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Abstract—In this research we have explored the concept
of circulation and flux of a vector field using the definition
of standard fractional vector cross product(SFVCP). We have
then applied this novel definition to Green’s (tangential and
normal form) and Stoke’s theorem which has not been explored
previously. Green’s theorem is applied in context of complex
variable to redefine Cauchy’s Integral theorem. It is evident
that for γ = 1 all theorems reduces to standard theorems.
The unique perspective of the paper lies in applying SFVCP
to explain Green’s and Stoke’s theorem. It is evident that
SFVCP offers more practical applications, accuracy and is more
powerful in electromagnetic field and fluid mechanics, where
they are used to relate field quantities over a region of space
to those over its boundary, providing both conceptual insights
and practical tools for solving physical problems.

Index Terms—Standard Fractional Vector Cross Prod-
uct(SFVCP), Circulation, Flux, Fractional Flux, Green’s Theo-
rem, Cauchy’s Integral Theorem, Stoke’s Theorem

I. INTRODUCTION

Divergence and curl are two fundamental characteristics
of vector fields that play a crucial role in numerous
applications. Both concepts are most easily grasped by
envisioning the vector field for depicting the flow of a
liquid or gas; that is, each vector in the vector field can be
interpreted as a velocity vector, describing the motion of
liquid and gas. Roughly speaking, divergence measures the
tendency of the fluid to converge or disperse at a point, and
curl measures the tendency of the fluid to rotate or circulate
around the point. Divergence is a scalar, that is, a single
number, while curl is itself a vector. The magnitude of the
curl measures how much the fluid is swirling, the direction
indicates the axis around which it tends to swirl. [14]

Engheta [5] laid the foundation of curl operators in the
study of electro magnetics, providing a framework to analyze
electromagnetic fields and its interaction. Naqvi at.el. [15],
[16] studied the application of fractional cross product in
Maxwell’s equation and waveguides, adding insights to the
behaviour of electromagnetic fields in complex system.
Later Kankarej and Singh [9] developed a new definition
of fractional vector cross product(FVCP) in 2023 which
was an extension to the definition of Das [3], [4]. This
definition was further modified to develop the definition of
standard fractional vector cross product(SFVCP) to study
more properties of electromagnetic theory, fluid dynamics,
and related areas [10]–[12].
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Inspired by above study, the author of this paper Kankarej
and Singh, used definition of SFVCP to redefine most
critical theorems and explained its nature. The main idea
of the paper is to define the flux of vector field using
standard fractional vector cross product(SFVCP) and use it
to redefine Green’s and Stoke’s theorem. Following is the
flow of the paper:
* In the second section, definition of SFVCP is introduced.
* Third and fourth sections introduces the concept of
circulation and flux.
* Section five, defined fractional flux of a vector field.
* Section six and seven, introduces tangential and normal
forms of Greens theorem for different values of γ
* Section eight and nine covers Green’s theorem for
complex variable with different values of γ. * Section ten,
introduces Cauchy’s integral form.
* In section eleven and twelve, Stoke’s theorem along with
different values of γ are discussed.
* In section thirteen and fourteen, different examples
and conclusion covering Green’s and Stoke’s theorem are
discussed using new definition of SFVCP.

For the first time the concept of SFVCP is used to define
Green’s and Stokes’s theorem which brings novelty to paper.
It is amazing to notice that all the standard theorems are
particular case of SFVCP definition. Hence new definition
of SFVCP is more accurate to explain concepts in electro-
magnetics and fluid mechanics.

Application of this novel definition can be extended
as in [13] Mishra and Patnaik to study fractional vector
cross product (FVCP) in the micro strip antenna. They
defined FVCP to apply it to the transmission of electric and
magnetic fields in micro strip antenna. Similar to this work
new definition of SFVCP can be used to explore different
types of antenna and their radiation pattern. Idrissi and
Essoufi [7], [8] studied global existence of weak solutions
for a three-dimensional magnetoelastic interaction model.
In their model they combined a fractional harmonic map
heat flow with an evolution equation for displacement. This
is another concept to brainstorm, apply new definition and
explore this study. The fractional factor theory of graphs
originated from the feasible flow problem in communication
networks. Altai [1] introduced a theory of fractional calculus
by using a map k(x) instead of x in the definitions of the
classical derivative and the classical integral where x is
a variable and k : R → R is continuously differentiable
function. Gao and Shi [6] studied the sufficient conditions
for the existence of fractional factors in the different setting
of network from a theoretical perspective. These theoretical
results provide the basis for the initial network designing.
New definition introduced in this paper can be used further
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to study the properties as mentioned in [1], [6].

II. MATHEMATICAL FORMULATION

From [10]–[12], let (e1, e2, e3) be standard orthonormal
basis of R3 and γ ∈ [0, 1] a real number. We have the SFVCP
defined as,

ei ×γ ej = cos
(γπ
2

)
ej + sin

(γπ
2

)
ek − cos

(γπ
2

)
ei (1)

ej ×γ ei = cos
(γπ
2

)
ei − sin

(γπ
2

)
ek − cos

(γπ
2

)
ej (2)

el ×γ el = 0 for l = {1, 2, 3} (3)

where (i, j, k) is a cyclic permutation of (1, 2, 3).

III. CIRCULATION

By [18], let C be a piecewise smooth, simple closed
curve enclosing a region R in the plane. Let F (x, y) =
M(x, y)i + N(x, y)j be a vector field with M(x,y) and
N(x,y) having continuous first partial derivatives in an open
region containing R. Then the counterclockwise circulation
of F (x, y) around C equals the double integral of (curl
F (x, y)).k over R.

∫
C

F (x, y).T ds =

∫
C

M(x, y)dx+N(x, y)dy

This is also called as a circulation density of a vector field
F (x, y) at a point. To explain this let us consider following
Fig 1 where we assume both components of F i.e. M(x,y)
and N(x,y) are positive.

Fig 1. Circulation density of a vector field F (x, y)

The rate at which the fluid flows along the bottom edge
of a rectangular region in the direction i is positive for the
vector field F shown above. To calculate the circulation we
calculate the flow rate along each edge in the direction of
the arrows.

Top: F (x, y +∆y).(−i) ∆x = −M(x, y +∆y) ∆x

Bottom: F (x, y).(i) ∆x = M(x, y) ∆x

Right: F (x+∆x, y).(j) ∆y = N(x+∆x, y) ∆y

Left: F (x, y).(−j) ∆y = −N(x, y) ∆y

We sum opposite pairs to get:

Top and bottom:

−(M(x, y +∆y)−M(x, y)) ∆x ≈ −(∂M∂y ∆y) ∆x

Right and left:

(N(x+∆x, y)−N(x, y)) ∆y ≈ (∂N∂x ∆x) ∆y

Adding them we get:∫
c

F (x, y).T ds =

∫ ∫
R

(
∂N

∂x
− ∂M

∂y
) dx dy (4)

Thus the circulation density of a vector field F (x, y) is the
line integral in tangential direction which is equal to surface
integral of the difference of partial derivatives of different
components of F (x, y).

IV. FLUX

By [18], for piecewise smooth, simple closed curve C and
vector field F (x, y) = M(x, y)i+N(x, y)j the outward flux
of F (x, y) around C over R is given as:∫

C

F (x, y).n ds =

∫
C

M(x, y)dy −N(x, y)dx

This is also called as a circulation density of a vector field
F (x, y) at a point. To explain this let us consider following
Fig 2 where we assume both components of F are positive.

Fig 2. Flux of a vector field F (x, y)

The rate at which the fluid flows outwards is shown by
the direction of arrows. The directions of the rectangular
region are i,−i, j and −j for the vector field F as shown
in the diagram above. To calculate the flux we calculate the
flow rate along each edge in the direction of the arrows.

Top: F (x, y +∆y).(j) ∆x = N(x, y +∆y) ∆x

Bottom: F (x, y).(−j) ∆x = −N(x, y) ∆x

Right: F (x+∆x, y).(i) ∆y = M(x+∆x, y) ∆y

Left: F (x, y).(−i) ∆y = −M(x, y) ∆y

We sum opposite pairs to get:

Top and bottom:
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(N(x, y +∆y)−N(x, y)) ∆x ≈ (∂N∂y ∆y) ∆x

Right and left:

(M(x+∆x, y)−M(x, y)) ∆y ≈ (∂M∂x ∆x) ∆y

Adding them we get:∫
c

F (x, y).n ds =

∫ ∫
R

(
∂M

∂x
+

∂N

∂y
) dx dy (5)

V. FRACTIONAL FLUX

By [18], for piecewise smooth, simple closed curve C
and vector field F (x, y) = M(x, y)i + N(x, y)j, the flux
of F (x, y) is given in the direction normal to the plane of
F (x, y).

Fig 3: Graphical representation for fractional flux in
counterclockwise direction

Fig 4: Graphical representation for fractional flux in
clockwise direction

F (x, y)× k = F (x, y).n = M(x, y)
dy

ds
−N(x, y)

dx

ds∫
c

F (x, y).n ds =

∫
c

(
M

dy

ds
−N

dx

ds

)
ds (6)

The rate at which the fluid flows outwards in
counterclockwise direction at the bottom edge of a
rectangular region for the vector field F shown is above. To
calculate the fractional flux we calculate the flow rate along
each edge in the direction of the arrows.

Top:
F (x, y +∆y).(−i×γ (i+ j + k) ∆x

= (−i×γ j − i×γ k)N(x, y +∆y) ∆x

Bottom:
F (x, y).(i×γ (i+ j + k)) ∆x

= (i×γ j + i×γ k)N(x, y) ∆x

Right:
F (x+∆x, y).(j ×γ (i+ j + k)) ∆y

= (j ×γ i+ j ×γ k)M(x+∆x, y) ∆y

Left:
F (x, y).(−j ×γ (i+ j + k)) ∆y

= (−j ×γ i− j ×γ k)M(x, y) ∆y

We sum opposite pairs to get:
Top and bottom:

F (x, y +∆y).(−i×γ (i+ j + k)

+F (x, y).(i×γ (i+ j + k)) ∆x

= k
[
cos γπ

2 − sin γπ
2

]
∂N
∂y ∆y ∆x

Adding right and left:

F (x+∆x, y).(j ×γ (i+ j + k)) ∆y

+F (x, y).(−j ×γ (i+ j + k)) ∆y

= k
[
cos γπ

2 − sin γπ
2

]
∂M
∂x ∆x ∆y

Adding them we get∫
c
F (x, y).n ds =[

k
[
cos γπ

2 − sin γπ
2

]
∂N
∂y

+k
[
cos γπ

2 − sin γπ
2

]
∂M
∂x

]
∆y ∆x

Now applying this definition on eqn (1) for x-y plane we
have

∫
c

F (x, y).n ds

=

∫ ∫ [(∂M
∂x

+
∂N

∂y

)
cos

γπ

2

−
((∂M

∂x
+

∂N

∂y

)
sin

γπ

2

]
dx dy

(7)

where 0 ≤ γ ≤ 1.

By the definition of fractional flux the line integral in
normal direction is equal to the surface integral as mentioned
in eqn (7).

VI. GREENS THEOREM

We now come to the one of the most important theorem
that extend the ‘Fundamental Theorem of Calculus’ to
higher dimension. Green’s theorem says that the sum of
the ”microscopic” swirls over the region is the same as
the ”macroscopic” swirl around the boundary. It means
to compute a single integral over an interval, we do a
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computation on the boundary of the region that involves
one fewer integrations. [14]

There are two forms of Green’s theorem as given below:

A. Circulation - Curl or Tangential form
By [10], [18], for piecewise smooth, simple closed curve

C and vector field F (x, y) = M(x, y)i + N(x, y)j, the
counterclockwise circulation of F (x, y) around C equals the
double integral of (curl F (x, y)).k over R.∫

C

F (x, y).T ds =

∫
C

M(x, y)dx+N(x, y)dy∫
C
F (x, y).T ds =

∫ ∫
R
∇× F dA

Using SFVCP it is given by∫
C
F (x, y).T ds =

∫ ∫
R
∇×γ F dA

As proved above we have∫
C

F (x, y).T ds =

∫ ∫
R

(∂N
∂x

− ∂M

∂y

)
sin

γπ

2
dx dy (8)

B. Flux - Divergence or Normal form
By [10], [18], for piecewise smooth, simple closed curve

C and vector field F (x, y) = M(x, y)i + N(x, y)j, the
outward flux of F across C equals the double integral of
div F over the region R enclosed by C.∫

C
F (x, y).n ds =

∫ ∫
R
∇.F dA

Using equation(7) we have∫
c

F (x, y).n ds

=

∫ ∫ [(∂M
∂x

+
∂N

∂y

)
cos

γπ

2

−
(∂M
∂x

+
∂N

∂y

)
sin

γπ

2

]
dx dy

(9)

VII. DIFFERENT FORMS OF GREENS THEOREM FOR
0 ≤ γ ≤ 1

A. Case 1
For γ = 0 equations (8) and (9) will take the form∫
C
F (x, y).T ds = 0∫

c
F (x, y).n ds

=
∫ ∫ [(

∂M
∂x + ∂N

∂y

)
dx dy

B. Case 2
For γ = 1

3 equations (8) and (9) will take the form∫
C
F (x, y).T ds = 1

2

∫ ∫
R

(
∂N
∂x − ∂M

∂y

)
dx dy∫

c
F (x, y).n ds

=
∫ ∫ [√

3−1
2

(
∂M
∂x + ∂N

∂y

)]
dx dy

C. Case 3

For γ = 1
2 equations (8) and (9) will take the form∫

C
F (x, y).T ds = 1√

2

∫ ∫
R

(
∂N
∂x − ∂M

∂y

)
dx dy∫

c
F (x, y).n ds = 0

D. Case 4

For γ = 2
3 equations (8) and (9) will take the form∫

C
F (x, y).T ds =

√
3
2

∫ ∫
R

(
∂N
∂x − ∂M

∂y

)
dx dy∫

c
F (x, y).n ds

=
∫ ∫ [−√

3+1
2

(
∂M
∂x + ∂N

∂y

)]
dx dy

E. Case 5

For γ = 1 equations (8) and (9) will take the form∫
C
F (x, y).T ds =

∫ ∫
R

(
∂N
∂x − ∂M

∂y

)
dx dy∫

c
F (x, y).n ds

= −
∫ ∫ [(

∂M
∂x + ∂N

∂y

)
dx dy

Negative sign indicates that the direction of flux is in
direction opposite to the plane. This also confirms that new
definition is more generalized form and at γ = 1 it represents
a particular condition which satisfies the theorem.

VIII. GREENS THEOREM IN COMPLEX VARIABLE

Similar to the notion of a line integral in planar vector field
we can apply the concept of Greens theorem to a complex
variable in complex plane. [2] Let f(z) = P (z) + iQ(z).
Then we define the complex line integral as∫

c

f(z)dz =∫ [
P (z) + iQ(z)

]
(x′(t) + iy(t))dt

=

∫
P (z(t))x′(t)−Q(z(t))y′(t)dt

+i

∫
P (z(t))y′(t) +Q(z(t))x′(t)dt

(10)

where z(t) = x(t) + iy(t)

we can still identify each integral as being dot product of
a certain vector field with the velocity vector v(t) = r′(t)
and we get line integrals∫

(P,−Q).dr + i
∫
(Q,P ).dr the corresponding vector

fields are F1 = (P,−Q) and F2 = (Q,P ).
Suppose C is the boundary of a region R in the plane such
that f(z) is defined not just on the boundary but on all of
R, then Green’s theorem applies.

We compute
∇×γ F1 =

(
∂P
∂y + ∂Q

∂x

)
cos γπ

2 i
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+
(−∂P

∂y − ∂Q
∂x

)
cos γπ

2 j +
(−∂Q

∂x − ∂P
∂y

)
sin γπ

2 k
and

∇×γ F2 =
(
∂Q
∂y − ∂P

∂x

)
cos γπ

2 i

+
(
∂P
∂x − ∂Q

∂y

)
cos γπ

2 j +
(
∂P
∂x − ∂Q

∂y

)
sin γπ

2 k

and we get

∫
c

f(z)dz =

∫ ∫
R

(−∂Q

∂x
− ∂P

∂y

)
sin

γπ

2
dA

+i

∫ ∫
R

(∂P
∂x

− ∂Q

∂y

)
sin

γπ

2
dA

(11)

This result is same as original value of analytic function
for γ = 1 and would not help us evaluate the line integral if
F were irrotational or incompressible. By Cauchy Riemann
equation we know

∂P
∂x = ∂Q

∂y ,
∂Q
∂x = −∂P

∂y ,

and that a complex function f(z) = P (x+iy)+iQ(x+iy)
is holomorphic on a region R. Therefore for holomorphic
functions both integrands are identically zero, so certainly
the integrals are zero. Thus we have

IX. DIFFERENT FORMS OF GREEN’S THEOREM FOR
COMPLEX VARIABLE

A. Case 1

For γ = 0 equation (11) will take the form∫
c

f(z)dz = 0

B. Case 2

For γ = 1
3 equation (11) will take the form∫
c

f(z)dz =
1

2

[ ∫ ∫
R

(−∂Q

∂x
− ∂P

∂y

)
dA

+i

∫ ∫
R

(∂P
∂x

− ∂Q

∂y

)
dA

]
C. Case 3

For γ = 1
2 equation (11) will take the form∫

c

f(z)dz =
1√
2

[ ∫ ∫
R

(−∂Q

∂x
− ∂P

∂y

)
dA

+i

∫ ∫
R

(∂P
∂x

− ∂Q

∂y

)
dA

]
D. Case 4

For γ = 2
3 equation (11) will take the form∫

c

f(z)dz =

√
3

2

[ ∫ ∫
R

(−∂Q

∂x
− ∂P

∂y

)
dA

+i

∫ ∫
R

(∂P
∂x

− ∂Q

∂y

)
dA

]

E. Case 5

For γ = 1 equation (11) will take the form∫
c

f(z)dz =

∫ ∫
R

(−∂Q

∂x
− ∂P

∂y

)
dA

+i

∫ ∫
R

(∂P
∂x

− ∂Q

∂y

)
dA

X. CAUCHY’S INTEGRAL THEOREM

Let R be a closed region in the plane with smooth
boundary ∂R (we allow the boundary to be any finite
number of simple closed curves). [2] Then if f(z) is any
complex function which is defined and holomorphic on all
of R then∫
∂R

f(z)dz = 0.

In particular, if f(z) is holomorphic on entire complex
plane then

∫
c
f(z)dz = 0 for all curves. Moreover if the

region has multiple components C1 U C2 U ...U Cr then
we get relation over these curves as∫
C1

f(z)dz +
∫
C2

f(z)dz....+
∫
Cr

f(z)dz = 0.

Residue theorem Let g(z) be a function holomorphic
on a region R except for finitely many singularities at
points z1, z2, ....zn. Let C be a curve in the region R, not
passing through any of the singularities, which has winding
numbers n1, n2, ...nn with respect to each z1, z2, ..zn. Let
R1, R2....Rn be the residues ofg(z) at these points. Then∫
c
g(z)dz =

∑n
i=1 2πiRi.

XI. STOKES THEOREM

By [18] Let S be a piecewise smooth oriented
surface having a piecewise smooth boundary curve C.
let F = Mi+Nj+Pk be a vector field whose components
have continuous first partial derivatives in an open region
containing S. Then the circulation of F around C in the
direction counterclockwise with respect to the surface’s unit
normal vector n equals integral of ∇× F.n over S.∫

C
F (x, y) dr =

∫ ∫
S
∇× F.n dσ∫

C
F (x, y) dr =

∫ ∫
S
∇×γ F.n dσ

By [10] we have ∫
C

F (x, y) dr

=

∫ ∫
S

sin
γπ

2

[
i
(∂P
∂y

− ∂N

∂z

)
+j

(∂M
∂z

− ∂P

∂x

)
+k

(∂N
∂x

− ∂M

∂y

)]
+cos

γπ

2

[
i
(∂M
∂y

− ∂N

∂x
+

∂M

∂z
− ∂P

∂x

)
+j

(∂N
∂x

− ∂M

∂y
+

∂N

∂z
− ∂P

∂y

)
+k

(∂P
∂x

− ∂M

∂z
+

∂P

∂y
− ∂N

∂z

)]
.n dσ

(12)
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XII. DIFFERENT FORMS OF STOKE’S THEOREM

A. Case 1

For γ = 0 equation (12) will take the form∫
C

F (x, y) dr =
[
i
(∂M
∂y

− ∂N

∂x
+

∂M

∂z
− ∂P

∂x

)
+j

(∂N
∂x

− ∂M

∂y
+

∂N

∂z
− ∂P

∂y

)
+k

(∂P
∂x

− ∂M

∂z
+

∂P

∂y
− ∂N

∂z

)]
.n dσ

B. Case 2

For γ = 1
3 equation (12) will take the form∫
C

F (x, y) dr =

∫ ∫
S

1

2

[
i
(∂P
∂y

− ∂N

∂z

)
+j

(∂M
∂z

− ∂P

∂x

)
+ k

(∂N
∂x

− ∂M

∂y

)]
+

√
3

2

[
i
(∂M
∂y

− ∂N

∂x
+

∂M

∂z
− ∂P

∂x

)
+j

(∂N
∂x

− ∂M

∂y
+

∂N

∂z
− ∂P

∂y

)
+k

(∂P
∂x

− ∂M

∂z
+

∂P

∂y
− ∂N

∂z

)]
.n dσ

C. Case 3

For γ = 1
2 equation (12) will take the form∫

C

F (x, y) dr =

∫ ∫
S

1√
2

[
i
(∂P
∂y

− ∂N

∂z

)
+j

(∂M
∂z

− ∂P

∂x

)
+ k

(∂N
∂x

− ∂M

∂y

)]
+

1√
2

[
i
(∂M
∂y

− ∂N

∂x
+

∂M

∂z
− ∂P

∂x

)
+j

(∂N
∂x

− ∂M

∂y
+

∂N

∂z
− ∂P

∂y

)
+k

(∂P
∂x

− ∂M

∂z
+

∂P

∂y
− ∂N

∂z

)]
.n dσ

D. Case 4

For γ = 2
3 equation (12) will take the form∫

C

F (x, y) dr =

∫ ∫
S

√
3

2

[
i
(∂P
∂y

− ∂N

∂z

)
+j

(∂M
∂z

− ∂P

∂x

)
+ k

(∂N
∂x

− ∂M

∂y

)]
+
1

2

[
i
(∂M
∂y

− ∂N

∂x
+

∂M

∂z
− ∂P

∂x

)
+j

(∂N
∂x

− ∂M

∂y
+

∂N

∂z
− ∂P

∂y

)
+k

(∂P
∂x

− ∂M

∂z
+

∂P

∂y
− ∂N

∂z

)]
.n dσ

E. Case 5

For γ = 1 equation (12) will take the form∫
C

F (x, y) dr =

∫ ∫
S

[
i
(∂P
∂y

− ∂N

∂z

)
+j

(∂M
∂z

− ∂P

∂x

)
+ k

(∂N
∂x

− ∂M

∂y

)]
This result is similar to Stoke’s theorem.

XIII. EXAMPLES

Example 1: Calculate the fractional flux of the field
F = (x − y)i + xj across the circle x2 + y2 = 1 in the
xy-plane .

Solution: Parametric form for circle is r(t) =
cos ti+ sin tj,

dr(t) = − sin ti+ cos tj

With M = x− y, ∂M
∂x = 1, ∂M

∂y = −1

N = x, ∂N
∂x = 1, ∂N

∂y = 0

Fractional flux using eqn (7) is:∫
c
F (x, y).n ds =

∫ ∫ [(
∂M
∂x + ∂N

∂y

)
cos γπ

2

−
(
∂M
∂x + ∂N

∂y

)
sin γπ

2

]
dx dy

which gives∫
c
F (x, y).n ds

=
∫ ∫ [(

1 + 0
)
cos γπ

2 −
(
1 + 0

)
sin γπ

2

]
dx dy∫

c
F (x, y).n ds =

∫ ∫ [
− sin γπ

2 + cos γπ
2

]
dx dy

For γ = 1 we have∫
c
F (x, y).n ds

=
∫ ∫

−1dx dy

= −π (area around the circle is dx dy = πr2).

Example 2: Apply Greens theorem (tangential form) to
calculate the circulation density on the field F = (x−y)i+xj
across the circle x2 + y2 = 1 in the xy-plane .

Solution: With M = x− y, ∂M
∂x = 1, ∂M

∂y = −1

N = x, ∂N
∂x = 1, ∂N

∂y = 0

Using eqn (8) we have:∫
c
M dx+N dy =

∫ ∫ (
∂N
∂x − ∂M

∂y

)
sin γπ

2 dx dy

which gives
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∫
c
M dx+N dy =

∫ ∫ (
1 + 1

)
sin γπ

2 dx dy

For γ = 1∫
c
M dx+N dy =

∫ ∫
2 dx dy = 2π

(area around the circle is dx dy = πr2).

Example 3: Apply Greens theorem (normal form) to
calculate the flux density on the field F = (x − y)i + xj
across the circle x2 + y2 = 1 in the xy-plane .

Solution: From equation 9 and example 1 we have,∫
c
F (x, y).n ds

=
∫ ∫ [(

1 + 0) cos γπ
2 −

(
1 + 0

)
sin γπ

2

]
dx dy∫

c
F (x, y).n ds =

∫ ∫
cos γπ

2 − sin γπ
2 dx dy

For γ = 1∫
c
F (x, y).n ds =

∫ ∫
−1 dx dy = −π

(area around the circle is dx dy = πr2).

Example 4: Find the line integral of the vector field
F (x, y) = (3y − esin x, 7x +

√
y2 + 1) along the path

x2 + y2 = 9.

Solution: With M = 3y − esin x, ∂M
∂y = 3

N = 7x+
√
y2 + 1, ∂N

∂x = 7,

Using eqn (8) we have:∫
c
M dx+N dy =

∫ ∫ (
7− 3

)
sin γπ

2 dx dy

which gives∫
c
M dx+N dy =

∫ ∫ (
4
)
sin γπ

2 dx dy

For γ = 1∫
c
M dx+N dy =

∫ ∫
4 dx dy = 4× 9π = 36π

(area around the circle is dx dy = πr2).

Example 5: Apply Stoke’s theorem on the hemisphere
S : x2 + y2 + z2 = 9, z ≤ 0, its bounding circle
C : x2 + y2 = 9, z = 0, and the field F = yi− xj.

Solution: With M = y, ∂M
∂x = 0, ∂M

∂y = 1, ∂M
∂z = 0

N = −x, ∂N
∂x = −1, ∂N

∂y = 0, ∂N
∂z = 0

P = 0, ∂P
∂x = 0, ∂P

∂y = 0, ∂P
∂z = 0

For the curl integral of F from equation (9), we have

∇×γ F

= sin γπ
2

[
i
(
∂P
∂y − ∂N

∂z

)
+ j

(
∂M
∂z − ∂P

∂x

)
+ k

(
∂N
∂x − ∂M

∂y

)]
+cos γπ

2

[
i
(
∂M
∂y − ∂N

∂x + ∂M
∂z − ∂P

∂x

)
+j

(
∂N
∂x − ∂M

∂y + ∂N
∂z − ∂P

∂y

)
+k

(
∂P
∂x − ∂M

∂z + ∂P
∂y − ∂N

∂z

)]
substituting the values we have,

∇×γ F

= sin γπ
2

[
i
(
0− 0

)
+ j

(
0− 0

)
+ k

(
− 1− 1

)]
+cos γπ

2

[
i
(
1 + 1 + 0− 0

)
+j

(
− 1− 1 + 0− 0

)
+k

(
0− 0 + 0− 0

)]
∇×γ F = sin γπ

2 (−2k) + cos γπ
2 (2i− 2j)

n = xi+yj+zk√
x2+y2+z2

= xi+yj+zk
3

dσ = 3
zdA

∇×γ F.ndσ

=
2x cos γπ

2 −2y cos γπ
2 −2z sin γπ

2

3
3
z dA

∇×γ F.ndσ

= 2x
z cos γπ

2 − 2y
z cos γπ

2 − 2 sin γπ
2 dA∫ ∫

s
∇×γ F.n dσ

=
∫ ∫

x2+y2≤9

[
2x
z cos γπ

2 − 2y
z cos γπ

2 − 2 sin γπ
2

]
dA

For γ = 1, we have,∫ ∫
s
∇×γ F.n dσ

=
∫ ∫

x2+y2≤9
−2dA

(For the given circle, dA = πr2)∫ ∫
s
∇×γ F.n dσ = −18π

Example 6 Use Cauchy’s theorem to integrate f(z) = 1
z .

[2]

Solution: Let z(t) = cos t+ i sin t∫
c
f(z)dz =

∫ 2π

0
1

cos t+i sin t (− sin t+ i cos t)dt

By rationalization of denominator it becomes 1 and we get∫ 2π

0
cos t− i sin t(− sin t+ i cos t)dt =

∫ 2π

0
i dt = 2πi

Thus if C is any curve which winds n times
counterclockwise around the origin then,
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∫
c
dz
z = 2πin

XIV. CONCLUSION

In this research authors have explored different forms
of Green’s and Stokes’s theorem which are most critical
characteristics of electromagnetism with new definition of
SFVCP. Different forms of these theorems for different
fractional angle gives an overview that Green’s and Stokes’s
theorem can be visualised and understood in three dimension
rather than tangential and normal components. Authors have
supported the study with various examples and also discussed
ideas to explore further application of SFVCP in areas of
electromagnetic theory, fluid dynamics and related areas.
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