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Abstract—To address the accuracy limitations of existing
safety helmet detection algorithms in complex environments,
we propose an enhanced YOLOv8 algorithm, called YOLOv8-
CSS. We introduce a Coordinate Attention (CA) mechanism
in the backbone network to improve focus on safety helmet
regions in complex backgrounds, suppress irrelevant feature
interference, and enhance detection accuracy. We also in-
corporate the SEAM module to improve the detection and
recognition of occluded objects, increasing robustness and
accuracy. Additionally, we design a fine-neck structure to fuse
features of different sizes from the backbone network, reducing
model complexity while maintaining detection accuracy. Finally,
we adopt the Wise-IoU loss function to optimize the training
process, further enhancing detection accuracy. Experimental
results show that YOLOv8-CSS significantly improves detection
performance in general scenarios, complex backgrounds, and
for distant small objects. YOLOv8-CSS improves precision,
recall, mAP@0.5, and mAP@0.5:0.95 by 1.67%, 5.55%, 3.38%,
and 5.87%, respectively, compared to YOLOv8n. Our algorithm
also reduces model parameters by 21.25% and computational
load by 15.89%. Comparisons with other mainstream object
detection algorithms validate our approach’s effectiveness and
superiority.

Index Terms—Object detection, Deep learning, Computer
vision, YOLO, Construction safety

I. INTRODUCTION

W ITH the continuous improvement of China’s infras-
tructure and the flourishing civil engineering industry,

on-site safety has become fundamental for worker protection.
In high-risk industries like construction, steel, and coal min-
ing, safety helmets are crucial personal protective equipment
that effectively prevent head injuries and reduce accident risk
[1]. National regulations mandate that construction workers
wear safety helmets on construction sites [2]. However, in
practice, some workers do not wear safety helmets correctly
or at all, leading to accidents. Currently, manual supervision
or video surveillance is typically used on construction sites
to check if workers are wearing safety helmets correctly.
However, due to supervisors’ limited attention spans, missed
inspections frequently occur. Therefore, relying solely on
supervisors to monitor helmet usage cannot meet safety
demands on construction sites. Recently, with the advance-
ment of computer vision technology, many scholars have
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extensively researched safety helmet detection. Traditional
detection algorithms use the Support Vector Machine (SVM)
algorithm [3] and Histogram of Oriented Gradient (HOG)
features to detect human bodies first, then identify helmets
based on their color [4]. However, the complexity of the
actual operating environment and the small size of safety
helmets reduce the robustness and generalization of tradi-
tional detection methods.

As deep learning technology advances, researchers have
started applying deep convolutional networks to object de-
tection. Deep learning-based object detection approaches are
mainly divided into two-stage and one-stage methods. These
network models, with their various architectures and strong
learning capabilities, can efficiently extract feature informa-
tion from images for object classification and localization.
Two-stage object detection algorithms, such as R-CNN [5]
and Faster R-CNN [6], segment images into multiple regions
and generate candidate boxes, which are then classified or
regressed upon. For example, Xu Shoukun et al. [7] increased
the anchor number in Faster R-CNN, optimizing the model to
address issues like large target size disparities and occlusions,
thereby achieving high accuracy in safety helmet detection.
However, these methods suffer from slow speed. The other
category includes one-stage detection algorithms, such as
the YOLO [8] series and SSD [9] series. Shi Hui et al.
[10] improved the accuracy and generalization of safety
helmet detection in YOLOv3 through methods such as net-
work structure enhancement, model compression, optimiza-
tion of non-maximum suppression algorithms, and multi-
scale detection. However, in complex scenarios involving
small targets, occlusions, and dense crowds, these algorithms
do not perform satisfactorily. Yang Yongbo [11]. replaced
the backbone network in YOLOv5s with MobileNetv3,
used Diou-NMS instead of NMS, and added the CBAM
attention mechanism, successfully reducing the model size
and computational load but compromising accuracy. Overall,
compared to traditional methods, the aforementioned deep
learning-based safety helmet detection methods have shown
improvements in detection speed and accuracy, yet there
remains room for enhancement.

To address these issues, this paper proposes a safety helmet
detection algorithm named YOLO-CSS, based on YOLOv8
with optimizations integrating attention mechanisms and
multi-scale feature fusion. This algorithm achieves high
detection accuracy while consuming fewer computational
resources. This work makes the following primary contri-
butions:

1) Reducing model complexity and improving detection
accuracy by fusing features from various-sized maps
in the backbone network using the SLIM-NECK struc-
ture.

2) Enhancing the focus on small targets and enhancing
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feature extraction and fusion capabilities by integrating
the Coordinate Attention (CA) module into the feature
fusion network (Neck).

3) Introducing the Multi-Head Attention Network Module
(SEAM) from YOLO-FaceV2, enabling the model to
handle occluded target scenes effectively.

4) The model’s bounding box regression performance is
successfully increased by replacing the original CIoU
loss function with the Wise-IoU loss function.

5) Comparisons utilizing the SHWD dataset show that
the proposed model outperforms the state-of-the-art
models in detection performance, exhibiting superior
robustness in real-world scenarios and different work-
ing environments.

II. RELATED WORK

A. YOLOv8
The newest model in the YOLO series, YOLOv8, is

useful for a number of applications, including object track-
ing, instance segmentation, and image classification. As the
depth and width of the network increase, so do the model
parameters and computational load for YOLOv8, which is
split into YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and
YOLOv8x. Depending on the application scenarios they are
using, users can select the right network model. Having the
fewest parameters and the least computing load among them,
the YOLOv8n model retains a relatively quick detection
speed and good accuracy. Figure 1. shows the YOLOv8
network structure.

The YOLOv8n detection network comprises four primary
components: Input, Backbone, Neck and Head.

The Backbone of YOLOv8n mirrors that of YOLOv5, yet
the C3 module is supplanted by the C2f module, grounded
on the CSP concept. This configuration enables YOLOv8
to learn residual features, maintaining a lightweight model
while acquiring richer gradient flow information. The popular
SPPF [12] module, which employs three sequential 5x5
max-pooling layers followed by concatenation of each level,
is still utilized at the conclusion of the backbone. This
ensures accurate detection of objects at various scales while
maintaining a lightweight model.

In the Neck, YOLOv8 continues to employ the PAN-FPN
[13] feature fusion method, which strengthens the fusion and
utilization of feature layer information at different scales.
Compared to YOLOv5, there are two major improvements in
the Head. First, the previous anchor-based detection method
has been replaced with anchor-free [14] detection based on
center detection algorithms. The anchor-free approach elimi-
nates the need for manually designed anchor boxes, requiring
only regression of the target center points and dimensions
on feature maps of different scales. This reduces compu-
tational time and resources and avoids missed or duplicate
detections caused by unreasonable anchor settings. Second,
a mainstream decoupled-head [15] structure is utilized as the
final detection head. The decoupled head can better handle
semantic information at different scales and resolutions. By
separating pixel-level predictions from feature extraction, it
can better utilize semantic information between low-level and
high-level features, improving network performance.
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Fig. 1. YOLOv8 network architecture.
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B. Coordinate Attention Mechanism

The attention mechanism is a powerful tool that is highly
flexible in structure and aids networks in learning more
discriminative feature representations. This mechanism can
be easily integrated into the core structure of algorithms.
One of the most prominent attention mechanisms is SE
[16] (Squeeze-and-Excitation) attention, representing chan-
nel attention. This mechanism can explicitly traverse differ-
ent dimensions to extract crucial inter-channel information.
Another attention mechanism is CBAM [17] (Convolutional
Block Attention Module), which represents spatial attention.
CBAM leverages semantic dependencies between spatial
and channel dimensions in feature maps, establishing cross-
channel spatial information.

In complex environments like construction sites, target de-
tection often faces challenges such as occlusion, background
interference, and low image quality. These issues make it
difficult for YOLOv8-based detection models to effectively
extract target features, especially in tasks like detecting
human behaviors. To address these problems, this paper
introduces the Coordinate Attention (CA) mechanism [18]
into the core structure of the YOLOv8 baseline model. This
mechanism helps the network focus on extracting personnel
features from images, highlighting important information
in complex backgrounds. Especially in tasks like detecting
safety helmets on workers, it can more accurately identify
targets.

By integrating position data into channel attention, CA
enables the network to concentrate on broader areas without
incurring substantial computational expenses. Channel atten-
tion decomposes into a one-dimensional feature encoding
process, aggregating features along two spatial directions
separately, in contrast to traditional channel attention pro-
cesses that solely focus on inter-channel information en-
coding while ignoring positional information. This method
preserves exact location information in one spatial direction
while capturing long-range interdependence in the other.
The resulting feature maps are then separately encoded into
position- and direction-sensitive attention maps, which are
then complementarily applied to the input feature map to
improve object representation. Figure 2 displays the structure
of the CA.

The X Avg Pool and Y Avg Pool in the diagram corre-
spond to the coordinate information embedding procedure.
Using pooling kernels with predetermined dimensions, en-
coding is carried out for the input X along the horizontal
and vertical coordinate directions. Equation 1 provides the
output equation for the c channel at a height of h.

zhc (h) =
1

W

∑
0≤i<W

xc (h, i) (1)

Equation 2 provides the output expression for the c chan-
nel, which has a width of w.

zwc (w) =
1

H

∑
0≤j<H

xc (j,w) (2)

Subsequently, the feature maps derived from the width and
height orientations are joined together. The dimensions of
these are then reduced to C/r, where C is the number of
channels and r is the reduction ratio, by feeding them into

Residual

Re-weight

X Avg Pool Y Avg Pool

Concat + Conv2d
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Conv2d Conv2d
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1×W×C
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Input

Output

1×(W+H)×C/r

Fig. 2. CA module.

a common convolutional module that uses 1 × 1 convolu-
tional kernels. Then, as indicated by Equation 3, the batch-
normalized feature maps F1 are run through the Sigmoid
activation function to produce a feature map f .

f = δ
(
F1

([
zh, zw

]))
(3)

Afterwards, 1 × 1 convolutional kernels are used to con-
volve the feature map f along its original directions of width
and height, yielding feature maps with the same number
of channels as the original. The attention weights for the
height and breadth directions are derived by passing through
a sigmoid activation function, as indicated by Equations 4
and 5.

gh = σ
(
Fh

(
fh

))
(4)

gw = σ (Fw (fw)) (5)

The height and width directions of the input feature map’s
attention weights are then determined by these computations.
Finally, by performing a weighted multiplication on the
initial feature map, as shown by Equation 6, the feature map
with attention weights in both directions is obtained.

yc (i, j) = xc (i, j)× ghc (i)× gwc (j) (6)

To better demonstrate the improvement in network perfor-
mance brought by the CA structure, this paper uses CAM
(Class Activation Mapping) [19]for visual comparison of
images. CAM visualizes the location of targets by generating
heatmaps. After conducting GradCAM [20] tests on three
types of networks (with CA added, with CBAM added, and
the original YOLOv8 structure), the obtained heatmaps for
target recognition are shown in Figure 3. It is clear that
compared to the original YOLOv8 structure and the structure
with CBAM added, the addition of the CA structure results in
higher heatmap values for safety helmets, with more precise
positions, demonstrating a more reliable effect.
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(a) Original (b) YOLOv8n (c) YOLOv8n+CBAM (d) YOLOv8n+CA
Fig. 3. Heatmaps were compared following the incorporation of two distinct attention processes.

C. SLIM-NECK structure

Real-time object detection is challenging for large models.
Although lightweight models with many depthwise separable
convolution layers can improve speed, they often fail to
meet accuracy requirements. Therefore, lightweight design
has become an effective method for balancing speed and
accuracy, reducing computational costs and allowing object
detectors to find the optimal balance. To increase accuracy,
the YOLOv8n algorithm makes use of C2f modules and
ordinary convolutions. On the other hand, speed is decreased
and model parameters are increased. The SLIM-NECK struc-
ture [21] integrates features from different-sized maps in
the backbone network, improving detection accuracy and
minimizing complexity while maintaining accuracy.

Depthwise separable convolution (DSC) [22] has greatly
increased detection speed in lightweight models such as
Xception [23], ShuffleNets [24], and MobileNets [25]. How-
ever, this enhancement often comes at the expense of accu-
rate detection Li et al. [21] introduced GSConv to overcome
the accuracy loss with depthwise separable convolution. This
technique combines depthwise separable convolution data
with information from standard convolution using Shuffle.

GSConv uses ordinary convolution to downsample the input
first, then depthwise convolution, as Figure 4 illustrates.
The two convolutions’ outputs are then concatenated and
jumbled.

VoV-GSCSP is a module that is based on GSConv and
the Cross-Stage Partial Network (CSP). In the neck net-
work, GSConv and VoV-GSCSP modules form a cross-stage
partial network similar to residual blocks. In this structure,
feature maps from previous and subsequent layers are con-
catenated and then subjected to convolutional operations to
avoid information loss and gradient vanishing. In the VoV-
GSCSP network, GSConv replaces traditional convolution,
and two GSConv modules are concatenated, while VoV-
GSCSP replaces the C3 structure in the neck network.
These components aim to reduce computational complexity
while enhancing accuracy. Figure 5(a) illustrates the GS
bottleneck structure, and Figure 5(b) showcases the VoV-
GSCSP structure.

Two key improvements in the SLIM-NECK design are the
single aggregation module VoV-GSCSP and the lightweight
convolution algorithm GSConv. While maximizing the main-
tenance of inter-channel connections, GSConv lowers time
complexity. The inference process of lightweight detection
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Fig. 4. Structure diagram for GSConv. Three layers make up the ”Conv” block: the activation layer, the batch normalization layer, and the convolution
layer. The Depthwise Separable Convolution (DSC) operation is represented by the blue-marked ”DWConv” in this example.
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Fig. 5. (a) GS bottleneck structure (b) VoV-GSCSP structure.

models is accelerated by using VoV-GSCSP in place of
conventional CSP. The SLIM-NECK module is a feature
fusion module that is intended for use in object detection
tasks. By lowering network characteristics and computing
load, it seeks to improve speed and efficiency. This mod-
ule increases speed and efficiency by first adding low-
dimensional feature mappings to the input, then extracting
richer semantic information through convolutional processes.
The SLIM-NECK structure of YOLOv8 is shown in Figure
6.

D. SEAM Attention Module

In the context of safety helmet detection, inter-class oc-
clusion can lead to alignment errors, local aliasing, and

Concat

Concat

Concat

VoVGSCSP

VoVGSCSP

Concat

VoVGSCSP

GSConv

GSConv

Upsample

VoVGSCSP

Upsample

head-3

head-2

head-1

P4

P5

P3

Fig. 6. SLIM-NECK embedded in YOLOv8n structure.

missing features. To address these issues, we introduce a
multi-head attention network, namely the SEAM [26] module
(see Figure 7).

This module aims to achieve multi-scale helmet detec-
tion, emphasize the helmet area in the image, and de-
emphasize the background area. The SEAM module begins
with depthwise separable convolution with residual connec-
tions, which operates channel by channel. While this reduces
the number of parameters and learns the importance of
different channels, it neglects the inter-channel information
relationships. To mitigate this, we combine the outputs of the
depthwise convolutions using pointwise (1×1) convolutions.
Subsequently, a two-layer fully connected network fuses the
channel information, strengthening the connections between
all channels. By learning the relationships between occluded
and unobstructed helmets, this model compensates for the
loss in occlusion scenarios. The logits produced by the fully
connected layer are processed using an exponential func-
tion, expanding the value range from [0, 1] to [1, e], which
provides a monotonic mapping relationship and enhances
tolerance to positional errors. Finally, the SEAM module’s
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output is used as attention and is multiplied by the original
features, enabling the model to handle helmet occlusion more
effectively.

E. Wise-IoU

The original YOLOv8 model employs a regression loss
comprising DFL Loss [27] + CIoU [28] Loss. The formula
for the CIoU loss function is as follows:

LCIOU = LIOU +
σ (b, b′)

(wc)
2
+ (hc)

2 + av (7)

LIOU = 1− |b ∩ b′|
|b ∪ b′|

(8)

v =
4

π2

(
arctan

w′

h′ − arctan
w

h

)2

(9)

a =
v

LIOU + v
(10)

Here, w, h, and b represent the width, height, and center
coordinates of the predicted box, while w′, h′, and b′ corre-
spond to the ground truth box’s coordinates. The Euclidean
distance between the center locations of the predicted and
ground truth boxes is denoted by σ. The variables hc and
wc indicate the height and width of the minimal enclosing
rectangle for both the ground truth and predicted boxes.

During training, class imbalance is not considered, and
the CIoU loss function presents challenges in characterizing
relative aspect ratios. Consequently, the Wise-IOU [29] loss
function is introduced in this work. The loss function assesses
anchor box quality with outliers using a dynamic, non-
monotonic focus mechanism when the quality of the training
data annotations is low. By reducing the penalty on geometric
factors when there is a high overlap between the predicted
and target boxes, the loss function can achieve better general-
ization with fewer training treatments. Therefore, Wise-IoU

v3 employs a dynamic non-monotonic FM mechanism and
two-layer attention mechanisms .

fBBRL =
(
1− WtHt

Su

)
exp

{
(xp−xgt)

2+(yp−ygt)
2

(W 2
g+H2

g)
∗

}
· γ (11)

γ =
β

δαβ−δ
(12)

Anchor box quality is shown by the anticipated box’s
anomalous degree, denoted by β. A lower degree of anomaly
indicates a better quality anchor box. We create non-
monotonic focus numbers, which enable smaller gradient
increases to be applied to projected boxes with large anomaly
values. With this method, negative gradient effects on subpar
training samples are successfully mitigated. The hyperparam-
eters are α and β. Figure 8 illustrates the implications of
additional parameters.

g
W

g
H

i
W

i
H

( ),
gt gt
x y

( ),x yHgt
W

W

gt
H

Fig. 8. Schematic diagram of calculation parameters.

The coordinates of the ground truth box are represented
by xgt and ygt, while the coordinates of the predicted box
are denoted by xp and yp. The width and height of the two
boxes are indicated by the corresponding H and W values,
respectively. The following can be deduced: Su = wh +
wgthgt +WiHi .

F. Proposed Algorithm

In YOLOv8n, we introduced the CA mechanism to en-
hance feature interaction and expressive capabilities at dif-
ferent levels. Incorporating the SEAM module, a multi-head
attention network, enables the model to handle occlusion sce-
narios effectively. Adopting GSConv and the SLIM-NECK
design reduces the model’s computational and parameter
load, improving operational efficiency. Figure 9 illustrates
the modified model’s general structure.

III. RESULT AND DISCUSSION

A. Dataset

The dataset used in this study is the open-source
SHWD (Safety Helmet Wearing Dataset, https://github.com/
njvisionpower/Safety-Helmet-Wearing-Dataset).

The SHWD dataset consists of 7581 640x640 photos
taken under various conditions. Specifically, 5306 photos
were utilized for training, 1516 for validation, and 759 for
testing, following a 7:2:1 distribution. The photographs were
subsequently randomly partitioned into training, validation,
and test subsets. Through the use of LabelImg, two distinct
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Fig. 9. YOLO-CSS network structure.

types of annotations were generated for the data: ”hat” for
individuals wearing safety helmets and ”person” for those
not wearing helmets. A representative sample of the SHWD
dataset’s instances is illustrated in Figure 10.

B. Experimental setup and evaluation metrics

The deep learning framework utilized in the experiment
was PyTorch, and the operating system employed was
Ubuntu 20.04. The default network model adopted was
YOLOv8n. Table I presents the configuration details for the
experimental environment as follows.

TABLE I
EXPERIMENTAL ENVIRONMENT CONFIGURATION

Parametres Configuratio

System Ubuntu 20.04
Deep Learning Framework Version PyTorch 1.11.0

Python Version Python 3.8
CPU Intel(R) Xeon(R) Platinum 8255C
GPU GeForce RTX 3090(24GB)
RAM 80 GB

Consistent hyperparameters were applied throughout all
experiments. Table II lists the precise hyperparameters used
during training.

In order to verify the enhanced YOLO-CSS’s performance,
this study employs multiple assessment criteria, such as
Recall (R), Precision (P), Average Precision (AP), Mean
Average Precision (mAP), Inference time(ms), and Model
Size(MB). Equations 13 through 16 display the formulas for

TABLE II
TRAINING HYPERPARAMETERS

Parameters Value

Learning Rate 0.01
Image Size 640 × 640
Momentum 0.937
Optimizer SGD
Batch Size 16

Epoch 150
Weight Decay 0.0005

these metrics.
R =

TP

TP + FN
(13)

P =
TP

TP + FP
(14)

AP =

∫ 1

0

P (R) dR (15)

mAP =

∑N
i=1 APi

N
(16)

• True Positive (TP): A correctly detected object where
the predicted bounding box matches the ground truth
with sufficient overlap.

• False Positive (FP): An incorrectly detected object
where the predicted bounding box does not match any
ground truth or overlaps insufficiently.

• True Negative (TN): Correctly identified absence of an
object, though not commonly used in object detection
metrics.
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Fig. 10. Image samples in SHWD dataset.

• False Negative (FN): A missed detection where the
model fails to identify an object that is present in the
ground truth.

• Average Precision (AP): A summary metric that cal-
culates the area under the precision-recall curve for a
specific class.

• mean Average Precision (mAP): The mean value of Av-
erage Precision across all classes in a dataset, providing
an overall performance measure.

C. Model Training

To verify the effectiveness of YOLO-CSS, we trained
the model using the same dataset and hyperparameters as
YOLOv8n. We compared the loss and evaluation metrics
curves of both algorithms, as shown in Figure 11 and
Figure 12. The evaluation metrics include confidence loss,
bounding box loss, class loss, precision, recall, mAP@0.5,
and mAP@0.5:0.95, plotted against epochs.

Figure 11 shows that in both training and validation sets,
the losses of YOLO-CSS are lower than YOLOv8n, and it
converges faster.

Figure 12 shows that the mAP@0.5 of YOLOv8n stabi-
lizes around 0.82 after approximately 20 epochs, reaching
0.915 after 150 epochs.

In contrast, the mAP@0.5 of YOLO-CSS reaches 0.908
at 22 epochs and achieves 0.948 eventually. Similarly, the
mAP@0.5:0.95 of YOLOv8n reaches 0.571 after 150 epochs,
while YOLO-CSS achieves 0.632. In terms of precision
and recall, YOLO-CSS consistently outperforms YOLOv8n,
demonstrating better performance.

Overall, the results indicate that YOLO-CSS outperforms
YOLOv8n in various metrics, achieving higher detection
accuracy and convergence speed.

D. Ablation Experiments Result And Discussion

We employed popular loss functions including GIoU [30],
CIoU, DIoU [31], EIoU [32], and Wise-IoU in our studies
to examine the effects of these functions on YOLOv8n.

Table III displays the training accuracies following the
replacement of the YOLOv8n’s original CIoU loss with

various loss functions. Based on the results, Wise-IoU out-
performs other loss functions in terms of precision, recall,
mAP@0.5, and mAP@0.5:0.95. Bounding box regression
factors, such as aspect ratios, overlap regions with predicted
boxes, and the gap between expected and predicted boxes,
are the major components of traditional object detection loss
functions. The CIoU used in YOLOv8n exhibits ambiguity in
describing relative aspect ratios and does not address sample
balance during training, leading to slow convergence and
large fluctuations in predicted frames. In contrast, Wise-IoU
successfully reduces gradient vanishing, guaranteeing a more
stable training procedure. Furthermore, Wise-IoU improves
object detection accuracy by providing weighting factors that
help it better capture the relative spatial relationships between
anticipated and ground truth boxes.

We also conducted ablation studies employing the tech-
niques utilized in this research: Coordinate Attention (CA)
module, the SEAM module, the SLIM NECK, and the Wise-
IoU loss. Each of these methods was separately incorporated
into Yolov8n for evaluation. The outcomes of the ablation
studies are eummarized in Table IV. Based on these findings,
we derived the following conclusions:

1) YOLO combined with CA can achieve a high mAP,
but blindly adding attention modules increases the
parameter count, resulting in model redundancy. The
use of SLIM NECK significantly reduces the model
parameters, making it more lightweight. Meanwhile,
directly incorporating the SEAM module does not
effectively improve model accuracy, but the SEAM
network more effectively addresses occlusion by weak-
ening the background and highlighting the target area.
Overall, our proposed model maintains high accuracy
while significantly reducing the parameter count.

2) In order to explore the specific improvements each
module brings to the detection of targets wearing and
not wearing safety helmets in the dataset, we con-
ducted tests on the SHWD dataset, using the original
YOLOv8n model as the baseline, and then gradually
added the CA, SEAM, and SLIM NECK modules. The
P-R curves of their respective experimental results are
shown in the Figure 13. The larger the area enclosed
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Fig. 11. Loss changes of each model.
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Fig. 12. Changes in the four indicators of each model.
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by the P-R curve and the coordinate axes, the higher
the AP value, indicating better model performance. As
shown in Figures, the improved model in this study
has higher detection accuracy for both targets wearing
safety helmets and those not wearing them, clearly
outperforming other models.

3) To more intuitively compare the detection effects after
adding various modules, Figure 14 shows the compar-
ison result of mAP@0.5:0.95 metrics for the model
after sequentially adding each module.

E. Comparison with other algorithms

Comparative studies were carried out to confirm the effi-
cacy of the suggested object detecting system. A comparison
was made between YOLO-CSS and various object identifica-
tion models, including SSD, YOLOv3, YOLOv5s, YOLOv5l,
YOLOv7, YOLOv8n, YOLOv8l, and Faster-RCNN. Similar
datasets and experimental conditions were used in com-
parative studies. Mean average precision (mAP), weight

size, model size, and floating-point operations per second
(GFLOPs) were calculated and compared. A table called
Table V displays the comparison results.

From Table V, it is evident that the mAP@0.5 metric
of YOLO-CSS reached 94.89%, a significant improvement
over the SSD and Faster-RCNN detection algorithms by
21.3% and 16.24%, respectively. Additionally, YOLO-CSS
demonstrated considerable improvements over other YOLO
series detection algorithms. Compared to the baseline model
YOLOv8n used in this paper, YOLO-CSS achieved a 3.38%
improvement. Although the improvement over the best-
performing YOLOv8l algorithm was only 1.74%, but the
parameters of YOLOv81 are several times that of YOLO-
CSS, requiring more computation, which leads to a signifi-
cant decrease in inference speed. This further demonstrates
the superiority of the YOLO-CSS algorithm.

(a) PR Cure Of YOLOv8

(b) PR Cure Of YOLOv8+CA

(c) PR Cure Of YOLOv8+CA+SEAM

(d) PR Cure Of Our Proposed YOLO−CSS model
Fig. 13. A comparison of the PR curves for various models on the SHWD dataset with an IoU threshold set to 0.5.
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TABLE III
COMPARISON OF EXPERIMENTAL RESULT WITH DIFFERENT LOSS FUNCTIONS

Loss Function Precision(P)/% Recall(R)/% mAP@0.5/% mAP@0.5:0.95/%

CIOU 0.904 0.866 0.908 0.581
DIOU 0.896 0.860 0.904 0.573
GIOU 0.902 0.863 0.899 0.570
EIOU 0.895 0.869 0.911 0.581

Wise-IOU 0.906 0.871 0.914 0.583

TABLE IV
ABLATION EXPERIMENT

CA SEAM SLIM NECK Wise−IoU Precision(P)/% Recall(R)/% mAP@0.5/% mAP@0.5:0.95/% Size(Mb)

92.27 86.65 91.51 57.48 16.23
✓ 92.38 86.97 92.80 58.73 23.98

✓ 92.36 86.77 91.89 57.55 18.37
✓ 91.98 86.01 91.22 57.14 11.52

✓ 92.16 86.49 91.79 57.51 16.33
✓ ✓ 92.14 86.59 92.35 58.48 12.76
✓ ✓ ✓ 92.61 87.08 93.11 59.71 13.07
✓ ✓ ✓ ✓ 93.94 90.20 94.89 63.35 13.53

TABLE V
THE COMPARISON BETWEEN THE MODEL PROPOSED IN THIS PAPER AND OTHER MODELS

Algorithm Backbone Params/M Size/Mb mAP@0.5/% mAP@0.5:0.95/% GFLOPs Inference time(ms)

SSD VGG16 43.85 98.53 71.59 35.25 59.67 87
Faster-RCNN ResNet50 58.16 126.25 78.65 35.59 226.56 118
YOLOv3 [33] DarkNet53 61.92 116.89 87.25 52.86 71.67 83

YOLOv5s CSPDarkNet 7.06 13.85 89.41 54.97 17.20 27
YOLOv5l CSPDarkNet 18.65 127.65 91.12 57.52 41.65 68

YOLOv7 [34] CSPDarkNet 5.75 35.13 90.25 56.52 105.63 12
YOLOv8n C2f 13.88 16.23 91.51 57.48 33.52 27
YOLOv8l C2f 89.73 60.28 93.15 59.70 67.46 95

YOLO-CSS(Ours) C2f with CA 11.01 29.53 94.89 63.35 25.79 19
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Fig. 14. Ablation experiment result.

F. Visualization results and discussion

To demonstrate the advantages of our algorithm, we se-
lected various scenarios for comparative experiments, includ-
ing complex scenes, densely populated targets, distant small
targets, low-light conditions, and occluded targets. As shown
in Figures 15 to 20, each image includes (a) the original real-

world scene, (b) the detection results of the original YOLOv8
model, and (c) the detection results of the proposed YOLO-
CSS model.

As shown in Figure15, in scenarios with complex back-
grounds, dense targets, and occlusion, YOLO-CSS detects all
targets, while YOLOv8n has one missed detection, indicated
by a yellow triangle. YOLOv8n exhibits severe missed de-
tections in complex backgrounds, but YOLO-CSS accurately
identifies small targets with higher confidence. As shown
in Figure 16, in scenarios with complex backgrounds and
distant small targets, YOLOv8n misidentifies the crane arm
as a hat, indicated by a yellow triangle, whereas YOLO-
CSS detects all targets correctly. Figure 17 shows a low-light
nighttime scene where YOLOv8n fails to detect the target
inside the vehicle, while YOLO-CSS correctly identifies it. In
Figure 18 and Figure 19, both scenarios involve distant small
targets and occlusion. The SEAM module in YOLO-CSS en-
ables better detection of occluded targets. Therefore, YOLO-
CSS correctly detects all targets, while YOLOv8n performs
poorly in detecting occluded targets, as indicated by the
yellow triangles. In Figure 20, both YOLOv8n and YOLO-
CSS correctly detect all targets, but YOLO-CSS exhibits
higher confidence, further demonstrating its superiority.

In summary, the proposed algorithm achieves signifi-
cant performance improvement in detection compared to
YOLOv8n by introducing and improving various modules.
Notably, the algorithm excels in various scenarios, including
real-world scenes, complex backgrounds, occluded targets,
and distant small target detection. These improvements repre-
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(a) (b) (c)
Fig. 15. Complex backgrounds and dense targets.

(a) (b) (c)
Fig. 16. Complex backgrounds and distant small targets.

(a) (b) (c)
Fig. 17. Small targets at low-light night.

(a) (b) (c)
Fig. 18. Distant small targets and occlusion.
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(a) (b) (c)
Fig. 19. Small targets from an overhead perspective.

(a) (b) (c)
Fig. 20. Small targets with complex background.

sent substantial progress, ensuring excellent performance in
diverse environments and effectively addressing challenges
posed by complex environments and distant targets.

IV. CONCLUSION

Workplace safety is becoming increasingly dependent on
helmet detection as deep learning technology advances.
However, current helmet identification methods struggle to
recognize small, obscured items and objects against complex
backgrounds.We propose and implement YOLO-CSS, an
enhanced algorithm, to address these challenges. Through
ablation and comparison studies, we arrive at the following
findings:

1) Introducing the CA (Coordinate Attention) module ef-
fectively improves accuracy. Experimental results show
that the CA module outperforms the CBAM (Convolu-
tional Block Attention Module) attention mechanism.
CA focuses more on key areas and reduces interference
from complex backgrounds.

2) Introducing the SLIM-NECK structure for feature fu-
sion in the backbone network better integrates multi-
scale features of targets with background information,
significantly improving performance while reducing
network size.

3) Adding the SEAM module enables multi-scale ob-
ject detection, emphasizing target areas and reducing
background influence, enhancing the model’s ability to
handle occluded objects.

4) Using the more effective Wise-IoU loss function en-
ables the model to better handle occlusion and other

challenges, significantly improving convergence speed
and detection accuracy.

With dense and obscured objects, this enhancement lessens
false positives and negatives. In conclusion, YOLOv8n-CSS
performs better than YOLOv8n in every way, increasing
mAP@0.5 by 3.38% to 94.89%. Furthermore, in situations
with small items, dense objects, and complex settings, its
detection performance outperforms other methods. Conse-
quently, this approach satisfies the needs for precise and real-
time helmet detection.
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