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Abstract—This article extends the concept of Blaschke-Mink-
owski homomorphisms operator in n-dimensional Euclidean
space to complex vector space, and establishes some important
geometric inequalities for this purpose. Moreover, the Shep-
hard-type problem of complex Blaschke-Minkowski homomor-
phisms is also studied.

Index Terms—Blaschke-Minkowski homomorphism; compl-
ex vector space; Brunn-Minkowski inequality; Shephard peob-
lem

1. INTRODUCTION
ET K" be the set of convex bodies (compact, convex
subset with non-empty interiors) in » -dimensional
Euclidean space R". Denoted by Be R" the unit ball, and
S the unit sphere. We write () for the » -dimensional
volume.
For K e K", the support function, 4, =h(K,):R" - R,
is given by ([19])
h(K,u)=max{u-Y:YeK}, ueS""
Here n n denotes the standard scalar product.
For K € K", the projection body, denoted by TIK, is an

origin-symmetric convex body whose support function is
given by ([19])

A(TIK ,v) = gV(K,--~,K,[—v,v]),

for ve §""'. Here V(K,---,K,[-v,v]) is the mixed volume of
n—1 copies of K and one copy of the segment [—v,v]. The
mixed projection body of convex bodies K,,---, K is

n-1
defined by (see[4]): for u e S
n
h(H(Klz"':anl)av) :EV(Kla"'aanla[_Vav])’

The projection body was introduced by Minkowski at the
beginning of the last century. Through the works of Petty
([16]), Schneider ([18]), Bolker ([3]), Lutwak ([13]) and
Zhang ([25]), projection bodies have attracted widespread
attention.
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Based on the properties of projection operators, Schuster
[20] established a special valuations:

Definition 1.A. The mapping ®: K" — K" is said to be a
Blaschke-Minkowski homomorphism (abbreviated as BMH)
if it satisfies: for K,L € K",

(1) @ is continuous.

(2) ®(KFL)=D(K)+D(L), where T and + denote the
Blaschke sum and Minkowski sum, respectively.

(3) For every 9 e S0(n), ®(9K) = 9D(K), where SO(n)
denotes the group of rotations in 7 -dimensions.

The mapping @ is an even BMH if and only if there is a
centrally symmetric figure of revolution F € R", which is not
a singleton, so that

W®K,) =S, (K)*h(F.), (1)
where set F is unique up to translations, and S, (K ,) denotes
the surface area measure. Moreover, the BMH has paid
considerable attentions, see e.g., [5-7], [20-22], [26-29].

Denoted by K" (C") and K’ (C™" the set of convex bodies
and the set of origin-symmetric convex bodies in complex

vector space C". Let HHL the norm corresponding to

LeK"(C"):
L={leC":

<], 1.
We identify C" with R" using the standard mapping
A= (A ooy ) = (g +idyy, oo Ay +idy)
= (A Ay A A
The unit ball B in C" is given by
B={1eC" :Zn:(ﬂ,ﬁ +2,) <1}

k=1
Let @, and $*"'denote the volume and surface of B.

Until recently, Abardia-Bernig [2] extended the concept of
projection body in R" to C". Let K ,---, K, ,€K"(C")
and C € C' be a convex subset. The complex projection body
¢ (K,
support function as

hI1° (K, K, ), o)

1
= MO 0. (K s, Ky 158),

and support function

,K,, ) is a convex body is defined through the

where C-w:={cw:ceC},weC",
he :C" — R (see Section 2 for details). Later the case of

complex convex bodies began to attract attention, see e.g.,
(1], [2], [9-11], [15], [17], [24], [30] .
The main goal of this paper is to extend the BMH operator
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to complex vector space. Motivated by (1), we present the
complex BMH, ®“:K"(C")— K"(C"), as the complex
convex body:

Definition 1.1. Let K,

,K,, , e K"(C"). The complex
mixed BMH, denoted by ®°(K,,---,K,, )eK"(C"), is
defined by the support function as
h((DC(Klﬂ.“’KZn—I)’w) 2
=S(K,,"-,K,, ;) *h(C-0,),0ecC".

For Definition 1.1, we have the following result.
Proposition 1.2. For K,LeK"(C") . The operator ®°
satisfies:

(1) ®F is continuous.

2) ®(KF,L)=D(K)+D(L).

(3) For every § € SO(2n), ®°(9K) =90 (K).

Based on Proposition 1.2, we call ®K the complex
BMH of K.Let K, =---=K =K and K, , ="
=K,,, =L in Definition 1.1. Then ®“(K,---
be written as ®°(K,L). If L=B, we write ®f(K,B)
=@7K and OJK =0K .

We now establish several important inequalities for

complex BMH as follows:
Theorem 1.3. (Minkowski type inequality) Suppose that

K,Le K"(C"). Then
V(DS (K, L))" >V(@°K)" 7V (DL),
with equality iff K and L are homothetic.
Theorem 1.4. (Aleksandrov-Fenchel type inequality)
Suppose that K, ,---,K, € K"(C"), while 1<r<2n-2,

2n—i-1

’K2n—1) can

then
V(CDC (K] ER) Kzn—l ))'

> H V((I)C(Kj. . "Kj’KrJrl’” .’K2)171))'
J=1 —

Theorem 1.5. (Brunn-Minkowski type inequality) Suppose
that K,L € K"(C"). Then
1 1 1

V(O (KF, L) 2V (D K)> +V(DL)?",

with equality iff K is a translation of L.
Another main goal of this paper is to research the Shephard
problem for complex BMH.

Problem 1.6. For K € K"(C") and a translate of L is
contained in ®°K", is there the implication
OK DL = V(K)cV(L)?
Obviously, Problem 1.6 is a more general Shephard-type

problem than classical Shephard problem (see[23]).
Now, we give an affirmative answer of Problem 1.6.

Theorem 1.7. For K e K"(C"), LeZ". If K CD6L,
then
V(K)<V(L),
with equality iff O°K =0L. Here C is the complex
conjugate of C, and Z" is the set of complex BMH.
The negative form of Problem 1.6 is obtained:
Theorem 1.8. Suppose that L € K"(C"). If @ is an even

operator and L is not an origin-symmetric, then there is a
K e K" (C"), such that DK c ®°L, but
V(K)>V(L).

The organization of this paper is as follows. In Section II,
we introduce some notations and basic facts in Section II. In
Section III, we give the proof of Proposition 1.2 and
introduce some characterizations of complex mixed BMH. In
Section IV, we shall obtain some important geometric
inequalities. Section V, we further study the Shephard type
problem.

II. PRELIMINARIES

For a complex number ¢ € C. Denote by nnthe standard
Hermitian inner product on C” being conjugate linear. We
write ¢ for canonical isomorphism between C" and R?",
that is,

1(z) =(R[z],....R[z,],3[z],....9[z,]),ze C".
Here R and 3 denote the real and imaginary part. Note that
R[c-z]=1c-1z, (3)
forall ¢,z € C". Here the inner product on the right hand side
is the standard inner product on R*".
For K € K"(C"), the support function, 4, :C" — R, is
uniquely determined by ([8])
he(z)=max{R[z-Y]: Y eK},zeC".
It is an easy consequence of (3) that
he =hy o,
where £, is the usual real support function.
Forall >0 and ¢ € GL(n,C)
h =ah, and h¢K = hy of’,
where ¢* denotes the conjugate transpose of ¢ if ¢ e C™".
For two real numbers o, A >0, the Minkowski sum
aK + AL is given by
oK +AL={cx+Ay:xeK and ye L},
or equivalently,
Ry =0hy + AN, . 4

For K € K"(C"), the surface area measure S, is the
Borel measure on S*"' defined, for Borel set @ € S*"”', by

S (@)=H""(t{x e K : Ju € o with R[x-u]=h,(u)}),
where H*""' denotes (2 1) -dimensional Hausdorff measure
on R*. By the definition of §,, it is not difficult to show
that surface area measures are translation invariant. Up to
translations, a body K € K"(C") is uniquely determined by
its surface area measure, that is,

S¢=S, © K=L+x, xeC".

By the Minkowski's existence theorem (see[14]), we can
give the concept of the complex Blaschke combination as
follows: For K,Le€ K"(C") and a,A>0 (not both zero),
the complex Blaschke combination is given by

S@®KF ABL,)=aS(K,)+AS(L,). %)

Let « = A =1/2 in (5), this allows us to define the Blasch-

ke body VK as the unique origin-symmetric convex body
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with
VK = %@ S(K,)F, %@ S(-K,). (6)
For K,,---,K
wing integral expression (see [2], [15], [24]):
VK, K,,) = i L h, dS(K Ky ). (D)

e K"(C"),the mixed volume has the follo-

2n

Here S(X,,---,K

,K,, ;) denotes the mixed surface area

measure of K ,---, K, . Wetake K, =---=K, =K, then
S(K,,....K,, ) is written as §, (K,). If K =---=
K, =K, K,, ,,=-=K,, =L, then we write
V(K,, -, K,)=V(K,2n—i;L,i)=V,(K,L). ®)
Obviously,
V.(K,L) =V (K). ©)

For K,,---,K,, € K"(C") and 1< r <2n, due to the work
of Lutwak [12], it follows that

V(K Ky 2TTV(K, KK, Ky, (10)
F s SN
Let K, =--=K,, ., =K, K, ==K, =B and

K,, =L in (8). Then call W(K,L)=V(K,2n—i—1;B,i;L)

is mixed quermassintegrals, and

WK, L)= [, h(L,u)dS, (K u), (11)
for 0<i<2n—1and u e S*"'. Obviously,
W.(K,K)=W/(K) and W,(K)=V(K), (12)

A special case of (10) is the Minkowski type inequality: Let
K, K, €K"(C"). If 0<i<2n—1, then
WK, L) 2 W,(K)" " W,(L),
with equality iff K and L are homothetic.
Using (11), we may immediately get the following result:

Suppose that K,L € K"(C"), andany Q € K"(C")
WA(Q,K)=W,(0,L),

then K is a translation of L.

(13)

(14)

III. THE COMPLEX BLASCHKE-MINKOWSKI
HOMOMORPHISM

In this section, we give a proof of Proposition 1.2. As easy
identify for complex BMH, which involves mixed volumes,
will facilitate a number of proofs given later.

Lemma 3.1. Let X,,---, K, |,L,--,L, ,€K"(C"). Then
V(K s Ky, @ (Lyyers Ly, 1)
=V(Liyes Ly 1, D (K, K, )
Proof. Let M =(K,,---,K,, ), N=(L,,---,L,,,) and C is
a convex subset. By the definition of ®° and (7), we get

V(M,0N) = $<h(®cN, £),5(M,&))

=2in<s(zv,w)*h(c-g,a)),S(M,/:»

1

:%<S(M,§)*h(C-é,a)),S(N,w»

=L (s, 85 1(C &, w), SN, ).
2n

The statement of the proposition now follows from
Fubini’s theorem and the relation

h(C-&,)=h(C-a,&),
for £,w e C". The proof is completed.
If K,=-=K =K, while K, =---=K, =B,
then Lemma 3.1 reduces to following result.
Lemma 3.2. Let K, L ,---,L, , € K"(C"). Then

L,
WK, (L, Ly, )=V (L, Ly, K.
If ==L =[ and L, ==L, =B, then
Lemma 3.2 states:
Lemma 3.3. Let K,LeK"(C"). If 0<i<2n—1, while
0<j<2n-2, then
W(K,®L)=W,(L,d°K). (15)
In the next Lemma, we will further summarize the special
case of identity (2). These make use of the fact that the image

of a ball under a complex BMH is again a ball. Note that
ds,, (B,&)=d¢&, where d& is the ordinary spherical

Lebesgue measure. Thus, by (2)
h®B,0)=8,,,(B.&)*h(C v,

= L W(C-@,8)dE = .
Let 7, denote the radius of ball ®°B, equivalently, ®°B
=r.B. Note that 1(C-&, ) = h(C - w,&) and the surface area

2n—i-1

2n—j-1

S(B,) is constant in $*"'. From above argument, we obtain
O B=D B = r.B. Here r, is a constant which depends only
on C.
Take K, =---=K,, , =B in Lemma 3.1 and use OB =
OB = 7B to get following result:
,L,,, €K"(C"). Then
WZn—l(q)c(Ll"“’LZn—l)) =1V (L, Ly, ,,B).  (16)
In Lemma 3.4,if L, =---=L, ,=K and L, , =L, then
(16) becomes
Wy, (O (K, L) = 7 W, (K, L).
If [, ==L =Land . =---=1L

becomes

Lemma 3.4. Let [ ,---

17)
= B, then (16)

2n—i-1 2n—i 2n-1

Wy (CDI'CL) =1W (D).

Proof of Proposition 1.2.
(1) Support that a map ®° :K!(C")— K (C") satisfies
WPK,w)= S(K,)*h(C-w,) is a nonnegative measure.

(18)

The continuity of ®¢ follows from the fact that the support
function A(K ) is continuous.

(2) From (4), (5) and (2), we obtain
WD K + DL, w) = h(PK, )+ h(PL,w)
=8, (K)*h(C-0,)+8,, (L) *h(C-w,)
= (85,4 (K)+8,,,(L,)*h(C-0,)
=8, (KF,L)*h(C-w,)
=h(®“(KF,L),).
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ie, W(®K+DL)=h(® (KF,L),).
(3) For 9 SO(2n) and 9" € SO(2n)

WOIK,w)=S,, ,(IK,)*h(C-o,)
=5,,.(K, '9_1) *h(C-w,)
= WDKK, 9" w) = h(IDK , w).

IV. GEOMETRIC INEQUALITIES
In this part, we give proofs of Theorems 1.3-1.5. Firstly,
we obtain a general form of Theorem 1.3.
Theorem 4.1. Let K, L K"(C"). If 0<i<2n—1, then
(O (K, L) 2 W (@K 2 W(@°K),  (19)
with equality iff K and L are homothetic.
Proof. From Lemma 3.2, (10) and (13), for Q € K"(C"), we
have
VVi (Q> q)lc(Ka L))ZIFI = V(Ka -, K, L, (DiCQ)anl
>V,(K, @7 Q)" V(L[ 0)
=W(Q.®K)"*W,(Q,®°L)

(2n—i-1)(2n-1) 2n-2 1

2W(Q) T WKW (DL,
by the equality condition of (13), equality holds in (20) iff
0, ®°K and ®°L are homothetic. Let 0 = ®(K,L). By
(13), we obtain the desired inequality (19).
If there is equality in (19), then there exists ¢,,a, >0, so
that

(20)

O (K,L)=a,®K =a,dL. 3}
This together with the equality in (19), it follows that
al"a, =1. (22)
On the other hand, (17), (18) and (20) imply
o KL g KD o
Wi(K) wi(L)

Combined with (22) and (23), we get

WKLY = W,(K)" W, (L).
According to the equality condition of (13), we see that
equality holds in (19) iff K and L are homothetic. Note that
Theorem 1.3 is special case of i =0.

Then, we establish a more general result of Theorem 1.4.
Theorem 4.2. Let K,,---,K, ,€K"(C"). If 0<i<2n-],
while 2 <y <2n-2, then

VV,((DC(K] [ "KZn—l )

> 24

.:*

VV:(q)C(K/ "'aKj’KH-l"”’Kzn—l))'
—

Proof. Let Qe K"(C"), by Lemma 3.2 and (10), we get
WO, (K, Ky, ) =V (K, K,y F Q)

Jj=1

e HV(K,', ”"Kj’KrJrl’”"KZn—l’(DiéQ)
Jj=1 [ ——

= W,(Q,CDC(K/. LK,
j=1 %,_z

~

Kr+1s"‘aK2n—1 ))

r

Let q)lf'(KjaN):(I)C(Kja"'aKjaKHla"'aKzn_])a where

k'=2n-r-1. By (13), we have
€ 2n-i 2n—i-1 c
W(Q.9C (K, N 2 ()", (@ (K .. V).
Thus, we obtain
VV,(Q, (DC(K] i, KZn—] ))(Zn—i)r

> VV[(Q)(Z”’H)" lLJIVV, ((le (Kj ,N)). (25)

Let Q:(DC(KI!“"KZn—l) in (25), it yields the desired

inequality. Note that Theorem 1.4 is the special case of i = 0.
The following result provide the general

Minkowski inequality.

Theorem 4.3. Let K,LeK"(C"). If 0<i<2n-1, and

2<j<2n-1, then

Brunn-

1 1 1

C — n—i C n—i C ?
W@ (KF, L) 2W(DTK)> + W (DTL)>, (26)
with equality iff K is a translation of L.
Proof. Let Qe K"(C"). From (5), (11) and (15), we get

W.(0.0F (K ¥, L)=W,(KF, L&]0)
c c
=W, (K,®E0) +W,(L,DO)
= W,(0, ®5K) +W,(Q, DS L).
By inequality (13), we have
WAQ,@TK)" 2 W, (0)" ' W (DTK),
with equality iff O and (I)/C_ K are homothetic; and
WA(Q, L) 2 W Q)" W(®SL),
with equality iff O and q>jc, L are homothetic. Therefore,

_2n-i-1

W0, 05 (KF, L)W,(Q) >

1 1

2 W (®FK) + W (DTL),
with equality iff Q, cDjC. K and cDjC, L are homothetic. Taking
0=07(K¥F, L),
B, 5., 5,, then
CD]C.(K F L)= ﬁlCDJC.K = ﬁ2<D]C.L
yields q)f K= ﬁ(pjc_ L. This together with the definition of

then (26) is obtained. For any real

surface area measure, and (2), we see that equality holds in
(26) iff K is a translation of L.

We easily know that Theorem 1.5 is the special case
i, j =0 of Theorem 4.3.

V. SHEPHARD-TYPE PROBLEMS FOR COMPLEX MIXED
BLASCHKE-MINKOWSKI HOMOMORPHISMS

In this part, we further study the Shephard type problem
for complex mixed BMH. Firstly, we give an affirmative
answer.

Theorem 5.1. For K e K"(C"), LeZ". If 0<i<2n-1,
and (D?K c CD?L, then
W,(K) < W,(L).
with equality iff CI)?K = (I)?L.
We now give a general form of Theorem 5.1.
Lemma 5.2. For K,LeK"(C"). If ®°Kc®L and

27
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0<i<2n-1, forevery Qe Z", then
WK, Q) <W,(L,0),

with equality iff (Dl.CK = (DI.CL.

Proof. From (11) and (15), taking Q:(D/C,M, if (D?Kg

(28)

(D?L we have

W,(K,Q) = W,(K,D5M)=W,(M,®f K)

1 c

=5 e W®; K,u)dS (K,u)
1 c
< L h(®F L,u)dS (K, u)

=W,(M,®f L) =W,(L,®M)=W,(L,0).
This gives (28). According to the support function and (14),
equality holds in (28) iff ® K =®CL.
Proof of Theorem 5.1. Since Le Z", let Q=L in Lemma
5.2, combining with (12) and (13), we get

2n—i-1 1

W.(L)=W,(K,L)=W,(K) > W,(L)>,

ie.,

W,(K) <W,(L).
According to equality condition of (28), then W,(K) =W, (L)
iff K 1is a translation of L . Note that Theorem 1.7 is the
special case of i =0.

The following negative form of Shephard-type problem is
obtained:

Theorem 5.3. For Le K"(C") and 0<i<2n—1. If ® is
an even operator and L is not an origin-symmetric, then
thereisa K e K! (C"), so that ®°K < ®F L, but
W.(K) > W(L). (29)
We give the following lemmas to support the proof of
Theorem 5.3.
Lemma 5.4. For K € K"(C") and 0<i<2n-1, then
W,(VK) =W, (K),
with equality iff K is origin-symmetric.
Proof. From (5), (11) and (13), for Q € K"(C"), we get

W(VK.0) = [ HQ.u)dS, (VK )

_1
2

(30)

W(K,Q)+ W(-K.0)

' 1 il 2n—i-1
>W(Q) (E W,(K) > + 5 W.(-K) ).
Taking Q = VK, note that J,(K) =W,(-K), then we obtain

(30). According to Blaschke body, we know that equality
holds in (30) iff K is origin-symmetric.
Lemma 5.5. Let KeK"(C") and 0<i<2n-1.

convex subset, then

Irc

O (VK) =D K.
Proof. By (2), (5) and Blaschke body, we get
W®E (VK),w) = S,(VK,)*h(C- ;)

(€2))

= %S,. (K,-)*h(C-a),-)+%Sl.(—K,-)*h(C-a),-)

for any e S, Since @ is even, then K = D (-K).
Thus, we obtain @ (VK)=®d K.
Proof of Theorem 5.3 Let L e K"(C"). Since L is not an
origin-symmetric, by Lemma 5.4, we know that
W.(VK)> W,(L).
such that W .((1-¢)VL)>W.(L),
(1-&)VL =K, then

Choose ¢ >0, and let

W,(K) > W, (L).
But associate with Lemma 5.5, and the fact ®F(AK)=
/12””"1(1)l_CK (4> 0), we obtain
DK =D (1-)VL)=(1-&)*" D (VL)
=(1-&)" "' O L DL

We easily know that Theorem 1.8 is the special case i =0
of Theorem 5.3.
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