
 

  

Abstract—With the rapid growth of demand in the 

pharmaceutical cold chain market and the increasing traffic 

congestion in real-world delivery processes, delivery vehicles 

often cannot maintain constant speed. To address this issue, this 

paper constructs a vehicle routing problem model that 

integrates pharmaceutical cold chain logistics characteristics 

with time-varying road network conditions, with the objective 

of minimizing total costs. The model is solved using a proposed 

adaptive hybrid genetic algorithm. Experimental results 

demonstrate that the algorithm not only effectively solves the 

problem formulated in the model but also exhibits outstanding 

performance. Compared with baseline algorithms, the proposed 

algorithm reduces total costs by 3.4% to 39.1%. Furthermore, 

compared to models that do not consider time-varying road 

networks, the proposed model reduces the proportion of 

customers served during congestion periods by 10.34% to 

50.00%. These results indicate that the proposed model can 

significantly help vehicles avoid congested roads, demonstrating 

its practical significance. 

 
Index Terms—vehicle routing problem, pharmaceutical cold 

chain logistics, time-varying road network, adaptive hybrid 

genetic algorithm 

I. INTRODUCTION 

ITH the development of the national economy and the 

continuous enhancement of residents' health 

awareness, the market demand for pharmaceutical cold chain 

products has soared. Furthermore, driven by national policy 

initiatives, the pharmaceutical cold chain logistics industry 

has achieved remarkable development. In the realm of 

pharmaceutical cold chain products, apart from certain 

infectious disease vaccines that are in high demand, the 

market demand for vaccines, biologics, and medications is 

generally characterized by a wide range of requirements but 

relatively low dosage volumes. Given this market demand, 

the transportation process of pharmaceutical cold chain 

logistics companies typically exhibits the features of 

small-batch and multi-frequency. Furthermore, as car 
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ownership continues to rise, urban traffic congestion is 

becoming increasingly severe, often making it difficult for 

vehicles to maintain optimal speeds during the delivery 

process [1]. As a result, optimizing pharmaceutical cold 

chain distribution routes while considering time-varying 

traffic speeds is not only more realistic but also enables more 

accurate predictions of delivery vehicle arrival times.  This is 

of paramount importance for scientifically and rationally 

planning the departure times and distribution routes of 

delivery vehicles, as well as for controlling distribution costs 

and other related aspects. 

Scholars have conducted in-depth and extensive research 

on vehicle transportation issues. Research focusing on fuel 

consumption, carbon emissions[2]-[4], control modes [5], the 

vehicle routing problem (VRP) [6]-[7], and cold chain 

transportation [8]-[9] has become a hot topic. With the 

advancement of VRP research, the optimization of 

pharmaceutical delivery has garnered increasing attention 

from researchers. Liu et al. [10] investigated the vehicle 

scheduling problem in home medical logistics, which 

encompasses the pickup and delivery of materials among 

pharmacies, individuals in need of medical care, hospitals, 

and laboratories. They developed two mathematical models 

aiming to minimizing costs and solved these models using 

genetic algorithms and tabu search algorithms. Kramer et al. 

[11] considered auxiliary depots with wider time windows 

and hospital depots with stricter time windows in the drug 

distribution path optimization model, making the drug 

distribution path more diverse and flexible. Jeanne et al. [12] 

investigated the delivery methods employed by 

pharmaceutical delivery companies in response to adverse 

weather conditions, utilizing Bayesian network methods for 

modeling and analysis. Zhang et al. [13] integrated epidemic 

transmission models with multi-period vehicle routing 

problems to examine their synergistic effects, ensuring that 

drug allocation meets demand. They applied the ε-global 

optimization method and a mixed tabu search heuristic to 

solve instances of varying sizes. Escuin et al. [14] proposed a 

mathematical model and algorithm to solve the problem of 

drug logistics distribution path, validating the feasibility of 

the model and algorithm with practical cases. Pharmaceutical 

cold chain logistics, an extension of pharmaceutical logistics 

and includes temperature control requirements, refers to a 

transportation system engineering approach that requires 

pharmaceuticals to maintain a certain storage temperature 

and ensure their quality throughout the production and 

consumption process. Scholars have also conducted research 

in this field. Madad et al. [15] studied the cold chain 
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distribution of perishable pharmaceuticals and considered 

that the travel time exhibits a time dependence. If this time 

dependence is ignored, it will undermine the effectiveness, 

applicability, and optimality of the resulting solution. Janga 

et al. [16] constructed optimization models for drugs and 

vaccines stored at specific temperatures, and proposed 

utilizing the Bee-Ant Optimization Algorithm for the 

optimization model pertaining to drug cold chain logistics 

distribution paths. Shao et al. [17] proposed a dual 

distribution method grounded in the vehicle path to address 

the challenge of reducing overall costs and carbon emissions 

in cross-regional and multi-seasonal pharmaceutical cold 

chain logistics processes. In this method, refrigerated trucks 

or freight cars fitted with refrigerated containers are selected 

for pharmaceutical delivery. Additionally, a comparison 

function is designed to calculate the consumption of 

consumables, enabling a more optimal allocation plan for 

customer points with diverse demands across multiple 

temperature zones. 

The vehicle routing problem (VRP) is a classic NP-hard 

problem. Most large-scale VRP instances are addressed using 

heuristic intelligent algorithms, such as the ant colony 

algorithm [18]-[19], genetic algorithm [20]-[21], and tabu 

search algorithm [22]. However, the genetic algorithm 

exhibits limited local search capability, resulting in 

suboptimal overall quality of feasible solutions. Additionally, 

the tabu search algorithm heavily depends on the initial 

solution. Combining these two algorithms can, to some 

extent, compensate for their individual shortcomings. Based 

on this, this paper proposes an adaptive hybrid genetic 

algorithm with a dynamically adjusted cross-mutation 

probability formula. This formula intelligently regulates the 

cross-mutation probability, thereby avoiding premature 

convergence of the algorithm. Furthermore, the proposed 

algorithm combines the genetic algorithm with the tabu 

search algorithm, employing a tabu list to record and prevent 

redundant exploration previously searched solutions. This 

integration prevents repeated calculations and enhances the 

search capability of the overall search capability.  

A review of relevant literature reveals that research on 

optimizing the distribution path of pharmaceutical cold chain 

logistics under time-varying road network conditions is 

relatively scarce. Most studies assume a constant vehicle 

speed when addressing this issue, but in reality, speeds vary 

dynamically based on road conditions. Furthermore, most 

studies only consider hard time window constaints or focus 

on the time impact when assessing a time window penalty 

cost. In actual delivery situations, uncontrollable factors such 

as traffic congestion and vehicle failures, often prevent 

deliveries at the customer's requested time. The use of hard 

time windows may not align with actual delivery scenarios. 

Additionally, the penalty cost is not exclusively determined 

by time. Therefore, soft time window models that consider 

factors such as time and demand can be designed to more 

accurately measure a time penalty cost.  

The main contributions of this paper are summarized as 

follows. (1) This paper proposes a total cost model for 

distribution in pharmaceutical cold chain logistics. To 

enhance the realism of the model, the time-varying road 

network problem is considered during the research process. 

The speed of delivery vehicles constantly changes during the 

distribution process, and the impact of speed differences at 

different time periods on delivery time is taken into account. 

(2) Nowadays, logistics delivery has entered the minute level, 

and delivery time will affect user satisfaction, thereby 

affecting company profits. Therefore, in terms of time 

penalty cost, this paper designs a special time window, and 

the calculation of penalty cost is not only related to delivery 

time but also to the value of the products requested by 

customers. (3) An adaptive hybrid genetic algorithm is 

developed to address the problem of delivery paths in 

pharmaceutical cold chain logistics. 

The remainder of this paper can be described as follows. In 

Section 2, a detailed introduction to the mathematical model 

is provided. In Section 3, the proposed algorithm is described 

in detail. In Section 4, we conduct experimental evaluation 

and analysis using large-scale examples. Finally, our 

conclusions and insights are presented in Section 5. 

II. PROBLEM DESCRIPTION AND MODELING 

A. Problem Description 

Under time-varying urban traffic conditions, the 

optimization of distribution routes in pharmaceutical cold 

chain logistics can be characterized as follows. A distribution 

center uses vehicles to provide delivery services to various 

customer nodes. The vehicles depart from the distribution 

center, complete all delivery tasks, and subsequently return to 

the distribution center. Each customer node has a specified 

time window for delivery. If the delivery cannot arrive within 

the designated time window, penalties will be incurred. 

Under these conditions, develop a delivery plan with the goal 

of minimizing the total distribution cost. Considered the 

complexity and operability of real-world problems, this paper 

proposes the following assumptions: (1) There is only one 

distribution center, and the delivery vehicles are 

homogeneous, i.e. identical in vehicle model, load capacity, 

and specifications. (2) The vehicle's load capacity is fixed 

and cannot exceed the specified limit, and the demand for 

each customer point can be met by one vehicle through 

one-time delivery. (3) The locations of the distribution center 

and customer points are known, along with the respective 

requirements, time windows, and customer-specific data. (4) 

The vehicle speed exhibits time-varying characteristics, and 

it may fluctuate depending on the driving period. (5) The 

travel cost is only proportional to the mileage traveled. (6) 

The quantity of goods at the distribution center exceeds the 

total demand at the customer nodes. 

B. Notations 

The parameters related to the model are established as 

follows. It is assumed that N is the set of customer points, and 

V is the set of all nodes, where V = {0} N, with 0 

representing the distribution center. Additionally, K is the set 

of delivery vehicles, where K = {0, 1, ..., k}, and k denotes 

the vehicle number. The relevant variables and parameters of 

the model are detailed in Table Ⅰ. 

C. Time-Varying Road Network Analysis 

In general, when constructing a VRP model, it is assumed 

that the vehicle travels at a constant speed. However, in 

reality, the vehicle's speed may vary due to various factors. 

This paper considers only the influence of driving time 
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periods on vehicle speed and adopts the piecewise function 

based on speed studied by Ichoua et al. [23] to describe the 

time-varying characteristics. The driving speed function for 

each time period throughout the day is shown in (1). 
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Within a single time period, the vehicle speed remains 

constant but may change in different time periods. The 

calculation process of vehicle travel time in a time-varying 

network is analyzed as follows: 

(1)  Determine the corresponding vehicle speed during the 

given travel time period. Proceed to (2). 

(2) Calculate the distance traveled by the vehicle at the 

corresponding speed during the remaining time of the current 

period, add the distance already traveled by the vehicle, and 

check whether the total distance obtained exceeds the road 

distance. 

(3) If the total distance exceeds the road distance, the travel 

time is the sum of the travel time spent before entering the 

current time period and during the current time period. The 

driving time within the current period is calculated as follows: 

the remaining road distance, obtained by subtracting the 

distance already traveled from the total road distance, divided 

by the corresponding speed in the current period.  

(4) If the total distance does not exceed the road distance, 

the vehicle will continue driving into the next period. Proceed 

to (2) and repeat. 
 

TABLE I 

SYMBOLS AND DESCRIPTIONS 

Notations Descriptions 

F 

c 

Fixed cost per vehicle (CNY/ vehicle) 

The travel cost per unit distance traveled by the vehicle 

(CNY/km) 

dij Distance from customer point i to customer point j (km) 

qi The demand for customer point i (kg) 

Q Vehicle capacity (kg) 

a1 The refrigeration costs incurred during transportation per 

unit time (CNY/h) 

a2 The refrigeration costs incurred during service per unit 

time (CNY/h) 

tij The time required for the vehicle to travel from point i to 

point j (min) 

tsi The service time of the vehicle at point i (min) 

λ The environmental cost per unit of carbon emissions 

(CNY/kg) 

g The fuel consumption per unit distance (L/km) 

η The carbon emission coefficient per unit fuel consumption 

of vehicles (kg/L) 

τ The deterioration rate of pharmaceuticals 

δ The speed at which pharmaceuticals deteriorate 

b The unit cost of transporting pharmaceuticals (CNY/kg) 

θ The adjustment parameters for time penalty cost 

[ei , li] The expected delivery time window for customers 

P Unit price of transported pharmaceuticals (CNY/(min*kg)) 

α Penalty coefficient for vehicles arriving early 

β Penalty coefficient for vehicles arriving late 

ω Profit coefficient of pharmaceuticals 

ti The time when the vehicle arrives at point i 

xijk The binary variable xijk is 1 when the vehicle k is driving on 

road (i,j) and 0 otherwise 

yki The binary variable yki is 1 when the vehicle k is servicing 

customer point i and 0 otherwise 

D. Cost analysis in cold chain logistics 

The total distribution cost includes fixed cost, travel cost, 

refrigeration cost, carbon emission cost, damage cost, and 

time penalty cost. Based on this, a model for optimizing the 

distribution paths in pharmaceutical cold chain logistics is 

developed. 

(1) Fixed cost (C1) 

In the process of logistics distribution, delivery vehicles 

incur certain fixed costs, including vehicle depreciation, 

driver's driving expenses, and wages for loading and 

unloading workers. This cost solely depends on the number 

of delivery vehicles. 

 
1C K F=   (2) 

(2) Travel cost (C2) 

Vehicles need to consume a certain amount of fuel when 

delivering pharmaceuticals, resulting in travel cost. This cost 

is linearly related to the vehicle's mileage, with longer 

distances leading to higher travel cost. 

 2 ijk ij

k K i V j V

C c x d
  

=    (3) 

(3) Refrigeration cost (C3) 

The total refrigeration cost includes the refrigeration cost 

during transportation and the refrigeration cost during service 

[18].  

 3 1 2ijk ij ki si

k K i V j V k K i V j V

C a x t a y t
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= +    (4) 

(4) Carbon emission cost (C4) 

Vehicles need to consume fuel during operation, 

accompanied by a significant amount of carbon dioxide 

emissions, which results in a corresponding cost known as 

carbon emission cost. Carbon emission cost is primarily 

related to the amount of energy burned; that is, this cost is 

closely linked to the vehicle's fuel consumption and increases 

with the cumulative increase in driving mileage. 

 4 ijk ij

k K i V j V

C g x d 
  

=    (5) 

(5) Damage cost (C5) 

The cost of goods damage refers to the expenses incurred 

due to changes in the quality of pharmaceuticals. 

 1 ijt
e




−
= −   (6) 

 5 ki i

k K i V j V

C b y q
  

=    (7) 

(6) Time penalty cost (C6)  

The time window adopted in this paper is represented by 

[ei, li], which signifies the customers' expected delivery time 

range. The relationship between delivery time and penalty 

cost is illustrated in Fig. 1. 
 

Time

Penalty cost

ei
 ei li

 
li

0
 

Fig. 1.  Time penalty cost 
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In Fig. 1, ei’ represents the set time upper bound; li’ 

represents the set time lower bound. The time window 

calculation for penalty cost, designed in this paper, is related 

not only to the vehicle's delivery time but also to the weight 

and value of the goods. Therefore, there are three types of 

penalty costs related to demand points. 

The first type is when the vehicle arrival time is within the 

customer's acceptable range, but the delivery occurs before 

the customer's expected delivery time. At this point, 

corresponding penalty cost is incurred. 

 ( ) ( )6        ti i i i i iC i Pq e t e e


 = −  ’   (8) 

The second type is when the delivery time is within the 

time window, at which point the customer is most satisfied 

and can immediately use the service without incurring 

penalty cost. 

 ( )6 0     i i iC i e t l=     (9) 

The third type is when the delivery time exceeds the 

customer's expected delivery time, but it is still within an 

acceptable time range, resulting in corresponding penalty 

cost. 

 ( ) ( )6       i i i i i iC i Pq t l l t l


 = −   ’  (10) 

 In summary, the time penalty cost incurred can be 

formulated as follows. 
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E. Modeling 

The goal of optimization is to minimize the total delivery 

cost. In this model, the total distribution cost, including fixed 

cost, travel cost, refrigeration cost, carbon emission cost, 

damage cost, and time penalty cost, is shown in (12). 

 1 2 3 4 5 6min
i N
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= + + + + +    (12) 
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  0,1    , ,ijkx i j V k K      (17) 

  0,1   ,kiy i V k K      (18) 

Equation (13) represents that each delivery task starts and 

ends at the delivery center; Equation (14) represents that each 

customer point can only be serviced once; Equation (15) 

represents that the total amount of goods required by each 

customer served by the vehicle is less than the rated load 

capacity of the vehicle; Equation (16) states that the total 

number of vehicles serving customers shall not exceed the 

total number of vehicles owned by the distribution center; 

Equations (17) and (18) represent decision variables, which 

are binary variables. 

III. ADAPTIVE HYBRID GENETIC ALGORITHM 

The above model is a typical NP-hard problem. When the 

node size is small, mathematical programming methods can 

yield exact solutions. However, as the node size increases, 

the solution space grows exponentially, and mathematical 

programming methods cannot solve it. Therefore, heuristic 

methods are generally employed to find approximate 

solutions. Traditional genetic algorithms with fixed crossover 

and mutation probabilities are prone to premature 

convergence. Therefore, a dynamically adjusted crossover 

and mutation probability formula is designed to intelligently 

regulate the crossover and mutation probabilities with 

iterative formulas, thereby mitigating premature convergence 

of the algorithm. By integrating the improved adaptive 

genetic algorithm with the tabu search algorithm, this 

approach exhibits excellent global and local search 

capabilities. The algorithm steps are as follows. 

A. Encoding Operation 

The length of the chromosome is n+k+1, where n 

represents the number of customer points, k represents the 

number of delivery vehicles. The encoding for the 

distribution center is 0; the numbers 1, 2, 3, ..., n represent the 

natural number sequence assigned to each customer point. 

For example, if there are 3 vehicles in the distribution center 

providing delivery services to 10 customers, and one of the 

delivery sequences (or routes) represented by a chromosome 

is: 0-3-5-9-0-6-10-1-2-0-8-4-7-0, then the indicated delivery 

routes can be interpreted as follows: The first vehicle's 

driving route is 0-3-5-9-0, signifying that it departs from the 

distribution center, visits customer points 3, 5, and 9,and then 

returns to the distribution center. The second vehicle's driving 

route is 0-6-10-1-2-0, indicating that it departs from the 

distribution center, visits customer points 6, 10, 1, and 2 

sequentially, and then returns to the distribution center. The 

third vehicle's driving route is 0-8-4-7-0, showing that it 

departs from the distribution center, visits customer points 8, 

4, and 7, and subsequently returns to the distribution center. 

B. Population Initialization 

Firstly, randomly arrange all customer point codes in a 

column, where qi represents the demand for goods at the i-th 

customer point in the chromosome. Further adjustments will 

be made based on the constraints of vehicle load, retaining 

those chromosomes that meet the constraints and eliminating 

those that do not, in order to construct a chromosome that 

fully satisfies the constraints. 

C. Fitness Calculation 

Fitness value is a measure of evaluating an individual. In 

general, the larger the fitness value of an individual, the 

higher the probability that they will be selected and retained 

for the next generation. The model established in this paper is 

a problem of minimizing the objective function, so the 

selection of the fitness function is measured by the reciprocal 

of the objective function.  

 ( )
( )

1

i

f x
Z x

=   (19) 

Where Z(xi) represents the objective function value 

corresponding to individual xi. 
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D. Individual Selection 

The roulette wheel selection method is employed to retain 

the best chromosome from the parent generation and replace 

the worst one in the offspring generation [24]. The specific 

steps are as follows. 

(1) Calculate the fitness of each chromosome in the current 

population. 

 ( )fit i   (20) 

(2) Calculate the sum of fitness of all chromosomes in the 

population. 

 ( ),   1,2, ,
i N

sumfit fit i i n


= =    (21) 

(3) Calculate the selection probability of each chromosome 

in the current population. 

 ( )
( )

,    1,2, ,
fit i

p i i n
sumfit

= =    (22) 

(4) Calculate the cumulative probability of each 

chromosome in the current population. 

 ( ) ( ),   1, 2, ,
i N

ps i p i i n


= =    (23) 

A real number r within the interval [0,1] is randomly 

generated. If ps(i) > r, select the first chromosome. Otherwise, 

select the i-th chromosome that satisfies ps(i-1) < r < ps(i). 

E. Crossover Operation 

The crossover operation in genetic algorithms involves the 

exchanging certain gene segments between two paired 

chromosomes in a specific manner, thereby generating two 

new offspring. This process enables the population to explore 

a wider range of the search space and potentially identify 

better solutions [25]. Setting a fixed crossover probability can 

ensure the emergence of new individuals, but when the 

population evolves to a certain extent, it is easy to destroy 

individuals with higher fitness [26]. Because the crossover 

factor needs to decrease with the increase of iteration times, 

more crossover operations are performed in the early stages 

of the algorithm to explore more solution space, while in the 

later stages, crossover operations are reduced to focus on 

finer local search. The cosine function can fully satisfy this 

changing relationship and can decrease at a slower speed in 

the early stages, gradually accelerating in the middle and late 

stages. Therefore, this paper introduces a dynamic crossover 

probability based on the cosine formula and sets the 

individual crossover probability. 

 ( )min max min

1 cos

   
2

c c c c

g

G
P P P P


 

+  
 

= + −    (24) 

where Pc represents the crossover probability, Pcmin 

represents the lower limit of the crossover probability, Pcmax 

represents the upper limit of the crossover probability, g is the 

current iteration count, and G is the maximum iteration count. 

The specific operation of the crossover method used in this 

paper is as follows. 

(1) Randomly select a segment of the daughter pathway on 

each of the two parental chromosomes, as shown in Fig. 2. 

(2) The selected sub section is placed in front, as shown in 

Fig. 3. 

(3) Include Path A of Parent Chromosome 1 as part of 

Offspring Chromosome 1, and append the codes that are not 

present in Path A of Parent Chromosome 2 to the end of Path 

A in Offspring Chromosome 1, in the order they appear in 

Parent Chromosome 2. Finally, add the code 0 at the end of 

the Offspring chromosome. As shown in Fig. 4. 

(4) For offspring chromosome 1, insert a code 0 at one of 

the seven positions following the A pathway, resulting in a 

total of seven scenarios. Calculate the fitness for each of these 

seven scenarios and select the one with the highest fitness 

value as offspring chromosome 1. Similarly, obtain offspring 

chromosome 2. 

 

0 1 3 5 8 0 2 10 4 0 6 7 9 0

Sub-path B

Parent chromosome 2

0 3 2 9 6 0 7 10 1 5 0 8 4 0

Sub-path A

Parent chromosome 1

Fig. 2.  Parent chromosomes 

 

0 7 10 1 5 0 3 2 9 6 0 8 4 0

Sub-path A

Parent chromosome 1

0 1 3 5 8 0 2 10 4 0 6 7 9 0

Sub-path B

Parent chromosome 2

Fig. 3.  New parent chromosomes 

 

0 7 10 1 5 0 3 8 2 4 6 9 0

Sub-path A

Offspring chromosome 1

0 1 3 5 8 0 7 10 2 9 6 4 0

Sub-path B

Offspring chromosome 2

Fig. 4.  Offspring chromosomes 

 

F. Mutation Operation 

Similarly, to safeguard the continuity of excellent 

individuals within the population and to enhance diversity in 

the early stages of the search, the mutation probability 

gradually decreases as the number of iterations increases. The 

dynamic mutation probability, which is based on a cosine 

function, has been set as follows. 

 ( )min max min

1 cos

   
2

m m m m

g

G
P P P P


 

+  
 

= + −    (25) 

where Pm represents the crossover probability, Pmmin 

represents the lower limit of the crossover probability, Pmmax 
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represents the upper limit of the crossover probability. 

The mutation operation described in this paper employs 

the swapping operator, which randomly selects two positions 

in the parent chromosome for exchange [27]. To prevent the 

destruction of the best individual by mutation operation, the 

top 30 excellent individuals are retained, and the mutation 

operation is applied to the remaining individuals. A simple 

example is shown in Fig. 5. 
 

Parent  

Offspring 

0 3 2 9 6 0 7 10 1 5 0 8 4 0

0 3 2 8 6 0 7 10 1 5 0 9 4 0
 

Fig. 5.  The example of exchange mutation 

 

G. Tabu Search Strategy 

The tabu search operation is incorporated after the 

crossover step of the genetic algorithm and before updating 

the population.  

First, compare the genes of the offspring generated by 

crossover with the existing population to check for any 

historical operation records. Then, use tabu lists to remove 

duplicated or ineligible genes. Subsequently, preserve the 

optimized offspring genes. Next, merge these optimized 

offspring genes, which have undergone tabu search, with the 

current population to form a new population. 

The tabu search algorithm is widely used to find optimal 

solutions due to its effective local search method [28]. By 

increasing the diversity of the search space and enhancing 

local search capabilities, tabu search aids in accelerating the 

convergence speed of algorithms [29]-[30]. The integration 

of tabu search into genetic algorithms has significantly 

improved their performance. This is particularly 

advantageous when tabu search is positioned after crossover 

operations, as it allows newly generated genetic individuals 

to serve directly as starting points for the tabu search process. 

This, in turn, facilitates further optimization and selection 

through tabu-based filtering. The candidate neighborhood 

solution with the best target value and not in the tabu list can 

be selected as the current best solution. However, there is an 

aspiration criterion: if the optimal solution selected from the 

neighborhood candidates is prohibited by the tabu list but is 

still better than the current best solution, the optimal 

neighborhood solution can be accepted to replace the current 

best solution, thereby achieving efficient global optimization 

search [31]. Algorithm 1 shows the specific steps of tabu 

search. 

IV. COMPUTATIONAL EXPERIMENTS 

A. Experiment setup 

The instances used in this paper originate from Solomon's 

[32] datasets. And all instances are classified into three types: 

Cluster (C), Random (R), and Random Cluster (RC). The 

datasets utilized in this paper are large-scale, with 101 nodes 

in each group, and certain parameters from the Solomon 

instances can be directly adopted, including the site location, 

time window, and service time. Additionally, time periods 

can be segmented according to the time scale provided in the 

dataset, and different speeds can be assigned for each 

segment. In actual distribution, nodes are connected by 

multiple, non-straight, roads; hence, the straight-line distance 

can greatly diverge from the actual distance.  

This paper introduces the circuitous coefficient δ (δ ≈ 1.5) 

[33] and defines dij as the product of this coefficient and the 

straight-line distance between two points. The other 

parameters are shown in Table Ⅱ.  

The parameters for the algorithm are shown in Table Ⅲ. 

The algorithm is implemented using Python programming 

and runs on a computer with a CPU of 2.40 GHz and 16GB of 

memory. 
 

Algorithm 1: Tabu Search 

Input: the list of all genes (genes), the list of genes generated after 

cross operation (crossedGenes) 

Output: the updated gene list that has been filtered through tabu 

lists and treated with amnesty (new_Genes) 

1: Compute the current best solution: Pb ← max (gene.fit for gene 

in genes) 

2: Construct the tabu list: tabu_list ← {gene.fit for gene in genes} 

3: Initialize the list of filtered solutions: new_Genes ← [] 

4: for i = 1 to len(crossedGenes) do 

5:     Let gi = crossedGenes[i] 

6:     if gi.fit in tabu_list then 

7:         if gi.fit > Pb then 

8:             Amnesty for this gene. Add gi to new_Genes 

9:         else 

10:            Skip this gene (mark as tabu) 

11:        end if 

12:    else 

13:          Add gi directly to new_Genes  

14:    end if  

15: end for  

16: Output new_Genes 

 

TABLE Ⅱ 

MODEL PARAMETERS 

Parameters Description Value 

F Fixed cost per vehicle (CNY/ vehicle) 100 

c 
The travel cost per unit distance traveled by the 

vehicle (CNY/km) 
2 

Q Vehicle capacity (kg) 200 

a1 
The refrigeration costs incurred during 

transportation per unit time (CNY/h) 
0.025 

a2 
The refrigeration costs incurred during service 

per unit time (CNY/h) 
0.1 

λ 
The environmental cost per unit of carbon 

emissions (CNY/kg) 
0.2 

g  The fuel consumption per unit distance (L/km) 0.15 

η 
The carbon emission coefficient per unit fuel 

consumption of vehicles (kg/L) 
2.62 

δ The speed at which pharmaceuticals deteriorate 0.01 

b 
The unit cost of transporting pharmaceuticals 

(CNY/kg) 
1 

P 
Unit price of transported pharmaceuticals 

(CNY/(min*kg)) 
1 

θ The adjustment parameters for time penalty cost 0.5 

ω Profit coefficient of pharmaceuticals 0.18 

α Penalty coefficient for vehicles arriving early 0.2 

β Penalty coefficient for vehicles arriving late 0.2 

 

TABLE Ⅲ 

ALGORITHM PARAMETERS 

Parameter Description Value 

Popsize Population size 100 

G Maximum number of iterations 500 

Pcmin Lower limit of crossover probability 0.9 

Pcmax Upper limit of crossover probability 0.6 

Pmmin Lower limit of mutation probability 0.01 

Pmmax Upper limit of mutation probability 0.2 
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B. Comparison Analysis of Time-Varying and Static Road 

Network 

Three sets of experiments are conducted on the R204, 

C107, and RC107 datasets: two with a static road network 

and fixed vehicle speeds, and the other with a time-varying 

scenario accounting for changes in vehicle speeds over time. 

The setting of vehicle speeds in the time-varying road 

network is based on the time window of each dataset. Taking 

the R204 dataset as an example, the limits are set at 0 minutes 

(corresponding to 7:00) and 1020 minutes (corresponding to 

24:00). The congestion periods are set from 30 minutes to 

120 minutes (corresponding to the morning peak from 7:30 to 

9:00) and from 630 minutes to 720 minutes (corresponding to 

the evening peak from 17:30 to 19:00), during which the 

speed is set at 20 km/h. For other time periods, the speed is 

set at 30 km/h. The time-varying road network conditions is 

called option I; The set speed in the static road network is 

30km/h, which is called option II; The other group is set to 

40km/h, known as option III. Table Ⅳ shows the 

experimental results for three datasets, where Ⅰ represents the 

time-varying road network conditions, Ⅱ represents the static 

road network conditions, TC represents the total cost, CPUT 

represents the running time, TD is the total delivery distance, 

R represents the proportion of customers served by vehicles 

during congestion periods to the total number of customers.  

 
TABLE Ⅳ 

EXPERIMENTAL RESULTS USING THREE DATASETS 

Instance Option TC TD CPUT(s) R 

R204 

Ⅰ 10,918 4,083 56 0.19 

Ⅱ 10,571 3,976 50 0.26 

Ⅲ 10,176 3,697 50 0.25 

C107 

Ⅰ 16,144 4,324 48 0.06 

Ⅱ 15,931 3,633 43 0.09 

Ⅲ 15,900 3,534 47 0.09 

RC207 

Ⅰ 15,333 5,246 46 0.29 

Ⅱ 14,012 5,182 43 0.33 

Ⅲ 13,399 5,080 43 0.32 

 

Table Ⅳ shows the following: (1) Under time-varying 

road network conditions, the total cost across the three 

datasets is higher than that under static road network 

conditions, with an increase of 1.33% - 9.42%. Similarly, the 

total traveled distance under time-varying conditions is also 

higher, increasing by 1.23% - 19.02%. However, the 

proportion of customers served during congestion periods (R) 

under time-varying conditions is lower than that under static 

conditions, decreasing by 10.34% - 50.00%. These results 

indicate that while delivery under time-varying conditions 

increases costs and distances, it also helps vehicles avoid 

congestion, thereby reducing traffic pressure and 

demonstrating significant practical value. (2) Comparing 

option Ⅱ and Ⅲ, as the speed decreases, the total cost 

increases accordingly, indicating an inverse relationship 

between cost and congestion speed. This highlights that 

considering the time-dependent nature of vehicle travel speed 

is both effective and meaningful for research.  

C. Experiment on Different Customer Distribution 

Examples 

Different types of examples are used to address the issues 

raised in this paper. Table Ⅴ shows the experimental results, 

where TMC represents the time penalty cost of the vehicle, 

TRC is the travel cost, RC is the refrigeration cost, DC is the 

damage cost, CEC is the carbon emission cost, and VN is the 

vehicle numbers. 

 
TABLE Ⅴ 

EXPERIMENTAL RESULTS OF DIFFERENT EXAMPLES 

IN TC TMC TRC RC DC CEC VN 

C106 17,335 1,095 9,736 3,348 1,771 382 10 

C108 17,015 1,215 9,316 3,323 1,794 366 10 

R205 12,662 489 8,124 1,519 1,409 319 8 

R206 12,361 377 8,128 1,448 1,287 319 8 

RC207 15,333 396 10,492 1,371 1,660 412 10 

RC208 14,857 156 10,712 1,003 1,563 421 10 

 

From Table Ⅴ, it can be seen that: (1) Among all types, the 

total cost of type C is the highest, with 17,355 in the C106 

dataset, which is 13.0% -36.9% higher than that of the other 

dataset types. The time-related costs, including time penalty 

cost, refrigeration cost, and damage cost, are also the highest, 

with the sum of these costs reaching 6,332 in the C108 

dataset. Compared to other types of datasets, this is 84.9% 

-85.3% higher. This is mainly because the service time for all 

C-type is 90 minutes, whereas for R-type and RC-type it is 

only 10 minutes, resulting in a longer distribution process. 

Consequently, the costs associated with delivery time are 

relatively high. (2) Compared with the C-type, the R-type and 

RC-type have lower total costs, time penalty costs, 

refrigeration costs, and loss costs. This is mainly attributed to 

the 10-minute service time for these two types of customer 

nodes, which is significantly shorter than the C-type's 

90-minute service time. The time window requirements of 

the customer are relatively relaxed, allowing the vehicle to 

visit more customers in a shorter period, thus reducing the 

total delivery time. Meanwhile, the shorter service time also 

leads to a reduction in the required refrigeration time, which 

in turn lowers the refrigeration cost. Overall, special attention 

should be paid to service time during actual delivery. (3) For 

all types of examples, TRC accounts for a relatively high 

proportion of the total cost, with the highest proportion in the 

RC208 dataset at 10,712, accounting for 72%. In the 

remaining datasets, it accounts for 54.7% - 64.1%. This 

indicates that travel costs are one of the main sources of 

logistics and distribution costs. These costs can be reduced by 

minimizing the total delivery distance. Additionally, time 

penalty cost, refrigeration cost, and damage cost are also 

important components, accounting for 26.9% - 37.2% of the 

total cost across all datasets. These costs are closely related to 

travel time. Therefore, to reduce costs, it is important to 

minimize travel time as much as possible. (4) The proportion 

of carbon emission cost is very low, with only 319 in the 

R-type dataset, accounting for 2.5%, and around 3% of the 

total cost in the other datasets. This indicates that solely 

considering the cost of carbon emissions is not sufficient to 

effectively incentivize logistics companies to adopt 

energy-saving and emission-reduction measures. 

D. Algorithm Performance Tests 

To validate the effectiveness of the improved genetic 

algorithm, we conducted experimental verification on three 
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datasets: C107, R107, and RC107. The experiment employes 

the adaptive hybrid genetic algorithm (AHGA) proposed in 

this paper, with the basic genetic algorithm (GA), adaptive 

genetic algorithm (AGA), and hybrid genetic algorithm 

(HGA) serving as baseline algorithms. Each algorithm is 

executed ten times to determine the average result for each 

instance. The crossover probability in the GA and HGA is 0.7; 

and the mutation probability in both algorithms is 0.01. The 

iteration of experiments on three datasets is shown in Fig. 

6-8. 
 

 
Fig. 6.  Comparison of C107 example iterations 

     

 
Fig. 7.  Comparison of R107 example iterations 

 

 
Fig. 8.  Comparison of RC107 example iterations 

From Fig. 6-8, it can be intuitively observed that GA, AGA, 

and HGA fall into local optima during the optimization 

process, from which they cannot escape in a timely manner. 

In contrast, the AHGA designed in this paper demonstrates 

earlier convergence and significantly higher accuracy. This 

enhancement is attributed to the introduction of dynamic 

crossover and mutation operators, coupled with the 

application of tabu search algorithms for local search 

operations. These innovations have improved the 

convergence speed and accuracy of AHGA, bolstering its 

global search capability, and thereby enabling it to reach 

convergence more rapidly and generate more reasonable 

paths. The results of the three comparative experiments are 

shown in Table Ⅵ. 

 
TABLE Ⅵ 

COMPUTATIONAL RESULTS BY FOUR ALGORITHMS ON THREE 

INSTANCES 

Instance Algorithm TC CPUT(s) TD 

C107 

AHGA 16144 48 4324 

HGA 16691 42 4647 

AGA 16807 48 4660 

GA 17394 39 4958 

R107 

AHGA 8088 56 2475 

HGA 9394 34 3167 

AGA 10618 51 3755 

GA 11251 42 4122 

RC107 

AHGA 10291 53 3258 

HGA 13514 31 4974 

AGA 14000 46 5253 

GA 14504 29 5478 

 

The data in Table Ⅵ reveals that: (1) In terms of total cost, 

the AHGA algorithm outperforms GA, AGA, and HGA 

across all examples. Specifically, compared to GA, AHGA 

achieves a maximum savings of 39.1% and a minimum 

savings of 7.7%. When compared to AGA, AHGA can save 

between 4.1% and 36.0%. Compared to HGA, AHGA can 

save between 16.1% and 3.4%. (2) Regarding runtime, the 

AHGA algorithm primarily focuses on dynamically adjusting 

crossover probability and mutation probability, as well as 

incorporating a tabu search. However, the computation time 

for all four algorithms remains relatively similar, with no 

significant differences observed. (3) In terms of driving 

distance, the AHGA algorithm also performs better in all 

examples. Specifically, compared to GA, AHGA reduces the 

distance by a maximum of 66.5% and a minimum of 14.7%. 

When compared to HGA, the maximum reduction is 27.8%, 

and the minimum reduction is 7.4%. Compared to AGA, the 

maximum decrease is 51.7% and the minimum decrease is 

7.8%. (4) Among all the algorithms, GA performs the worst 

and yields the highest total cost. AGA and HGA outperform 

GA, indicating that incorporating dynamic 

crossover-mutation factors or tabu search can enhance 

algorithm performance to some extent. AHGA has the best 

performance, with the lowest total cost and total distance. 

This algorithm combines the advantages of dynamic 

crossover mutation factors and tabu search, and can therefore 

obtain better results than AGA and HGA. 
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V. CONCLUSIONS 

To enhance the precision of travel time estimation in 

pharmaceutical cold chain logistics route optimization, this 

study integrates time-dependent vehicle speeds into the 

model. A time-variant speed function is formulated to reflect 

this variability. Under the constraints of time windows, 

customer demand, and maximum vehicle load capacity, a 

pharmaceutical cold chain vehicle routing problem model is 

developed, with the objective of minimizing total costs. 

Finally, the AHGA is subsequently employed to solve for the 

optimal path of the model. Calculations, analyses, and 

comparisons are then carried out to evaluate the solution. 

When comparing results obtained from the model presented 

in this paper with those obtained under constant speed 

conditions in a static road network, it is found that 

considering a time-varying road network can, to some extent, 

assist delivery vehicles in avoiding congested periods and 

thereby alleviating traffic pressure. To verify the 

improvement effect of the AHGA, a comparison of the 

solution results obtained using the GA, AGA, and the HGA is 

conducted. This comparison demonstrates that the AHGA 

exhibits superior performance. However, there are some 

shortcomings. The study only focused on a single type of 

product and a single vehicle model, and only considered the 

impact of morning and evening rush hours on speed. In future 

research, more factors can be incorporated into the model to 

enhance its applicability.  
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