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Abstract—In order to have shorter detection time and higher
detection accuracy for target detection, this article mainly im-
proves the YOLOv5 algorithm from optimizing active function
and the loss function. The results of comparative experiments
shown that our improved YOLOv5 algorithm’s performance
for detecting object was greatly improved.

Index Terms—target detection, YOLOv5, active function,
losses function.

I. INTRODUCTION

IDENTIFYING the targets is applied by using automated
equipment[1], [2], [3], including Faster R-CNN based

insect control[4], but Faster R-CNN had slow speed and
too much storage space. For example, scale invariant feature
approach was used to identify the insects, but it requires
too much storage space[5]. However, such as Faster R-
CNN relies on the pre-defined anchor box, and there is
still a lot of calculation work, but they can not achieve the
effect of real-time monitoring[6]. This two-stage algorithm
cannot meet the requirements of real-time detection. Single-
stage detection architectures’disadvantage is imprecise. The
anchor-based detection architecture detects the boundary of
the target as multiple anchor boxes, and predicts the offset
and category of each target. YOLOv1 and YOLOv2 were
used for faster target detection[7], [8], [9], the speed of
detection has increased, but their accuracy has decreased.
YOLOv3 (You Only Look Once v3) is typical faster detec-
tion methods with good detection performance[7], [10]. To
abtain better detection effect, the author designed darknet-
53 architecture. Compared with ResNet-152 and ResNet-
101, darknet-53 not only has good accuracy, but also has
faster detection speed and fewer layers[7]. Adarsh.et.al. put
forward YOLOv3-Tiny based object detection to reduce
the storage capacity and can be well applied to embed-
ded devices[11]. Improved YOLOv3 with DenseNet perfect
detect some objects with small pixel proportion in remote
sensing images[12], [13], [14]. Some real-time object de-
tection methods were proposed to apply on the mobile
devices[15], [16], [17]. The object detector was proposed
to solve the problem with some training techniques and
optimized hyperparameters which did not contribute much
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to the deep network itself[18]. YOLOv4 combined a lot of
previous research techniques and makes appropriate innova-
tions. CSPNet(Cross Stage Partial Networks) was used for
object detection. And,its number of parameters and FLOPS
of the model were reduced[19]. YOLOv5 modified some
structures inside the network, replaced the loss function, and
achieved a good detection effect[20]. YOLOv6 and YOLOv7
had no fundamental improvements involving a stack of
tricks[21], [22]. In 2023, the latest YOLOv8 was a state-
of-the-art (SOTA) model for no anchor. A key feature of
YOLOv8 is its scalability. It was designed as a framework
that supports all previous versions of YOLO, to easily
switch between versions and compare their performance.
In addition to scalability, YOLOv8 includes many other
innovations that make it widely used in object detection
and image segmentation tasks. The key point-based detection
architecture detects the target bounding box as multiple key
points to replace the anchor frame[23], [24], [25]. Algorithms
such as CornerNet, centerNet, and Fcos are all based on the
very classic architecture in key point detection [26], [27],
[28]. However, these detection accuracy are not high all the
time, which is prone to false detection. YOLOv6 introduced
SIoU loss function introducing the vector angle and the dis-
tance loss to accelerat network convergence[21], and further
improved the accuracy of regression[22], [29]. The degree
of freedom of regression was effectively reduced, network
convergence was accelerated, and the accuracy of regression
was further improved, for example: GIoU[29], Distance-
IoU Loss[30], EIoU[31], αIoU[32], [33], WIoU[34]. Exist-
ing methods based on YOLOv5 that doesn’t consider the
mismatching direction between real and predicted frames
obtained a slower and less efficient model.

This article mainly improved the YOLOv5 algorithm from
the active function and the losses function. Comparative ex-
periments results shown our method improved the detection’s
performance. Our main contributions are as follow:

1) New active function is helpful for effective feedback
of gradient, so as to speed up convergence and can
extract more distinguishing features.

2) New losses function can surpass existing IoU based
losses and the accuracy of regression is further im-
proved. Especially, the detection effect is obvious for
some crowded or occluded small targets.

3) Five experimental related evaluation indicators were
proposed to compare the experimental results.

4) The comparative experiments on VOC data set and
COCO data set were carried out.

II. RELATED WORKS

A. The network of YOLOv5
YOLOv5 performs bounding box coordinate estimation

and class prediction at the same time. The network convo-
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Fig. 1. The network of YOLOv5 (redrawing based on[17], [18], [19], [20], [21])

lutional kernels are 1 × 1 or 3 × 3. YOLOv3 extract the
deeper features by Darknet53 network that added 5 residual
modules involving one or multiple residual units with the
Conv+BN+Leaky ReLU. Backbone of YOLOv5 consists
of focus structure, new CSP-Darknet53 and the improved
neck(New CSP-PAN structure of FPN+PAN). We redrawn
the structure of YOLOv5 based on YOLO’s idea[17], [18],
[19], [20], [21]. The structure of YOLOv5 was shown in
Figure 1[17], [18], [19], [20], [21].

B. YOLOv5’s location prediction

The final frame coordinate value is bx, by, bw, bh. That is,
the position and size of the bounding box which is relative
to the feature map are the predicted output coordinates
we need[14]. But the actual learning goal of our network
is tx, ty, tw, th and other four offsets, where tx and ty
are predicted coordinate offset values, tw and th are scale
scaling. With these 4 offsets, it is natural to find the 4 coor-
dinates (bx, by, bw, bh) that are really needed according to the
previous formula. YOLOv5 Directly predict the center point,
and use the Sigmoid function to limit the offset between 0
and 1. The specific formula are shown as follows[7].

bx = σ (tx) + cx (1)

by = σ (ty) + cy (2)

bw = pwe
tw (3)

bh = phe
th (4)

The network predicts 4 coordinates for each bounding box
(tx, ty , tw, th)[3], [21]. We redrawn four coordinates for each
bounding box of YOLOv5 based on YOLO’s idea[18]. It was
shown in Figure 2.

C. Loss fucntion of YOLOv5

YOLOv5 ends the iterative procedure with the smallest
total error, which is divided into three types. The specific

Fig. 2. four coordinates for each bounding box of YOLOv5(redrawing
based on[18])

formula are shown as follows[4], [20], [17].
Loss =

λcoord

s2∑
i=0

B∑
j=0

Iobjij

[(
xîx
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(5)

Loss function is the degree of difference between the pre-
dicted value and the real value, which determines the perfor-
mance of the model to a great extent. YOLOv5 has three loss
functions: The cls loss calculates whether the anchor and
the corresponding calibration classification are correct.The
box loss calculates error between prediction anchor and
calibration anchor (GIoU)[21].The obj loss calculates the
confidence of belonging to the class. YOLOv5’s box loss is
different from YOLOv3’s. Total loss function = classification
loss + location loss + confidence loss. Classification losses
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and location losses were calculated using the binary cross
entropy loss function BCE with Logits loss. The IoU function
introduced above is used to calculate the confidence loss. IoU
only solves the overlapping of two objects.

III. IMPROVE RELATED WORK

A. Improved active fuction

Common activation functions in deep networks are prone
to problems such as gradient disappearance or slow conver-
gence. The graphs of corresponding functions are shown in
Figure 3.

Fig. 3. Common activation functions

And derivations functions of these common activation
functions are shown in Figure 4.

Fig. 4. Derivation of common activation functions

YOLOv5 uses Sigmoid activation function, and the aver-
age output value of Sigmoid function is 0.5, so that the input
of neurons in the next layer is distributed on both sides with
0.5 as the center. The most popular ReLU series activation
function keep the gradient and accelerate weight update of
loss function. Hard Swish activation function is shown in
equation (6).

Hard Swish(x) = x
ReLU6(x+ 3)

6
(6)

However, the Hard Swish activation function is non-zero-
mean, so this paper combines the triple polyomial activation
function which does not disappear the gradient and the output
is zero-mean. A new activation function named Hard STP
function was designed and shown in equation (7).

Hard STP (x) =x
ReLU6(x+ 3)

6
+
(
ax3 + bx2 + cx

) (7)

where a, b and c are hyperparameters. Compared with these
classical activation function, Hard STP activation function
solved the problem of gradient disappearance near 0 and
is shown in Figure 4. The real values for hyperparameters
a, b, and c are set a, b, c ∈ [1, 2]. By repeated contrast
experiments, it was found that a = 1.05, b = 1.5 and c = 1.6
were the best results.

B. Improved losses function

In recent years, the commonly boundary box regression
loss has been proposed, including IoU, GIoU, CIoU, DIoU,
SIoU, WIoU and other loss functions [31], [32], [33], [34],
[35].

IOU Loss is overlap area between the detection frame and
the target frame. GIOU Loss solves the problem when the
boundary frame does not coincide. DIOU Loss is the dis-
tance between center points of boundary frame is considered.
CIOU Loss is scale information which considers the aspect
ratio of boundary frame based on DIOU. CIOU Loss regres-
sion mode was adopted in YOLOv4. These loss functions is
the gap between the prediction frame and the target frame by
considering the overlap degree, center point distance, aspect
ratio and other factors, so as to guide the network to minimize
the loss and improve the regression accuracy. It can make the
prediction box quickly drift to the nearest axis, and then only
need to return one coordinate (X or Y), which effectively
reduces the total number of degrees of freedom[35].

In order to solve the overlapping of two objects, GIoU is
introduced to maintain the invariance of the size of IoU,
and strong correlation with IoU can be maintained when
overlapping. The specific formula of GIoU is as follows.

GIoU = LIoU −
Ac − u
Ac

(8)

where, −1 ≤ GIoU ≤ 1.

LIoU = 1− IoU = 1− I

U
(9)

I is intersection of two objects, U is union of two objects.
WIoU(Weighted Intersection over Union) weighted the

IoU by considering the area between the prediction box
and the real box, which solves the bias that may occur in
traditional IoU evaluation results. WIoU can evaluate the
detection results more accurately. The deviation problem of
traditional IoU is avoided [34]. The specific formulas are
shown as follows[34].

LWIOU = RWIoULIoU, (10)

RWIoU = exp

(
(x− xgt)2 + (y − ygt)2(

W 2
g +H2

g

)∗
)

(11)

Where:α is between cw(level edges) and δ(oblique edges).
β is between ch(vertical edges) and δ(oblique edges).
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SIoU further consideres the vector angle between the real
box and the prediction box, and redefined the correlation loss
function, which includes four parts. We redrawn the angle
cost of WIoU[34]. Where, the angle cost is shown in Figure 5
and their formula involved are shown in equation (12) - (16).

Fig. 5. Angle cost(redrawing based on[34])

r =
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Where: sin(σ) is opposite over hypotenuse in a right
triangle. σ is the distance between the center point of the
real box and the predicted box. ch is the height difference
between the center point of the real box and the predicted
box, bgtcx and bgtcy are the center coordinate of the real box;
bcx and bcy are the center coordinate of the prediction box.

The distance cost’s formula involved are shown in equation
(17) - (20).

∆ =
∑
t=x,y

(
1− e−γρt

)
= 2− e−γρx − e−γρy (17)

ρx =

(
bgtcx − bcx

cw

)2

(18)

ρy =

(
bgtcy − bcy

cw

)2

(19)

γ = 2− Λ (20)

where: cw and ch are the width and height of the minimum
enclosing rectangle of the real box and the prediction box.

The shape cost’s formula involved are shown in equation
(21) - (22).

Ω =
∑
t=w.h

(
1−e−wt

)θ
=
(
1−e−ww

)θ
+
(
1−e−wh

)θ
(21)

wW =
w − wgt

max (w,wgt)
, wh =

h− hgt

max (h, hgt)
. (22)

Where:w, h,wgt, hgt are the width and height of the pre-
diction box and the real box respectively, so as to control

the attention to shape loss. In order to avoid the excessive
attention to shape loss and reduce the movement of the
prediction box, the author uses the genetic algorithm to set
the parameter θ as 4[2], [6].

The IoU cost remains. Then, the final SIoU loss function
was defined as Formula (23):

LossSIoU = 1− LIoU +
∆ + Ω

2
(23)

Inspired by SIoU[33] and WIoU[34], [35], an improved
loss function SWIoU is proposed here to optimize the target
detection model. SWIoU loss function redefines the dis-
tance loss by introducing the vector angle between required
regressions, effectively reduces the degree of freedom of
regression, speeds up the network convergence, and further
improves the regression accuracy. SWIoU loss function is
defined as formula (24) and (25) :

LossSWIOU =

(
1− LIoU +

∆ + Ω

2

)
r (24)

LossSWIOU =

(
1− LIoU +

∆ + Ω

2

)
β

δαβ−δ
(25)

IV. EXPERIMENT

A. Experimental hardware information

GPU resource information: GPU v100 32GB, RAM 128
GB.

B. Environment configuration

Python = 3.8.8, pytorch=1.13.1, torchvision=0.14.1, tor-
chaudio=0.13.1, pytorch-cuda=11.7

C. Hyperparameters

For fairness of comparison, the hyperparameters which
trained and evaluated on the two publicly available datasets
were exactly the same. momentum=0.937, lr0 = 0.01, lrf
= 0.01, warmup momentum = 0.8, warmup epochs = 3.0,
warmup bias lr = 0.1, box = 0.05, cls = 0.5, cls pw =
1.0, obj = 1.0, obj pw = 1.0, iou t = 0.2, anchor t = 4.0,
fl gamma = 0.0, hsv h = 0.015, hsv s = 0.7, hsv v = 0.4,
degrees = 0.0, translate = 0.1, scale = 0.5, shear = 0.0,
perspective = 0.0, flipud = 0.0, fliplr = 0.5, mosaic = 1.0,
mixup = 0.0, copy paste = 0.0.

D. Related evaluation indicators

To verify the effectiveness of the improved algorithm,
we used 10 algorithms to do two sets of comparative ex-
periments.The mAP(The average detection accuracy), Loss(
the final loss function value), FLOPs, evaluate time and the
memory of the optimal neural network’s weight are five basic
experimental indicators[1], [5], [9].

1) The higher the mAP50, the better. Average precision is
the evaluation index of the mainstream target detection
model. Generally speaking, the better the classifier, the
higher the AP value. The size of mAP must be in the
range of [0,1]; The higher, the better. This indicator
is the most important one in the target detection
algorithm. AP50 means that the value of the IoU is
50%, and mAP50 95 means that the value of the IoU
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is taken from 50% to 95%, and then the Average
precision under these IoU is calculated.

2) Loss is the value of the loss function which is divided
into three types(box loss, obj loss and cls los); The
lower, the better; YOLOv5 ends the iterative procedure
with the smallest total error.

3) The FLOPs is the floating-point operations per second.
4) Evaluate time is the evaluation indicators of the detec-

tion’s speed.
5) The Memory of the optimal neural network’s weight

can limit the application scenarios of the model.

E. Experimental results
1) The VOC experiments: For the dataset, we select VOC

2012 dataset, and select 5717 images as the training data
and 5823 images as the validation data. we choose YOLOv5
model as baseline, and these models are trained for 100
epochs, where: batch size is 64. The number of network
layers are 157 layers, the number of network’s parameter
is 7073569; The number of anchors per target is 4.45, Image
size for training and evaluation sizes are 640 * 640. The
specific results of this experiment are shown in Table I.

In order to verify whether the proposed method can
effectively improve the detection accuracy, the ablation ex-
periment was carried out on VOC experiments.

As can be seen from Table 1. After adding SWIOU loss
function and Hard STP(x) activation function, the mAP50 of
the method on the VOC dataset was 72.876 %, which com-
pared with other mainstream methods, the average mAP50
was improved by 0.6 percentage points,and mAP50 and
mAP50 95 was improved by 1 percentage points than that
of other mainstream methods. The data comparison of the
mAP50 on VOC dataset are shown in Figure 6.

The related loss value also had a certain downward trend,
and FLOPs, training and evaluate time and the memory
of the optimal neural network’s weight did not increase
significantly. The method presented in this paper can more
accurately detect the category and true boundary of the target.
Therefore, it was proved that the proposed algorithm has
certain superiority.

In addition, we analyzed the detection effect of some
crowded and occluded small targets, the proposed method
can detect the class and true boundary of these small targets
more accurately. The mAP50 of some crowded and occluded
small targets of the VOC experiments had been improved
while the FLOPs had to be reduced to some extent. The
comparative experiments on VOC data sets shown that the
optimized detection algorithm had a good performance in
detection accuracy, and did not increase the more extra
calculation amount. The detection effect of some crowded
and occluded small targets(For example: bird, bottle, cow,
pottedplant, Sheep and boat. ) were particularly obvious, and
the detailed data of small target detection in some crowded
or occluded states are shown in Table II.

The experimental results shown that some part crowded
and occluded small targets(bird, bottle, cow, pottedplant,
Sheep, boat) of the VOC were particularly obvious. The
part detection effect of VOC data are shown in Table II..
Therefore, the detection effect based on the proposed algo-
rithm on small targets was obvious. This method has good
practicability and potential for further study.

2) The COCO experiments: In order to verify the effec-
tiveness of the proposed algorithm, we conducted experi-
ments on a public generic COCO dataset. For the dataset,
we selected MS-COCO2017 dataset, and selected 117266
images as the training data and 4952 images as the validation
data. Since this version was officially recognized, we choose
YOLOv5 model, and these models were trained for 100
epochs, where: batch size is 64. The number of network
layers are 214 layers, the number of network’s parameter is
7235389 parameters. Image size for training and evaluation
sizes are 640 * 640. The specific results of The COCO exper-
iments are shown in Table III. As can be seen from Table 3,
after adding SWIOU loss function and HardSTP(x) activation
function, mAP50 and mAP5095 were 72.8% and 60.9%
respectively on COCO dataset, which is 0.8-1.7 percentage
points higher than mAP of other mainstream methods. the
related loss value also has a certain downward trend. And
FLOPs, trainingtime and the memory of the optimal neural
network’s weight did not increase significantly. The data
comparison of the mAP50 on COCO dataset are shown in
Figure 7.

The comparative experiments on COCO data sets shown
that the optimized detection algorithm had a good perfor-
mance in detection accuracy, and did not increase the extra
calculation amount.

In addition, we analyzed the detection effect of some
crowded and occluded small targets on COCO dataset. The
detailed data of small target detection in some crowded
or occluded states are shown in Table IV. The detection
effect of some crowded and occluded small targets(person
motorcycle trafc light bird cat pizza person Motor-cycle.)
was particularly obvious and detailed data were shown in
Table IV. On COCO data set, most of the small targets
were detected by the algorithm in this paper. Because the
proposed algorithm suppressed the background and removed
most of the clutter background and banding edges, it obtained
a good small target detection effect. On COCO experiments,
while indicators such as FlOPs did not increase, mAP50
did improve. The experimental detailed results was shown
that some part crowded and occluded small targets of the
COCO data set were particularly obvious. the mAP50 was
1-3 percentage points higher than other mainstream methods.
The part detection effect of COCO data is shown in Table IV.

From the analysis of the small target detection effect
diagram, it can be seen that the proposed method can
indeed detect the categories and true boundaries of these
small targets more accurately. Some part crowded and oc-
cluded small targets(person, motorcycle, trafficlight, bird, cat,
pizza, person, motorcycle) were also detected. The proposed
method can detect the class and true boundary of these small
targets more accurately. Therefore, it was proved that the
proposed algorithm has certain superiority.

V. CONCLUSION

The results of comparative experiments show that our
algorithm improved for detecting target in terms of accuracy
and speed. The SWIoU losses function and the Hard STP
active function can ensure the accuracy of detection, some
part crowded and occluded small targets are also detected.
Compared with the mainstream deep learning object de-
tection algorithms, the proposed algorithm has the best
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TABLE I
COMPARATIVE DATA FOR THE VOC EXPERIMENTS

mAP50 mAP50-95 val/box loss val/obj loss val/cls loss FLOPs(G) Time
(h)

Model
Memory(M)

YOLOv5 with CIOU 0.72188 0.49839 0.045403 0.045403 0.013651 16.1 1.984 13.7
YOLOv5 with DIOU 0.72568 0.50144 0.044892 0.019641 0.012937 16.1 1.984 13.7
YOLOv5 with GIOU 0.72337 0.49858 0.045168 0.019666 0.013052 16.1 1.984 13.7
YOLOv5 with SIOU 0.72512 0.50085 0.036329 0.021692 0.013289 16.1 1.984 13.7
YOLOv5 with EIOU 0.72116 0.4959 0.04545 0.019667 0.013384 16.1 1.984 13.7
YOLOv5 with WIOU 0.72051 0.4935 0.038407 0.022158 0.013326 16.1 1.984 13.7

YOLOv5 with alphaIOU 0.71975 0.50376 0.070898 0.015148 0.013208 16.1 1.984 13.7
YOLOv5 with FocalIOU 0.72412 0.50123 0.027177 0.021784 0.013378 16.1 1.984 13.7
YOLOv5 with SWIOU 0.72273 0.50046 0.036235 0.021883 0.013396 16.1 2.021 14.5
YOLOv5 with SWIOU

and HSP activation function 0.72876 0.51044 0.035247 0.021824 0.013794 15.9 2.014 14.5

Fig. 6. VOC mAP 50 data comparison

TABLE II
MAP50 OF SOME CROWDED AND OCCLUDED SMALL TARGETS OF THE VOC EXPERIMENTS

bird bottle cow pottedplant Sheep boat
YOLOv5 with CIOU 0.724 0.594 0.695 0.481 0.772 0.553
YOLOv5 with DIOU 0.729 0.596 0.676 0.479 0.766 0.562
YOLOv5 with GIOU 0.721 0.592 0.681 0.475 0.714 0.706
YOLOv5 with SIOU 0.720 0.597 0.682 0.475 0.714 0.627
YOLOv5 with EIOU 0.723 0.592 0.681 0.475 0.773 0.624
YOLOv5 with WIOU 0.724 0.601 0.681 0.478 0.771 0.567

YOLOv5 with alphaIOU 0.724 0.592 0.682 0.475 0.770 0.567
YOLOv5 with FocalIOU 0.725 0.595 0.680 0.472 0.772 0.556
YOLOv5 with SWIOU 0.726 0.609 0.682 0.478 0.775 0.728
YOLOv5 with SWIOU

and HSP activation function 0.728 0.609 0.684 0.488 0.788 0.788
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TABLE III
COMPARATIVE DATA FOR THE COCO EXPERIMENTS

mAP50 mAP50-95 val/box loss val/obj loss val/cls loss FLOPs(G) Time
(h)

Model
Memory

(M)
YOLOv5 with CIOU 0.56403 0.37073 0.042906 0.048552 0.015517 16.4 25.254 14.8
YOLOv5 with DIOU 0.56507 0.37374 0.043405 0.048557 0.015647 16.4 25.172 14.8
YOLOv5 with GIOU 0.56528 0.36898 0.043352 0.048394 0.015597 16.4 24.771 14.8
YOLOv5 with SIOU 0.56461 0.36985 0.04391 0.048242 0.015512 16.4 25.205 14.8
YOLOv5 with EIOU 0.56397 0.36962 0.054289 0.045108 0.015674 16.4 25.407 14.8
YOLOv5 with WIOU 0.56647 0.36750 0.046753 0.049151 0.015471 16.4 25.418 14.8

YOLOv5 with alphaIOU 0.55698 0.37545 0.078068 0.035975 0.015614 16.4 25.204 14.8
YOLOv5 with FocalIOU 0.55698 0.37545 0.078068 0.035975 0.015614 16.4 25.507 14.8
YOLOv5 with SWIOU 0.56444 0.36819 0.043958 0.038252 0.015517 16.4 24.699 14.8
YOLOv5 with SWIOU

and HSP activation function 0.57145 0.37819 0.042712 0.046153 0.014517 16.4 25.202 14.8

Fig. 7. VOC mAP 50 data comparison

TABLE IV
MAP50 OF SOME CROWDED AND OCCLUDED SMALL TARGETS OF THE COCO EXPERIMENTS

person motorcycle traffic light bird cat pizza person Motor-cycle
YOLOv5 with CIOU 0.762 0.672 0.526 0.486 0.83 0.715 0.762 0.672
YOLOv5 with DIOU 0.762 0.672 0.526 0.486 0.83 0.715 0.762 0.672
YOLOv5 with GIOU 0.760 0.677 0.53 0.467 0.825 0.701 0.760 0.677
YOLOv5 with SIOU 0.762 0.672 0.527 0.473 0.834 0.705 0.762 0.672
YOLOv5 with EIOU 0.763 0.672 0.527 0.473 0.834 0.701 0.763 0.672
YOLOv5 with WIOU 0.761 0.665 0.526 0.473 0.826 0.692 0.761 0.665

YOLOv5 with alphaIOU 0.764 0.669 0.494 0.459 0.852 0.687 0.764 0.669
YOLOv5 with FocalIOU 0.763 0.668 0.498 0.465 0.852 0.677 0.763 0.668
YOLOv5 with SWIOU 0.763 0.665 0.526 0.475 0.828 0.674 0.752 0.665
YOLOv5 with SWIOU

and HSP activation function 0.764 0.674 0.526 0.481 0.836 0.704 0.764 0.674
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suppression effect on background and noise, obtains absolute
suppression effect on background, and obtains more accurate
and clean small targets. The future research direction is to
streamline the backbone network and introduce new loss
functions to improve the detection efficiency. This method
has great research potential and great practical application
prospect. For example: our algorithm has a positive effect in
forests, farmland, urban greening and other environments.
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