑
t=w,h

(
1 − e−wt

)θ
=
(
1 − e−wt

)θ
+
(
1 − e−wh

)θ
(12)

wW =
w − wgt

max (w,wgt)
, wh =

h− hgt

max (h, hgt)
. (13)

It includes four parts: angle cost, distance cost, shape cost
and IoU cost. The final definition of SIoU loss function is
shown in Equation (14) :

LossSIoU = 1 − IoU +
∆ + Ω

2
(14)

3) WIOU loss function: Considering the area between the
predicted frame and the actual frame, the loss function is
weighted to solve the possible deviation of the evaluation
result of the traditional loss function. WIOU can evaluate
test results more accurately, and the final definition of WIoU
loss function is shown in equation (15) [61], [62], [63] :

Loss WToUv3 = r LossWToUv1

(
r =

β

δαβ−δ

)
(15)

Where:
LWIOUv1 = RWIOULIoU (16)

RWIou = exp

(
(x− xgt)

2
+ (y − ygt)

2(
w2
g + h2g

) )
(17)
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Fig. 11. Schematic diagram of our improved YOLOv8

4) SWIoU loss function: Inspired by SIoU and WIoU
[60], [61], [62], [63], this paper proposed an improved loss
function SWIoU to optimize the object detection model.
SWIoU loss function can establishe the relation between var-
ious losses by introducing the information of angle, distance,
aspect ratio, loss function weighting, etc., and effectively
increased the message interaction between each other. The
final SWIoU loss function is shown in equation (18).

LossSWIoU = 1 − IoU +
∆ + Ω

2

β

δαβ−δ
(18)

III. ALGORITHM FLOW

In order to verify the effectiveness of our algorithm, a
comparative experiment was conducted using mainstream
YOLOv8 target detection algorithms as the baseline. (Note:
The improved SWIOU loss function was used in the latest
YOLOv8 algorithms.). Inspired by references[64], [65], [66],
[67], the improved module which is as shown in Figure 9
was embedded between CSP1 1 and CSP1 2 of YOLOv8;
The improved YOLOv8 network is shown in Figure 11.

IV. EXPERIMENT

The proposed method was introduced for comparative
experiments. The experimental hardware and software con-
figurations, remote sensing image data sets, parameter Set-
tings and performance evaluation indicators adopted are as
follows.

A. Software and hardware configuration

For the neural network models in the experiment, SGD
with Momentum was used as the optimization algorithm
for model training (Momentum=0.9). The learning rate was
0.01; The learning rate decay rate was 0.1. All experi-
ments were completed under the Win10 operating system,
the hardware environment was a dual-core 3.4 GHz CPU,
256 GB RAM, two NVIDIA TESLA 100 GPU(32G). And,
deep learning framework was Pytorch, programming tools
was Pycharm2023. CUDA versions was 10.1. The perfor-
mance evaluation indexes in this experiment were mAP, loss,
FLOPs, etc.

B. Experimental data set

Comparative experiments were conducted on 6 data
sets(COCO, VOC, HRRSD, DIOR, Dota, NMPUCHR, ect.)
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C. Parameter setting and evaluation index

1) Parameter setting: In the experiment, the adaptive
deformable convolution and adaptive LSKNet module( Fig-
ure 9) proposed in this paper were embedded into YOLOv8
target detection algorithms. Comparative experiments were
conducted on 6 data sets(COCO,VOC, HRRSD, DIOR, Dota,
NMPUCHR, ect.).

2) Detailed evaluation index: There are five detailed
evaluation indexes, each of which is described below.

(1)mAP
The mAP50 and MAP50-95(average precision) were used

in this paper. Accuracy refers to the proportion of records
correctly detected using the test set to the total number of
classified records, calculated as shown in equation(19) :

acc =
TP

TP + FP
(19)

Where TP represents the number of correctly classified
records and FP represents the number of incorrectly classified
test data. For example, ImageNet has about 1000 categories,
and when the model predicts an image, it gives a rank-
ing of 1000 categories from highest probability to lowest
probability. Here, the pre-trained model is loaded on the
ImageNet dataset. The mAP50 represents the mAP value
at 50% loU threshold; The mAP50-95 is a more rigorous
evaluation metric that calculates mAP values within the 50%-
95% loU threshold range and then takes the average; The
mAP50-95 can more accurately evaluate the performance of
the model under different LOU thresholds.

(2)Evaluation loss
Evaluation loss is as follow: evaluation of the loss of

the target boundary frame (va1/box loss), evaluate the target
object’s loss (val/obj loss), evaluation target object classifi-
cation loss (val/cls loss).

(3)Floating-point computation(FLOPs)
The FLOPs parameter directly affects the usage scenario

of the target detection model, because the storage of hand-
held devices is generally not very large( directly affects
the computing speed of GPU). Parameter quantification(
PARAMs: conv param = (kernel size * in channel + bias)*
out channel; Where, the kernel size represents the size of the
convolution kernel, in channel is the input channel number,
out channel is the output channel number, bias is the biased
number. ). FLOPs is the floating point operation’s abbrevi-
ations. Therefore, this quantity can be used to measure the
computational complexity of an algorithm or model.

(4)training time
training time is the cost of the training target detection

model. The unit of measurement for training time is the hour.
(5)Model Memory (M)
It is the memory space that is occupied by the target

detection model.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The following two technical points were integrated into
YOLOv8 algorithms in our experiment: (1: the adaptive
deformable convolution; 2: adaptive LSKNet module; 3: loss
function.). Then, a data set was selected as the experimental
object for training, evaluation, testing and so on.

A. Experimental results and analysis of YOLOv8 algorithm
on COCO dataset

There are more targets in the COCO dataset that occupies a
smaller percentage. The feature of image data in COCO data
set is very close to the real scene, but there are many kinds
of targets and complex background, so it is used to verify the
effectiveness of the algorithm. The improved YOLOv8 algo-
rithm had an increase of 2.5 percentage points on mAP50.
There is a 0.05 percentage point increase in mAP50:95.
The remaining parameters hardly changed, which shown that
there was a certain improvement effect on the COCO dataset.
The specific comparative data is shown in Table I. The
comparisonon mAP50 data on the COCO dataset is shown in
Figure 12. Figure 12 shows the mAP50 changes of all targets

Fig. 12. Comparison mAP50 of COCO dataset

in the COCO dataset before and after the improvement of the
three algorithms. The target detection rate is improved and
converges stably. The improved algorithm converged more
smoothly to the stable loss value. And, the loss value was
still high; That is to say, our algorithm will improve the
accuracy of target detection if we continuou training.

B. Experimental results and analysis of YOLOv8 algorithm
on VOC dataset

There are also more targets in the VOC dataset that
occupies a smaller proportion. The image data in VOC data
set is very close to the real scene and is the preferred
general data set for target detection algorithms. The improved
YOLOv8 had increased 2.5 percentage points on mAP50.
The remaining parameters hardly changed, which shown a
good effect on the VOC data set. The specific comparative
data is shown in Table II. The improved YOLOv8 algorithm
has an increase of 0.1-3.1 percentage points on mAP50. The
remaining parameters (FlOPs, etc.) hardly change, which
shows that the detection of small targets on the VOC dataset
has a certain effect. The comparisonon mAP50 data on the
VOC dataset is shown in Figure 13. As can be seen from
the comparison in Figure 13, the improved algorithm can
achieve rapid convergence more quickly and stably. The
corresponding mAP50 is higher than the original algorithm.
the improved algorithm can converge more smoothly to
the stable loss value. The overall mAP50 corresponding
to most improved algorithms has a certain improvement.
The improved algorithm can converge more smoothly to the
stable loss value. The whole mAP50 corresponding to the
improved algorithm was improved to some extent.
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TABLE I
COMPARISON TABLE OF EXPERIMENTAL DATA OF COCO DATASET

algorithm
index mAP50 mAP50-95 val/box loss val/obj loss val/cls loss FLOPs

(G)
Time
(h)

Model
Memory

(M)
YOLOv8 0.563830 0.361721 0.042777 0.062211 0.015859 22.44 23.53 14.8

YOLOv8-1 0.584250 0.374402 0.042613 0.0598789 0.0151098 22.44 23.53 14.8
YOLOv8-2 0.577997 0.364875 0.021232 0.057420 0.0130731 22.44 23.53 14.8
improved
YOLOv8 0.588325 0.366820 0.058551 0.015367 0.689772 22.44 23.53 14.8

TABLE II
COMPARISON TABLE OF EXPERIMENTAL DATA ON VOC DATASET

algorithm
index mAP50 mAP50-95 val/box loss val/obj loss val/cls loss FLOPs

(G)
Time
(h)

Model
Memory

(M)
YOLOv8 0.823151 0.580720 0.024751 0.022938 0.005039 22.4 23.53 13.7

YOLOv8-1 0.857564 0.613959 0.01199 0.032211 0.003621 22.4 23.53 13.7
YOLOv8-2 0.831642 0.560251 0.026748 0.023090 0.004817 22.4 23.53 13.7
improved
YOLOv8 0.848762 0.598536 0.021345 0.004227 0.811197 22.4 23.53 13.7

TABLE III
EXPERIMENTAL DATA COMPARISON TABLE OF HRRSD DATASET

algorithm
index mAP50 mAP50-95 val/box loss val/obj loss val/cls loss FLOPs

(G)
Time
(h)

Model
Memory

(M)
YOLOv8 0.928590 0.652640 0.017919 0.001505 0.922260 22.40 23.53 19.6

YOLOv8-1 0.956731 0.650155 0.023736 0.018217 0.001482 22.40 23.53 19.6
YOLOv8-2 0.959693 0.672338 0.009827 0.020796 0.001088 22.40 23.53 19.6
improved
YOLOv8 0.959414 0.674457 0.016870 0.001338 0.955186 22.40 23.78 19.8

Fig. 13. Comparison mAP50 of VOC dataset

C. Experimental results and analysis of YOLOv8 algorithm
on HRRSD dataset

HRRSD is a large-scale dataset with moderate quantity,
balanced distribution among classes, more small targets, but
the background is relatively simple. The experimental data
on the HRRSD dataset is shown in Table III.

The comparisonon mAP50 data on the HRRSD dataset is
shown in Figure 14.

The improved YOLOv8 algorithm has an increase of 3.1
percentage points on mAP50. The remaining parameters
(FlOPs, etc.) hardly change, which shows that the detection
of small targets on the HRRSD dataset has a certain effect.
mAP50-95 also has an increase of 0.22 percentage points.
That is to say, the improved algorithm can meet higher
detection requirements.

Fig. 14. Comparison mAP50 of HRRSD datasetn

D. Experimental results and analysis of YOLOv8 algorithm
on DIOR dataset

The DIOR dataset is a recently released dataset of large-
scale and high-resolution remote sensing targets. The ground
objects in this data set have rich differences in scale, color,
texture and other features, which makes the performance
of existing detection models in the data set poor. In order
to verify the effectiveness of the improved algorithm, we
conducted experiments on DIOR remote sensing data set,
and the relevant data corresponding to most models is shown
in Table IV.

The comparisonon mAP50 data on the DIOR dataset is
shown in Figure 15.

Based on the DIOR experimental data, our two tech-
nical points were integrated into the YOLOv8 algorithm.
Compared to the basic detection algorithm, the mAP50
improved by 2.9% respectively. The corresponding three loss

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 1294-1303

 
______________________________________________________________________________________ 



TABLE IV
COMPARISON TABLE OF EXPERIMENTAL DATA ON DIOR DATASET

algorithm
index mAP50 mAP50-95 val/box loss val/obj loss val/cls loss FLOPs

(G)
Time
(h)

Model
Memory

(M)
YOLOv8 0.788320 0.572010 0.019148 0.001264 0.866980 22.40 23.53 14.8

YOLOv8-1 0.813759 0.583668 0.014548 0.019297 0.001110 22.40 23.53 14.8
YOLOv8-2 0.814296 0.589214 0.025268 0.018767 0.001164 22.40 23.53 14.8
improved
YOLOv8 0.817666 0.589539 0.018979 0.001227 0.891142 22.40 23.58 15.5

Fig. 15. Comparison table of experimental data on DIOR dataset

values still have a certain downward trend. The remaining
parameters (FLOPs, training time, model memory) barely
increased (i.e. no increase in detection costs). Neither the
training time nor the model increased.

E. Experimental results and analysis of YOLOv8 algorithm
on DOTA dataset

DOTA is a large-scale data set with both vertical bounding
box and rotating bounding box annotations. It contains 16
object categories and 400,000 object instances. Some annota-
tion information has been added to significantly increase the
number of target instances. And, a new target class(container
cranes) has been added. The experimental-related indicators
of DOTA data set is shown in Table V. Based on DOTA
experimental data, our three technical points were integrated
into the YOLOv8 algorithm. Compared with the basic de-
tection algorithm, mAP50 improved by 2.7

Fig. 16. Comparison table of experimental data on DOTA dataset

According to DOTA experimental data, our 3 technical
points were integrated into the YOLOv8 algorithm.

Compared with the basic detection algorithm, the mAP50
improved by 2.7% respectively. At the same time, the

mAP50:95 increased by 0.03% respectively. The correspond-
ing three loss values still have a certain downward trend. The
remaining parameters (FLOPs, training time, model memory)
barely increased (i.e. no increase in detection costs), and
neither the training time nor the model increased.

F. Experimental results and analysis of YOLOv8 algorithm
on NWPUCHR dataset

The NWPUCHR dataset contains 10 types of objects, and
the ground objects in this dataset have rich differences in
scale, color, texture and other features. And, fully considered
the imaging conditions of real scenes, clouds and other
factors, which makes the performance of these mainstream
models poor. In order to more fairly reflect the effectiveness
of the proposed algorithm, we conducted experiments on the
NWPUCHR dataset, and the main performance indicators
is shown in Table VI. It is again verified that the proposed
multi-scale fusion module pays more attention to the bound-
ary information of the target. The comparisonon mAP50 data
on the NWPUCHR dataset is shown in Figure 17.

Fig. 17. Comparison table of experimental data on NWPUCHR dataset

On the NWPUCHR dataset, these algorithms were applied
for experiments, and, the mAP50 increased by 4.2%. The
remaining parameters (FLOPs, training time, model memory)
barely increased (i.e. no increase in detection costs). Neither
the training time nor the model increased.

VI. CONCLUSION

In order to detect small objects on remote sensing im-
ages more accurately, adaptive deforming convolution and
LSKNet with automatic adjusted receptive field strategies
were proposed to integrate multi-scale features. The im-
proved SWIOU loss function was used to optimize the
optimization direction in the small target detection phase.
The experimental results shown that the mAP50 of detecting
small targets on 4 remote sensing data sets(such as HRRSD)
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TABLE V
EXPERIMENTAL DATA COMPARISON TABLE ON DOTA DATASET

algorithm
index mAP50 mAP50-95 val/box loss val/obj loss val/cls loss FLOPs

(G)
Time
(h)

Model
Memory

(M)
YOLOv8 0.715793 0.546474 0.020446 0.001562 0.878559 22.4 23.53 14.8

YOLOv8-1 0.725582 0.452423 0.039581 0.034781 0.002051 22.4 23.53 14.8
YOLOv8-2 0.723549 0.458144 0.038489 0.034586 0.001737 22.4 23.53 14.8
improved
YOLOv8 0.742296 0.549214 0.018767 0.001164 0.895166 22.4 23.53 14.8

TABLE VI
EXPERIMENTAL DATA COMPARISON TABLE ON NWPUCHR DATASET

algorithm
index mAP50 mAP50-95 val/box loss val/obj loss val/cls loss FLOPs

(G)
Time
(h)

Model
Memory

(M)
YOLOv8 0.848060 0.443712 0.042503 0.024823 0.006742 22.40 23.53 19.6

YOLOv8-1 0.876221 0.446064 0.046343 0.039504 0.006114 22.40 23.53 19.6
YOLOv8-2 0.887562 0.490955 0.041986 0.036767 0.007458 22.40 23.54 19.6
improved
YOLOv8 0.890110 0.507170 0.038009 0.007719 0.892850 22.40 23.53 19.8

were improved by 3 to 5 percentage points. The mAP50:95
were improved by 1 to 3 percentage points. The remaining
parameters hardly changed, which shown that there was a
certain improvement effect on 4 remote sensing data sets.
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