
Authorized Protection Mechanism of Software
Cloud Based on Time-Specific Encryption

Ke Yuan, Junyi Wu, Baolei Zhang, Bozhen Wang, Yuye Wang*, Member, IAENG, and Chunfu Jia

Abstract—In order to improve the security, ease of use and
flexibility of software products, this paper proposes a software
cloud authorized protection mechanism based on specific time
encryption. This mechanism sends the encrypted and packed
executable file to the cloud server, so that only legitimate users
can unpack, decrypt and run the software in the cloud within
a specific time interval. On this basis, this article gives a
formal definition of the solution model and constructs a specific
implementation solution based on the random oracle model.
Security analysis shows that this solution can not only prevent
attackers from using cloud servers and time servers to illegally
obtain software usage rights, but also reduce time overhead
and costs, thereby effectively protecting the legitimate rights
and interests of developers and users.

Index Terms—time-specific encryption; authorized protec-
tion; software packing; time trapdoor; time server; cloud server.

I. SUMMARY

AS enterprise and individual users have increasingly
diversified software needs, more and more software

adopts the model of purchasing usage rights on demand, such
as based on usage duration, number of times, and frequency.
This model not only effectively lowers the price threshold
of software, but also significantly improves user acceptance
and satisfaction. Professional big data analysis software,
including IBM SPSS and SAS, has gradually shifted to a pay-
as-you-go model, in line with market development trends.

In recent years, there has been a growing emphasis on
individual health, resulting in the rapid advancement of smart
wearable devices. As a result, the smart wearable companies
constitute a segment of the consumer base for big data
analysis software.

Manuscript received November 14, 2023; revised July 31, 2024. This
work was supported by the National Natural Science Foundation of China
under Grant 61972215, 61972073 and 62172238; the Natural Science
Foundation of Tianjin under Grant 20JCZDJC00640; the Key Research
and Promotion Projects of Henan Province under Grant 222102210062 and
232102210071; the Basic Research Plan of Key Scientific Research Projects
in Colleges and Universities of Henan Province under Grant 22A413004;
the Innovation Training Program for College Students of Henan province
under Grant 202310475143.

Ke Yuan is an Associate Professor of School of Computer and Information
Engineering, Henan University, Kaifeng, 475004, China; Henan Province
Engineering Research Center of Spatial Information Processing, Henan
University, Kaifeng, 475004, China (e-mail: yuanke@henu.edu.cn).

Junyi Wu is a postgraduate student of School of Computer and Infor-
mation Engineering, Henan University, Kaifeng, 475004, China (e-mail:
WuJunyi@henu.edu.cn).

Baolei Zhang is a postgraduate student of College of Cyber-
security, Nankai University, Tianjin, 300350, China (e-mail: zhang-
baolei@mail.nankai.edu.cn).

Bozhen Wang is an undergraduate student of International Business
School, Henan University, Zhengzhou, 450046, China (e-mail: Wang-
Bozhen@henu.edu.cn).

Yuye Wang is an Associate Professor of School of Computer and Informa-
tion Engineering, Henan University, Kaifeng, 475004, China (corresponding
author to provide e-mail: wangyuye@henu.edu.cn).

Chunfu Jia is a Professor of College of Cybersecurity, Nankai University,
Tianjin, 300350, China (e-mail: cfjia@nankai.edu.cn).

As a novel form of human-computer interaction, smart
wearable devices provide consumers with exclusive and
personalized services and collect a variety of human data
by wearing smart devices on the human body. Currently,
wearable devices like smartwatches have demonstrated their
ability to detect and monitor the progression and treatment
of various diseases in their early stages through biophysical
signals. Enterprises utilize smart wearable devices to collect
user health data, monitor treatment processes, and offer real-
time feedback in order to deliver optimized treatment plans
and enhance treatment effectiveness[1, 2].

To achieve the aforementioned functions, enterprises need
to analyze and process the data collected by smart wearable
devices. While large companies like Fitbit, Garmin, and
Apple may have their own big data analytsis platforms
for processing and analyzing health data from their smart
wearable devices, small and medium-sized smart wearable
device enterprises may opt to use a third-party big data
analysis platform due to technical and resource limitations.
This approach allows them to reduce operating costs by
paying a fee for the usage time of the software, rather
than building and maintaining a complete big data analysis
platform themselves.

Nevertheless, the method of payment for accessing soft-
ware usage duration is susceptible to unauthorized access.
Hence, it is imperative for software developers to recognize
the significance of security concerns and implement protec-
tive measures to safeguard the integrity of their software.

Currently, software protection is categorized into
hardware-based and software-based protection. Hardware-
based protection commonly relies on dongles, encryption
locks, and their drivers, but may encounter usability issues.
Software-based protection involves using registration codes
and license files to compare and verify original data by
accessing a dedicated server database in a networked
environment[3]. However, registration codes[4] and license
files only offer basic security guarantees and are susceptible
to reverse engineering attacks. Moreover, dedicated
servers escalate hardware, manpower, and operational and
maintenance management costs for software developers,
with expenses growing exponentially as user groups expand.
Therefore, conventional software protection fails to meet the
requirements of secure online distribution and on-demand
sales of software.

Cloud servers (CSs) have the characteristics of strong
computing power, high reliability, flexibility, and ease of
use[5]. With the rise of the Software as a Service (SaaS)
model, more and more software has begun to be provided to
users in the form of online services, which greatly facilitates
user use and management. In the SaaS model, software
applications are hosted on cloud servers and provide services
to users through the Internet. Users do not need to install or

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1474-1479

__

maintain software, and only need a computer loaded with
the Internet to obtain related services. Software developers
can easily share software resources, and at the same time,
the investment in hardware facilities, human resources and
operation and maintenance costs is greatly reduced.

Building upon the aforementioned, the research objective
of this paper is to propose a Time-Specific Encryption
(TSE)-based software authorized protection in the cloud
(TSE-SAPC). This approach leverages the comprehensive
application of cloud computing, public key, and block cipher
encryption technology. It enables users to be authorized to
use the software within specific time intervals tailored to their
actual needs, while restricting access during other periods.
The scheme exhibits robust security, effectively thwarting
attackers from exploiting CS and time server (TS) to gain
unauthorized software usage rights. Additionally, it boasts
the advantages of cost-effectiveness, convenient operation
and maintenance, ease of use and management, all while
ensuring the legitimate rights and interests of both developers
and users are considered.

II. BASIC KNOWLEDGE

A. The concept of BDH

At present, public key cryptographic algorithms are mainly
based on the large integer factorization problem (IFP)[6, 7],
the discrete logarithm problem (DLP)[8] of multiplication
group over finite fields, and the elliptic curve discrete log-
arithm problem (ECDLP)[9] over finite fields. By using
bilinear pairings, ECDLP over finite fields can be reduced
to the DLP of the multiplication group over a finite field.
The specific scheme proposed below is based on bilinear
pairwise construction, and its security is grounded in the
bilinear Diffie-Hellman (BDH)[10–12] problem. The related
knowledge is outlined in the sequel.

Definition 1 Bilinear mapping. Suppose G1 is an elliptic
curve discrete logarithm addition group over a finite field, G2

is discrete logarithm multiplication group over a finite field,
and the orders of G1 and G2 are prime numbers denoted by
Q. The mapping e : G1 × G1 → G2 is termed bilinear
mapping and is required to satisfy the following attributes:

a) Bilinear property: For any P,Q,R ∈ G1, there
are e(P + Q,R) = e(P,R)e(Q,R) and e(P,Q + R) =
e(P,Q)e(P,R).

b) Non- degeneracy: If P is the generator of G1, e(P, P)
is the generator of G2.

c) Calculability: For any P,Q ∈ G1, there is an algorithm
to calculate e(P,Q).

Definition 2 BDH. Let P be the generator of G1. Given
a tuple (P, aP, bP, cP), it is difficult to calculate e(P, P)abc

for any a, b, c ∈ Z∗
q .

The security proof in this paper relies on the assumption
of the computational difficulty of solving the BDH problem.

B. TRE and TSE concepts

The cryptography primitive Timed-Release Encryption
(TRE)[13], involves the sender transmitting an encrypted
message containing information about the "future" to the
receiver. The receiver can only decrypt the message when
a specific time is reached. TRE was initially proposed by
May[14] in 1993 and further explored by Rivest et al.[15] in

1996. Subsequently, its theory and applications have signif-
icantly evolved[16–19]. In the existing TRE implementation
methods[20–25], the time trapdoor is established through the
periodic broadcast of the TS. If the user fails to receive or
loses the time trapdoor, the message cannot be decrypted.
Recognizing this limitation, in 2010, Paterson et al.[15]
introduced the concept of Time-specific Encryption (TSE)
to decrypt messages within a specific time interval. TSE
enables the receiver to decrypt messages by using any time
trapdoor broadcast by the TS in that interval[26]. Paterson
et al. formulated the standard TSE scheme by adopting the
time binary tree and identity-based encryption technology
[27, 28]. They extended this to create the Public Key TSE
(PK-TSE) and Identity-Based TSE (ID-TSE) schemes. In
2012, Kasamatsu et al. proposed a TSE scheme based on for-
ward secure encryption [29–31]. Building on the TSE design
concept, subsequent researchers have introduced application
schemes for specific time encryption in various scenarios,
including pay TV services[32, 33], online competitions[34],
time locks[35, 36], and certificateless encryption[37].

C. Software packing concept

A shell is a piece of code designed to protect software
from illegal modification or decompilation[38]. Once the
software is encapsulated within a shell, attackers must first
break through the shell to obtain the "pure" version of the
executable file. Therefore, the shell plays a crucial rule
in safeguarding the software. Software shells are generally
categorized into encryption and compression shells. The
encryption shell encrypts and decrypts the PE format of the
executable file to achieve anti-debugging, anti-tracking and
other protection functions. The compression shell mainly
plays the role in compressing the size of the program
and reducing the space occupation. This paper adopts the
encryption shell mode.

In this paper, the encryption shell approach is used.
Specifically, when the encrypted executable file is loaded
into memory, the shell program code first obtains program
control, executes decryption to restore the executable file
source code, and finally continues executing the original
code.

III. TSE-SAPC MODEL

Assuming that the code segment of the original executable
(OEF) is SM4-encrypted with the SM4[39] encryption key
MK on the software developer terminal (Te), the resulting
executable file (PEF) with the encryption shell is generated
and transmitted to the CS. The system’s design objective
is to enable user (R) to securely and efficiently utilize the
software within a time chain consisting of multiple specific
intervals. In this paper, this model is referred to as the
authorized protection model of software cloud based on
Time-Specific Encryption, as illustrated in Figure 1, the
model works as follows:

1) The software developer encrypts the code segment of
the original executable file OEF to obtain the PEF , and
deploys the PEF in the cloud server.

2) The software developer generates its public and private
key pair (pk, sk) for the user.

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1474-1479

__

5.Time trapdoor

Dt

Cloud Server CS

Time Server TS Software Developer Terminal Te

7.User's private key sk and

running command

6.Update time trapdoor chain

tikchain

8.Decrypt C, unpack PEF and

run original executable file

OEF

User R

Broadcast

Fig. 1: Authorized protection model of software cloud based on time-specific encryption

3) The user pays a certain fee to the software developer
to apply for software usage rights according to their needs.

4) The software developer generates ciphertext C that can
be decrypted only during the authorized period for authorized
user, and uploads it to the cloud server.

5) The time server broadcasts the time trapdoor Dt upon
reaching time t.

6) The cloud server receives the time trapdoor and updates
the time trapdoor chain tikChain.

7) The user establishes a secure connection with the cloud
server within the authorized time period and sends the private
key sk and running command to the cloud server.

8) The cloud server runs OEF after successfully unpack
PEF through sk, C, tikChain.

The formal definition is outlined next.
Definition 3 TSE-SAPC model. It en-

compasses four entities: TS, CS, Te and
R, and algorithm 8-tuples ξTSETIK-STUC =
(MKTIK-Setup, SM4.Enc, PK.Setup, PK.KeyGen,
PK.Enc, PK.TIK-Ext, TIK-Chain, SM4TIK-PK.Dec).
The algorithm 8-tuples ξTSETIK-STUC are as follows:

MK-Setup. Executed by software developers. An encryp-
tion key MK = (MK0,MK1,MK2,MK3) is generated
on Te, where MKi (i = 0, 1, 2, 3) is a 32-bit value.

SM4.Enc. Executed by software developers. MK is used
to encrypt the code segment of the OEF on Te with SM4.
The executable file PEF = SM4.Enc (MK,OEF) is
generated with the encryption shell and transmitted to the
CS.

PK.Setup. Executed by the time server. The security
parameter k and the total time length L are input to generate
the public and private key pair (TS-MPK,TP -MSK) of
the TS.

PK.KeyGen. Executed by software developers. The secu-
rity parameter k is input on Te to generate the public and

private key pair (pk, sk) for the software user.
PK.Enc. Executed by software developers.

MK is encrypted by SM4 with parameters
such as TS-MPK, [t0, t1] , pk, and the ciphertext
C = PK.Enc (TS-MPK, [t0, t1], pk,MK) can only
be decrypted within the time interval [t0, t1].

PK.TIK-Ext. Executed by the time server. Represent
time t with the string T ∈ {0, 1}∗. Parameters such as
t, TS-MPK,TS-MSK are used to generate the corre-
sponding time trapdoor Dt through an independent signature
scheme, and Dt is broadcasted.

TIK-Chain. Executed by the cloud server. The time trap-
door Dt is connected into the time trapdoor chain tikChain.

SM4-PK.Dec. If user R uses the software within
the time interval [t0, t1], they need to send the
running PEF command and their own private
key sk to cloud server CS; The CS decrypts the
PEF with C, sk, and tikChain, unpacks the code
segment of the original executable file OEF , namely
SM4-PK.Dec (PEF,C, TS-MPK, tikChain, sk), and
then runs the OEF .

IV. TSE-SAPC STRUCTURAL SCHEME

This section presents a concrete TSE-SAPC construction
scheme and provides a security analysis.

A. Scheme expression

Based on the previously defined bilinear pairings and BDH
problem, a specific TSE-SAPC solution is formulated. The
work process involves the following 8 stages:

MK-Setup. Initialize the SM4 encryption key MK:
randomly select a number and assign it to MK[i] ∈
Z32
2 (i = 0, 1, 2, 3) to generate the SM4 encryption key MK.
SM4.Enc. Software developers perform the following op-

erations:

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1474-1479

__

a) Use MK to encrypt the code segment of the original
executable file OEF with SM4;

b) Execute the packing operation, change the entry address
of the OEF to the entry address of the shell code.

PK.Setup. Given a security parameter k and the total
time length L, output the system parameters params =
{k, q,G1, G2, e, P,H1, H2, n}, the public-private key pair
(TS-MPK,TS-MSK) of the TS, and the complete binary
tree with depth d

(
L = 2d

)
, as shown in Figure 2. G1 is

an additive group , G2 is a multiplicative group, both with
prime orders q, and the mapping e : G1 × G1 → G2 is a
bilinear mapping satisfying Definition 2, and H1 : {0, 1}∗ →
G1, H2 : G2 → {0, 1}n are hash functions with n being the
plaintext length. TS randomly selects a generator G ∈ G∗

1,
and selects a random number TS-MSK = s ∈ Z∗

q as the
private key, which corresponds to public key TS-MPK =
(G, sG). params and TS-MPK are public parameters.

0 1

ø

00 01 10 11

000 001 010 011 100 101 110 111

Fig. 2: Full binary tree with depth 3

PK.KeyGen. The public parameter is taken as input, a
random number sk = u ∈ Z∗

q is selected as the user’s private
key, and the user public key pk = (uG, usG) is computed.

PK.Enc. Given the SM4 key MK, the time server’s
public key TS-MPK = (G, sG), the user’s public key
pk and the time interval [t0,t1] during which the user uses
the software, the software developer performs verifies if
e(uG, sG) = e(G, usG); only when the equation holds, the
following operations are performed:

a) Generate the minimum root set S[t0,t1] of subtrees
covering all time nodes of [t0, t1]. Taking the tree shown in
Figure 2 as an example, suppose that the software purchased
by Bob is used for a period of [0, 5], then S[0,5] = {0, 10}.
For each y ∈ S[t0,t1], select r ∈ Z∗

q randomly and calculate
rG and rusG, then calculate

K = e (rusG,H1 (y)) = e (G,H1 (y))
rus

b) Get the ciphertext set

CT[t0,t1] = {cy = ⟨U, V ⟩ = ⟨rG,MK ⊕H2 (K)⟩
: y ∈ S[t0,t1]}

and generate the ciphertext C =
(
CT[t0,t1], [t0, t1]

)
.

PK.TIK-Ext.At the arrival of time t, the time server
generates the set ρt of nodes in the path from the root
node to node tin the binary tree. Taking Figure 2 as an
example, if t = 3 at this time, the corresponding path set
ρt = {∅, 0, 01, 011}. Subsequently, the time server publishes
the time trapdoor Dt = {dx = sH1 (x) : x ∈ ρt}. Every user

can verify its authenticity, i.e.,

Sign (x) : dx = sH1 (x)

V er (dx, x) : e (sG,H1 (x)) = e (G, sH1 (x))

where Sign () is the signature function and V er () is the
verification function.

TIK-Chain. Taking the time trapdoor chain tikChain and
the time trapdoor Dt issued by the time server as input, the
cloud server generates a linked list node and links it to the
end of the tikChain to generate a new tikChain. Figure
3 shows the tikChain generated by the cloud server at the
current time t = 3.

Dt=0 Dt=2 Dt=3

Fig. 3: Time trapdoor chain at current time t = 3

SM4-PK.Dec. Given the packed executable file PEF ,
user’s private key sk, user’s corresponding SM4 encryption
key ciphertext C =

(
CT[t0,t1], [t0, t1]

)
, and time trapdoor

chain tikChain, the CS performs the following operations:
a) Retrieve the data of the tail node of tikChain to obtain

the time trapdoor Dt corresponding to the current time t.
b) Generate the minimum root set S[t0,t1] of subtrees

covering all time nodes of [t0,t1] and the set ρt of nodes
in the path from the root to node t. Calculate the unique
element z where ρt and S[t0,t1] intersect.

c) Calculate K ′ = e (U, dz)
u.

d) Calculate V ⊕ H2 (K
′), restore the SM4 encryption

key MK. If C is the correct ciphertext, then U = rG, V =
MK ⊕ H2 (K), in which K = e (G,H1 (z))

rus, z ∈
S[t0,t1]. The decryption correctness is verified as follows:

K ′ = e(U, dz)
u

= e(rG, sH1 (z))
u

= e(G,H1 (z))
rus

= K

V ⊕H2 (K
′) = MK ⊕H2 (K)⊕H2 (K

′)

= MK

e) The shell program of the file PEF reads the ciphertext
of the code segment of the OEF and uses the MK decrypted
by the above operation d) to decrypt the code segment cipher.
The shell program of PEF returns the execution right to the
OEF after successful decryption.

B. Security analysis

The proposed TSE-SAPC scheme sets the cloud server
CS, the time server TS, and the legitimate user R to be
honest but curious. Each entity faithfully provides services
in accordance with the defined rules without engaging in
collusion. However, all entities have the incentive to attempt
illegal acquisition of the right to use the software based
on the information they have gathered. In our scheme, the
process involves decrypting the encrypted key through the
cloud server and subsequently running the shell software.

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1474-1479

__

To mitigate the risk of unauthorized use of the software
and the leakage of the software encryption key by the
cloud server (CS), we assume that the software developer
has implemented a comprehensive audit mechanism that
regularly audits and monitors software usage on the cloud
server. We also assume that during the contract signing be-
tween the software developer and the cloud service provider,
clear definition of software usage rights and restrictions are
outlined. Consequences and responsibilities for unauthorized
use of the software are also specified. Additionally, the
scheme considers potential threats from malicious attackers
who may attempt to reversely crack the code of the shelled
executable file or launch violent attacks to crack the private
key of the legitimate user, thus illegally obtaining the right
to use the software. The ensuing security analysis addresses
these threats and demonstrates that the TSE-SAPC scheme
is secure against such potential risks.

Theorem 1. This scheme can prevent the time server from
obtaining the right to use the software.

Proof. Time server TS acts as the producer of time trap-
doors and and possesses all the time trapdoors generated and
broadcast according to the rules. The SM4 key is encrypted
by the TS public key TS-MPK, the user’s public key pk,
and the decryptable time interval [t0, t1] before transmission.

In this scheme, the user’s public key pk = (uG, usG) is
known. According to ECDLP, given G and sG, it is difficult
to calculate u, which ensures the safety of the user’s private
key sk = u ∈ Z∗

q .
As there is no access to the user’s private key, the TS

encounters difficulty in decrypting the ciphertext of the SM4
key to execute the OEF on the CS. This difficulty is tan-
tamount to breaking a public key cryptography mechanism,
making it evidently challenging. The theorem is thus proven.

Theorem 2. This scheme can prevent malicious attackers
from gaining software usage rights.

Proof. Malicious attackers may interact with the cloud
server CS. In this scheme, the SM4 key needs to be
encrypted through the TS public key TS-MPK, the user
public key pk, and decryptable time interval [t0, t1] before
transmission, and relying on the difficulty of DLP for secu-
rity. As the malicious attacker lacks access to the legitimate
user’s private key, decrypting the ciphertext of SM4 key
to execute the original executable file on the CS becomes
arduous. This challenge equates to breaking a public key
cryptography mechanism and is obviously very difficult.

Furthermore, if a malicious attacker intends to obtain the
shelled executable file for reverse cracking, they must first
attack the CS to illegally obtain the shelled executable file,
and subsequently attack the SM4 encryption mechanism. The
complexity of this process is notably high, substantiating the
theorem.

Theorem 3. This scheme can prevent legitimate users from
using the software before and after a specific time interval.

Proof. The legitimate user R possesses their private key
and all time trapdoors broadcast by the TS. Before transmit-
ting the SM4 key, it must be encrypted by the TS public key
TS-MPK, the user public key pk and the decryptable time
interval [t0,t1]. Since the time t corresponding to the time
trapdoor of the end node of the time trapdoor chain on the
current cloud server does not belong to the decryptable time
interval [t0,t1], therefore, when the user sends the running

command to the CS in an unauthorized time interval, the
CS cannot decrypt the SM4 key ciphertext to run the OEF .
This challenge mirrors breaking a public key cryptography
mechanism, confirming the validity of the theorem.

V. CONCLUSION AND FUTURE WORK

After conducting an in-depth study of TSE and its ex-
tended schemes, this paper introduces a novel specific time
encryption scheme, TSE-SAPC, focusing on software autho-
rization protection. Leveraging the block cipher algorithm
SM4 and BDH double encryption technology, TSE tech-
nology and software shell technology, the paper provides a
formal definition of scheme model and outlines the scheme
construction method based on the random Oracle model.
A comprehensive security analysis is also presented. The
key advantages include: 1⃝Legal users can pay according
to the usage time, allowing for periodic and aperiodic use,
significantly reducing user costs; 2⃝The inclusion of the TS
and the introduction of the time trapdoor chain mitigate the
risk of collusion between the CS and illegal users attempting
to bypass time restrictions; 3⃝ On the basis of the security
provided by the CS, packing operation further improves the
security of the software, and the executable files are started
on the CS after packing, which reduces the possibility of
illegal users to reverse analyze the software; 4⃝The integra-
tion of symmetric and asymmetric cryptography in a dual
encryption scheme further strengthens software security.

With the rapid development of cloud computing, the cloud
operation mode of software has become more and more
popular. Based on the cloud operation mode of software, this
scheme provides developers with a new way to sell software
securely and provides users with a new way to use software
periodically. However, the security of the scheme proposed
in this paper depends on the security of the cloud server. In
order to prevent cloud servers from illegally using software or
leaking software encryption keys, software developers need
to establish a complete audit mechanism or choose a secure
and reliable cloud service provider. In future work, we will
explore how to improve the accuracy of software usage time
limits by increasing the frequency of time server broadcast
time traps, and design a scheme to achieve software cloud
security protection in a completely untrusted environment.

REFERENCES

[1] M. A. Jan, W. Zhang, F. Khan, S. Abbas, and R. Khan, “Lightweight
and smart data fusion approaches for wearable devices of the internet
of medical things,” Information Fusion, vol. 103, p. 102076, 2024.

[2] D. Nahavandi, R. Alizadehsani, A. Khosravi, and U. R. Acharya, “Ap-
plication of artificial intelligence in wearable devices: Opportunities
and challenges,” Computer Methods and Programs in Biomedicine,
vol. 213, p. 106541, 2022.

[3] L. Keqiu, S. Xiaolong, and X. Junfeng, “An android software protec-
tion scheme based on anti-debugging and online encryption verifica-
tion,” Transactions of Beijing Institute of Technology, vol. 37, no. 12,
pp. 1276–1281, 2017.

[4] C. Jinyu and H. Chuqi, “Research on software copyright protec-
tion mode based on machine feature registration code,” Journal of
Chongqing University of Technology: Natural Science, vol. 33, no. 1,
pp. 125–129, 2019.

[5] F. Khoda Parast, C. Sindhav, S. Nikam, H. Izadi Yekta, K. B. Kent,
and S. Hakak, “Cloud computing security: A survey of service-based
models,” Computers & Security, vol. 114, p. 102580, 2022.

[6] P. L. Montgomery, “A survey of modern integer factorization algo-
rithms,” CWI quarterly, vol. 7, no. 4, pp. 337–366, 1994.

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1474-1479

__

[7] K. Djebaili and L. Melkemi, “A different encryption system based on
the integer factorization problem,” Malaysian Journal of Computing
and Applied Mathematics, vol. 3, no. 1, pp. 37–41, 2020.

[8] K. S. McCurley, “The discrete logarithm problem,” in Proc. of Symp.
in Applied Math, vol. 42. USA, 1990, pp. 49–74.

[9] S. Ullah, J. Zheng, N. Din, M. T. Hussain, F. Ullah, and M. Yousaf,
“Elliptic curve cryptography; applications, challenges, recent ad-
vances, and future trends: A comprehensive survey,” Computer Science
Review, vol. 47, p. 100530, 2023.

[10] Y. Yacobi, “A note on the bilinear diffie-hellman assumption.” IACR
Cryptol. ePrint Arch., vol. 2002, p. 113, 2002.

[11] M. Ebina, J. Mita, J. Shikata, and Y. Watanabe, “Efficient threshold
public key encryption from the computational bilinear diffie-hellman
assumption,” in Proceedings of the 8th ACM on ASIA Public-Key
Cryptography Workshop, 2021, pp. 23–32.

[12] P. Wuttidittachotti and P. Natho, “Improved ciphertext-policy time
using short elliptic curve diffie-hellman.” International Journal of
Electrical & Computer Engineering (2088-8708), vol. 13, no. 4, 2023.

[13] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release crypto,” Massachusetts Institute of Technology, 2001.

[14] W. Mao, “Timed-release cryptography,” in Selected Areas in Cryp-
tography: 8th Annual International Workshop, SAC 2001 Toronto,
Ontario, Canada, August 16–17, 2001 Revised Papers 8. Springer,
2001, pp. 342–357.

[15] K. G. Paterson and E. A. Quaglia, “Time-specific encryption,” in
International Conference on Security and Cryptography for Networks.
Springer, 2010, pp. 1–16.

[16] Y. ke, L. Zheli, J. chunfu, M. Haoyu, and L. Shuwang, “Research
on timed-release encryption,” Journal of Computer Research and
Development, vol. 51, no. 6, pp. 1206–1220, 2014.

[17] Y. Ke, L. Zheli, J. Chunfu, Y. Jun, and L. Shuwang, “Public key
timed-release searchable encryption in one-to-many scenarios,” Acta
Electronica Sinica, vol. 43, no. 4, p. 760, 2015.

[18] Y. Ke, W. Zilin, D. Zhanfei, H. Xinzheng, J. Chunfu, and H. Yuan,
“Anonymous query mechanism construction of timed-release encryp-
tion.” Advanced Engineering Science/Gongcheng Kexue Yu Jishu,
vol. 54, no. 3, 2022.

[19] K. Yuan, H. Cao, S. Zhang, C. Zhai, X. Du, and C. Jia, “A tamper-
resistant timed secure data transmission protocol based on smart
contract,” Scientific Reports, vol. 13, no. 1, p. 11510, 2023.

[20] J. Cathalo, B. Libert, and J.-J. Quisquater, “Efficient and non-
interactive timed-release encryption,” in Information and Communi-
cations Security: 7th International Conference, ICICS 2005, Beijing,
China, December 10-13, 2005. Proceedings 7. Springer, 2005, pp.
291–303.

[21] A.-F. Chan and I. F. Blake, “Scalable, server-passive, user-anonymous
timed release cryptography,” in 25th IEEE International Conference
on Distributed Computing Systems (ICDCS’05). IEEE, 2005, pp.
504–513.

[22] S. S. Chow, V. Roth, and E. G. Rieffel, “General certificateless en-
cryption and timed-release encryption,” in Security and Cryptography
for Networks: 6th International Conference, SCN 2008, Amalfi, Italy,
September 10-12, 2008. Proceedings 6. Springer, 2008, pp. 126–143.

[23] G. Choi and S. Vaudenay, “Timed-release encryption with master time
bound key,” in Information Security Applications: 20th International
Conference, WISA 2019, Jeju Island, South Korea, August 21–24,
2019, Revised Selected Papers 20. Springer, 2020, pp. 167–179.

[24] O. Oksuz, “Time-specific encrypted range query with minimum leak-
age disclosure,” IET Information Security, vol. 15, no. 1, pp. 117–130,
2021.

[25] L. Baird, P. Mukherjee, and R. Sinha, “Temp: Time-locked encryption
made practical.” IACR Cryptol. ePrint Arch., vol. 2021, p. 800, 2021.

[26] M. Ishizaka and S. Kiyomoto, “Time-specific encryption with
constant-size secret-keys secure under standard assumption,” Cryptol-
ogy ePrint Archive, 2020.

[27] E. Shi, J. Bethencourt, T. H. Chan, D. Song, and A. Perrig, “Multi-
dimensional range query over encrypted data,” in 2007 IEEE Sympo-
sium on Security and Privacy (SP’07). IEEE, 2007, pp. 350–364.

[28] M. Srivatsa, S. Balfe, K. G. Paterson, and P. Rohatgi, “Trust manage-
ment for secure information flows,” in Proceedings of the 15th ACM
conference on Computer and communications security, 2008, pp. 175–
188.

[29] K. Kasamatsu, T. Matsuda, K. Emura, N. Attrapadung, G. Hanaoka,

and H. Imai, “Time-specific encryption from forward-secure encryp-
tion,” in Security and Cryptography for Networks: 8th International
Conference, SCN 2012, Amalfi, Italy, September 5-7, 2012. Proceed-
ings 8. Springer, 2012, pp. 184–204.

[30] R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key
encryption scheme,” in Advances in Cryptology—EUROCRYPT 2003:
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Warsaw, Poland, May 4–8, 2003 Proceedings 22.
Springer, 2003, pp. 255–271.

[31] K. Kasamatsu, T. Matsuda, K. Emura, N. Attrapadung, G. Hanaoka,
and H. Imai, “Time-specific encryption from forward-secure encryp-
tion: generic and direct constructions,” International Journal of Infor-
mation Security, vol. 15, pp. 549–571, 2016.

[32] K. Ogawa and K. Nuida, “Privacy preservation for versatile pay-
tv services,” in HCI for Cybersecurity, Privacy and Trust: First
International Conference, HCI-CPT 2019, Held as Part of the 21st
HCI International Conference, HCII 2019, Orlando, FL, USA, July
26–31, 2019, Proceedings 21. Springer, 2019, pp. 417–428.

[33] K. Ogawa, S. Tamura, and G. Hanaoka, “Key management for versatile
pay-tv services,” in International Workshop on Security and Trust
Management. Springer, 2017, pp. 3–18.

[34] W. Wang, P. Xu, L. T. Yang, W. Susilo, and J. Chen, “Securely
reinforcing synchronization for embedded online contests,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 16, no. 2,
pp. 1–21, 2017.

[35] J. Liu, T. Jager, S. A. Kakvi, and B. Warinschi, “How to build
time-lock encryption,” Designs, Codes and Cryptography, vol. 86, pp.
2549–2586, 2018.

[36] G. Choi and S. Vaudenay, “Timed-release encryption with master time
bound key (full version),” Cryptology ePrint Archive, 2019.

[37] T. Zhang, H. Wu, and S. S. Chow, “Structure-preserving certificateless
encryption and its application,” in Topics in Cryptology–CT-RSA
2019: The Cryptographers’ Track at the RSA Conference 2019, San
Francisco, CA, USA, March 4–8, 2019, Proceedings. Springer, 2019,
pp. 1–22.

[38] L. Zhang, “Research and practice of software protection based on
virtual shell technology,” in Journal of Physics: Conference Series,
vol. 1656, no. 1. IOP Publishing, 2020, p. 012031.

[39] S. W. Lv, B. Su, P. Wang, Y. Y. Mao, and L. L. Huo, “Overview
on sm4 algorithm,” Journal of Information Security Research, vol. 2,
no. 11, pp. 995–1007, 2016.

Ke Yuan is an Associate Professor in Henan University of China. He
received the Ph.D. degree from Nankai University in 2014. His current inter-
ests include applied cryptography, cloud security, and artificial intelligence
security.

Junyi Wu is a postgraduate student in Henan University of China. Her
current interests include applied cryptography.

Baolei Zhang is a postgraduate student in Nankai University of China. His
current interests are artificial intelligence and applied cryptography.

Bozhen Wang is an undergraduate student in Henan University of China.
His current interest is applied cryptography.

Yuye Wang is an Associate Professor in Henan University of China. He
received the Ph.D. degree from Harbin Engineering University in 2022.
His current interests include privacy protection, social network analysis and
applied cryptography.

Chunfu Jia is a Professor in Nankai University of China. He received
the Ph.D. degree from Nankai University in 1996. His current interests
include applied cryptography, computer system security, network security
and artificial intelligence security.

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1474-1479

__

