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Abstract—Convolutional Neural Networks (CNNs) have
emerged as a leading model in hyperspectral image (HSI)
classification, owing to their unique features such as parameter
sharing and localized receptive fields. Despite these advantages,
current CNN-based approaches face significant challenges,
including complex model architectures, the inability to fully
extract deep features and the underutilization of CNNs kernels.
This study introduces a novel multidimensional sequential CNN
model, termed the 3D-1D-2D SCNN, specifically designed for
HSI classification. The model begins with Principal Component
Analysis (PCA) to reduce the dimensionality of the HSI data.
It then sequentially applies multidimensional convolutions to
extract a diverse array of features from the HSI data. The
classification process is finalized using a linear classifier, ensur-
ing precise categorization of the hyperspectral data. Simulation
results demonstrate that this model outperforms traditional
methods in classification accuracy across four widely-used HSI
datasets.

Index Terms—Image processing, Hyperspectral, Image clas-
sification, SCNN.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) [1] are characterized
by their exhaustive spectral details and information be-

yond the visible wavelength spectrum. These images enable
the analysis of correlations among adjacent spectral bands
and the response values of specific wavelengths, facilitating
the classification of objects that are indistinguishable using
conventional visible light imaging techniques. As a result,
HSI classification has become increasingly prominent across
various fields such as agriculture, healthcare, food sciences,
and mineral exploration [2–5].

In the realm of HSI classification, convolutions across
three distinct dimensions are extensively employed to ex-
tract features [6]. The one-dimensional convolutional neural
network (1D-CNN) is predominantly utilized to capture the
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spectral features of HSIs, treating the spectral information
of each pixel as a separate channel input for processing.
Hu et al. [7] were pioneers in applying 1D-CNN to HSI
classification, offering novel insights into this technique. Fol-
lowing this foundational work, researchers have concentrated
on enhancing the 1D-CNN algorithm. For instance, Lu et
al. [8] significantly reduced the computational demands and
processing time of the 1D-CNN by optimizing the calculation
of gradient descent and learning rates. Addressing the limited
ability of the 1D-CNN to discriminate features, Gao et al. [9]
introduced a modified 1D-CNN architecture featuring multi-
size feature fusion. Through optimizing the parameters of the
sampling and pooling layers, this approach enabled effective
integration of features at various depths within the 1D-CNN,
thereby yielding a more comprehensive representation of
the feature information. The two-dimensional convolutional
neural network (2D-CNN) is primarily utilized for extracting
spatial features from HSIs. In this approach, spectral features
of target pixels and their surrounding pixels within a specified
neighborhood are processed as input samples. Historically,
the significance of spatial information in HSI classification
was underappreciated. Makantasis et al. [10] addressed this
by applying PCA to reduce HSI dimensionality and employ-
ing a 2D-CNN with two layers of uniform convolutional
kernels to extract spatial features. However, the use of fixed-
sized kernels often leads to suboptimal feature extraction. In
response, Chen et al. [11] developed convolutional kernels of
varying shapes to enhance the extraction of spatial features,
considering the translation and scaling invariance of these
features. Furthermore, the three-dimensional convolutional
neural network (3D-CNN), known for its efficacy in pro-
cessing video sequences [12], has been adapted for HSI
classification due to the analogous nature of HSIs and video
data [13]. The unique kernels of the 3D-CNN allow for
the integration of spectral and spatial information, yielding
positive results [14]. Despite these advantages, the high com-
putational demands of the 3D-CNN limit its independent use.
Recent studies [15] have sought to optimize model training
by fine-tuning parameters, thus reducing computational costs
and enhancing efficiency.

The aforementioned approaches leverage CNNs for fea-
ture extraction from HSIs. However, standalone 2D-CNNs
often fail to adequately capture spectral information from
spatial features, leading to subpar classification accuracy.
Similarly, standalone 3D-CNNs, while detailed, suffer from
computational complexity and diminished performance in
classifying categories with similar spectral textures. To mit-
igate these challenges, various hybrid CNN models have
been developed. RoySK et al. [16] pioneered the HybridSN

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1516-1526

 
______________________________________________________________________________________ 



model, which sequentially integrates three-dimensional and
two-dimensional convolutional networks. This model adeptly
extracts both spectral-spatial and deep spatial features from
HSIs. Nevertheless, it does not adequately account for the
extensive spectral features in HSIs, resulting in significant
spectral feature loss. To improve network robustness and
accelerate convergence, Ghaderizadeh et al. [17] incorpo-
rated 3D depth-wise separable convolution modules and
fast convolution modules into the HybridSN framework.
Positioned between the 3D and 2D convolutional layers,
these modules have shown exceptional performance in sce-
narios with adversarial noise and limited training data. In
a novel approach, Wang et al. [18] introduced a multidi-
mensional parallel convolutional neural network (3D-2D-
1D PCNN), enabling simultaneous feature extraction from
multiple dimensions and linear feature fusion across different
dimensions. However, this parallel network structure adds an
additional layer of complexity to the model.

In response to the complexity of existing neural network-
based approaches for HSI classification, the inability to
fully extract deep features and the underutilization of CNNs
kernels, this paper introduces a novel method termed the
Multidimensional Sequential 3D-1D-2D Algorithm based on
CNNs. This algorithm begins with the application of PCA
[19] to reduce the dimensionality of raw HSI data. Following
this reduction, a 3D-CNN module captures joint spatial-
spectral information at multiple scales. This is followed
by a 1D-CNN module designed to extract abstract spectral
features from the previously captured spatial-spectral data.
Additionally, a 2D-CNN module refines the extraction of
spatial features following the 1D-CNN module. The process
culminates with the classification of the HSI data using a
linear classifier, aimed at achieving accurate and efficient
categorization.

II. PROPOSED

A. Hyperspectral image preprocessing
HSIs encompass a wide array of spectral bands, many

of which contain irrelevant data. Dimensionality reduction
is a critical process that selectively retains essential and
representative features while eliminating minor and redun-
dant information [20]. This process not only simplifies the
feature space but also enhances the efficiency of classification
algorithms [21]. Additionally, HSIs are often affected by
various types of noise, including atmospheric interference
and instrumental noise. Dimensionality reduction helps to
mitigate the effects of such noise, thereby improving the
signal-to-noise ratio and enhancing the accuracy of image
classification. PCA is a commonly used technique for dimen-
sionality reduction in HSIs. This method transforms the HSI
data into a matrix format, where each row corresponds to an
individual pixel and each column represents a spectral band.
The HSI data is then standardized, with the mean of each
spectral band adjusted to zero and its variance normalized to
one. Following standardization, the covariance matrix of the
transformed data is computed. Eigenvalue decomposition is
then performed on the covariance matrix to extract eigenval-
ues and their corresponding eigenvectors. These eigenvectors
are arranged in descending order according to the magnitude
of the eigenvalues, thereby organizing the principal compo-
nents by their significance. The magnitude of the eigenvalues

embodying empirical knowledge, guides the selection of
the primary components to be retained. The application of
PCA effectively reduces the spectral dimension of the HSI
data while preserving the most critical and representative
information. This reduction simplifies data processing and
enhances computational efficiency. Initially, the original HSI
is denoted as I ∈ RH×W×M , where H represents the image
height, the width W, and M the number of spectral bands.
After applying PCA, the initial L principal components along
the spectral dimension are retained, transforming the reduced
HSI into X ∈ RH×W×L.

In HSI classification, individual pixels typically provide
limited information, such as spectral or color values, which
may be insufficient for distinguishing between distinct cat-
egories. Additionally, single pixels are susceptible to noise,
occlusions, and variations, leading to unstable classification
outcomes. In this context, the pixels surrounding the target
pixel often contain crucial features relevant to the target.
By incorporating neighboring pixels as samples, a broader
context is captured, enhances the model’s stability. This
approach leverages the shared characteristics of multiple
pixels, thereby mitigating the influence of individual pixel
anomalies on the classification results [22]. The process
begins by expanding the boundaries of the input image to
accommodate edge pixels. Subsequently, a K × K neigh-
borhood around each target pixel is selected as samples,
assuming that these adjacent pixels share identical labels
with the central pixel. Following these preprocessing steps,
the original hyperspectral image, initially with dimensions
H×W ×M , is transformed into N three-dimensional image
blocks (patches) of size K ×K ×L. Here, where N denotes
the total number of samples.

B. Multidimensional sequential SCNN model
The proposed multidimensional sequential SCNN model,

as depicted in Fig. 1, employs a single-branch structure.
This design facilitates the sequential processing of samples
through the feature extraction module, thereby enhancing
the capability to extract deep, abstract features. Initially, the
model employs a 3D-CNN module to extract joint spatial-
spectral features from the HSIs. The activation score of a
neuron in a 3D-CNN convolution at location (x, y, z) in the
i-th layer’s j-th feature map is given by:

vx,y,zi,j = ϕ(
∑
τ

P−1∑
p=0

Q−1∑
q=0

R−1∑
r=0

ωp,q,r
i,j,τ v

(x+p),(y+q),(z+r)

(i−1),τ + bi,j) (1)

where ϕ denotes the activation function, bi,j is the bias
of the ith layer’s jth feature map, τ represents feature map
from the i-1th layer that is currently connected, the heigh
and width of the convolution kernels are represented by P
and Q, and the depth of kernel along spectral dimension is
represented by R. The weight wp,q,r

i,j,τ connecting to the τ th
feature map is indexed by (p, q, r). In contrast to the standard
2D-CNN, where convolution kernels are constrained to the
spatial dimensions (width and height), the kernels in 3D-
CNN further extend to the channel dimension. This enables
3D-CNN to concurrently learn joint spatial-spectral features
from HSI data.

Subsequently, the model employs a 1D-CNN to capture
abstract spectral features from the joint features while min-
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Fig. 1. The procedure of our multidimensional sequential CNN (SCNN) framework.

imizing significant information loss. The activation value of
the neuron at position z in the j-th feature map of the i-th
convolutional layer in a 1D-CNN is given by:

vzi,j = ϕ(
∑
τ

P−1∑
p=0

ωp
i,j,τv

(z+p)
(i−1),τ + bi,j) (2)

The parameters used are identical to those described in
(1). Finally, a 2D-CNN module is employed to extract
advanced abstract spatial features. The joint spatial-spectral
features initially extracted by the 3D-CNN module preserve
the global information inherent in the raw data. Building on
this foundation, the spectral features captured by the 1D-
CNN module are more localized and detailed. The 2D-CNN
module subsequently processes these meaningful features,
effectively filtering out irrelevant patterns and avoiding re-
dundant features, thereby enhancing the compactness and
efficiency of the model. Additionally, while the 1D-CNN
primarily encodes spectral information, which may exhibit
spatial similarities, the 2D-CNN leverages these spectral
details to learn spatial combinations and shape patterns. This
enhances the model’s discriminative capability, crucial for
improving classification accuracy.

This model leverages the intrinsic properties of convo-
lutional kernels in CNNs and the rich spectral and spa-
tial information available in HSI. By employing a sequen-
tial methodology, it effectively integrates diverse features,
thereby enhancing its ability to extract abstract features.
This approach ensures high precision in HSI classification
while maintaining balanced computational efficiency. The
dual focus on accuracy and efficiency significantly enhances
the model’s practicality, making it a robust solution for real-
world applications in HSI.

As depicted in Fig. 2, the feature extraction module
consists of three distinct CNNs: 3D-CNN, 1D-CNN, and
2D-CNN. The 3D-CNN module includes two layers of
three-dimensional convolution followed by a normalization
layer, arranged sequentially. After processing, the output
from the 3D-CNN module is fed into the 1D-CNN module,
which features a single layer of one-dimensional convolution
designed to extract spectral features from the joint spatial-
spectral data. The features extracted by the 1D-CNN are then
passed to the 2D-CNN module, which employs two layers of
two-dimensional convolution to analyze spatial relationships
within the samples. These operations are performed in par-
allel, and the resultant features are subsequently combined.
A final 2D convolution and a dropout layer are applied to
consolidate the features of each sample.

Compared to methods that directly extract spectral, spatial,
and joint features in parallel from the original image, the
sequential feature extraction approach proposed in this paper

is more effective. It leverages the inherent data information
within the HSI more efficiently. Low-level features extracted
in earlier stages form the basis for the high-level features,
while different levels of features complement each other.
This synergy enables the acquisition of semantically rich and
comprehensive feature descriptions, enhancing the model’s
overall performance in HSI classification.

R

ROutpout

Conv3D BatchNormConv1D

Conv2D DropOut MaxPoing R

Concat

Reshape

3D-CNN Module

2D-CNN Module

1D-CNN Module

Fig. 2. The details of the feature extraction module.

The algorithm proposed in this paper opts not apply the
2D-CNN module directly to extract abstract spatial informa-
tion following the use of the 3D-CNN module. This decision
stems from the capability of two-dimensional convolution
kernels to compress high-dimensional HSI data, condensing
multi-channel information into single-channel feature maps,
potentially resulting in the loss of many unextracted features.
When conducting feature extraction on input images, 2D-
CNN convolution layers require the number of channels in
the convolution kernels to match that of the input data. The
computational process is defined as follows:

vx,yi,j = ϕ(
∑
τ

P−1∑
p=0

Q−1∑
q=0

ωp,q
i,j,τv

(x+p),(y+q)
(i−1),τ + bi,j) (3)

where the parameters used are identical to those denoted in
Equation (1). The structure of 2D-CNN convolution kernels
sharply compresses the information in HSI data after under-
going 2D-CNN convolutions, impeding subsequent feature
extraction. Despite this substantial loss of data information,
the importance of spatial information for HSI classification
cannot be overstated. Therefore, the initial stage of this study
employs 3D-CNN and 1D-CNN modules to extract spatial-
spectral and spectral features, respectively. Only after these
stages is the 2D-CNN module used to capture abstract spatial
features. This strategy helps minimize the loss of valuable
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information and allows for the comprehensive extraction of
various feature types, thereby enhancing the overall effec-
tiveness of the classification process.

III. SIMULATION ANALYSIS

A. Simulation data set

Experiments were conducted to simulate the algorithm
using Pavia University (PaviaU), Indian Pine (IP), Salinas
Valley (SV), and Botswana (BS) datasets.

The Pavia University dataset comprises 610×340 pixels
and includes 9 different classes. It contains 103 distinct
spectral bands ranging from 430 nm to 860 nm.

The Indian Pines dataset comprises 200 contiguous spec-
tral bands, spanning the spectral range from 0.4 to 2.5
micrometers. The dataset encompasses 145×145 pixels and
comprises 16 different land cover classes, including various
types of vegetation, soil, and buildings.

The Salinas dataset also contains 224 contiguous spectral
bands covering the spectral range from 0.4 to 2.5 microns.
Due to the absorption of water vapour, some of the bands
have been excluded, resulting in a total of approximately 204
bands being used. The dataset comprises 512×217 pixels and
16 feature classes.

The Botswana dataset contains 242 spectral bands, span-
ning the range from 0.4 to 2.5 microns. Due to the presence
of noise and water vapour absorption, some bands were
excluded, resulting in the actual number of bands used being
145. The dataset contains 1476×256 pixels and comprises 14
feature classes.

B. Simulation environment and training process

The experimental framework was established using hard-
ware that includes a 12-core Intel® Xeon® Platinum 8352V
CPU operating at 2.10 GHz, complemented by an NVIDIA
RTX 4090 graphics card. The computational environment
was configured with Python 3.8, utilizing the Pytorch frame-
work for model development and testing. To optimize the
training process, a learning rate of 0.001 was initially set,
with a decay rate of 0.000001 to adjust the learning rate
gradually over time. The Adam optimizer was employed for
updating model parameters, and the categorical crossentropy
function was used as the loss metric. Model performance was
assessed using the accuracy metric during both training and
evaluation phases. The training regimen consisted of a batch
size of 32 and was conducted over 200 iterations, covering
all training samples. The results, including the number of
samples utilized for both training and testing across these
datasets, are detailed in Table I.

TABLE I: Information about the samples used in training
and testing phases for each HSI dataset.

Class Datasets
PaviaU IP SV BS

Number of Classes 9 16 16 14
Total Numer of samples 42776 10249 54129 3248

Training set 849 510 533 42
Test set 41927 9739 53596 3206

C. Selection of spectral bands

In the proposed algorithm, PCA is employed to select
an appropriate number of spectral bands before the hyper-
spectral data is fed into the network model. PCA not only
significantly reduces the data dimensionality and computa-
tional complexity but also maximizes the retention of useful
information from the original data. However, the selection
of the number of spectral bands is a crucial factor, as it
directly influences the classification accuracy and efficiency.
To determine the optimal number of spectral bands, com-
parative experiments were conducted on four datasets using
varying numbers of bands. The results were analyzed based
on overall accuracy (OA) and the total number of model
parameters (Total Params), as shown in Fig. 3.

From the perspective of OA, it was observed that for
the PaviaU and SV datasets, the OA values stabilized once
the number of bands reached a certain threshold. Further
increasing the number of bands did not significantly enhance
accuracy and could even lead to a decrease due to the
introduction of noise. Conversely, the classification accuracy
on the IP and BS datasets was notably affected by the
number of spectral bands. Analyzing from the perspective
of model parameters, a positive correlation between the
number of bands and the total number of parameters was
evident. Specifically, for the PaviaU and SV datasets, the
classification accuracy stabilized at approximately 98% and
97%, respectively, around 55 spectral bands. For the IP
and BS datasets, the highest accuracy was achieved at 55
bands. To balance high classification accuracy and model
complexity, 55 spectral bands were selected for all four
datasets.

D. Selection of spatial window size

In HSI classification, to mitigate the influence of individual
pixels on classification outcomes, it is common practice to
select a neighborhood of pixels around a central pixel as
a sample. This approach leverages the collective features
of multiple pixels to enhance model stability. Consequently,
an appropriate spatial window is crucial for both classifica-
tion accuracy and efficiency. An excessively large window
may introduce irrelevant background information, diminish-
ing classification accuracy, while an overly small window
may fail to capture sufficient spatial information, resulting
in suboptimal accuracy. To determine the optimal spatial
window size, comparative experiments were conducted on
four datasets using varying window sizes. The results were
analyzed based on OA as shown in Fig. 4.

As the spatial window size increases, the OA for the BS
and IP datasets initially decreases and then increases. The SV
dataset maintains relatively stable accuracy across different
window sizes. The PaviaU dataset shows an initial increase
in accuracy followed by a decline. When the window size
exceeds 5×5, the classification accuracy begins to decline
across all datasets, with this trend being particularly pro-
nounced for the BS and IP datasets. Simultaneously, the
computational burden increases as the window size grows.
To balance classification accuracy and computational cost,
a window size of 5×5 was selected for subsequent experi-
ments.
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Fig. 3. OAs and model parameter quantity of SCNN with different numbers of spectral bands on different datasets. (a)
PaviaU dataset. (b) IP dataset. (c) SV dataset. (d) BS dataset.
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E. Comparing and evaluating the outcomes of the simulation

In order to verify the performance and efficiency of
the proposed algorithm on the HSI classification task, the
algorithm of this paper is compared and experimented with
Support Vector Machine (SVM) [23], CDCNN [24], SSRN
[25], DBDA [26], and FDSSC [27]. The parameters for each

comparison method were configured according to specifica-
tions outlined in their respective publications.

The effectiveness of each algorithm was assessed based
on three primary criteria: average accuracy of classification
(AA), OA, and the statistical kappa coefficient (Kappa).
These metrics provide a comprehensive overview of each
model’s classification performance. Additionally, the train-
ing and inference times for each model were meticulously
recorded to evaluate computational efficiency.

The experimental outcomes for various algorithms on the
PaviaU dataset are detailed in Tables II and III, and illustrated
in Fig. 5. Analysis of Table II and Fig. 5 indicates that the
traditional method utilizing SVM achieves the lowest clas-
sification accuracy, recording only 91.17%. In contrast, al-
gorithms leveraging CNNs demonstrate significantly superior
performance compared to SVM, underscoring the substantial
advantages of CNNs in HSI classification. Particularly, the
CDCNN algorithm, which is based on 2D-CNN, does not
exploit the joint spectral-spatial features inherent in HSIs,
resulting in performance that is less optimal compared to
other CNN-based approaches. Conversely, algorithms that
incorporate 3D-CNNs, such as SSRN, FDSSC, and DBDA,
exhibit superior accuracy across all categories and the three
evaluative metrics (AA, OA, and Kappa), outperforming both
SVM and CDCNN. However, these algorithms still do not
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fully capitalize on the potential synergies between different
features within HSIs. The algorithm introduced in this study
not only achieved the highest overall classification accuracy
and Kappa but also demonstrated outstanding performance
in category-specific accuracy, with each category achieving
at least a 93% accuracy rate. According to Table III, the
proposed algorithm also shows more rapid convergence and
the shortest inference time, indicating superior computational
efficiency. These results robustly support the conclusion that
the proposed algorithm effectively utilizes convolutional ker-
nels of varying dimensions within CNNs to integrate diverse
features, thereby producing a richer and more comprehensive
feature representation.

TABLE II: The categorized results of different network
models on the PaviaU dataset. Boldfaced numbers

highlight the best and the second best are underlined.

Class Color SVM CDCNN SSRN FDSSC DBDA SCNN

1 89.98 90.78 97.31 96.38 99.71 96.90
2 93.03 97.13 99.05 99.13 99.57 99.34
3 81.47 78.96 92.57 90.44 99.86 94.44
4 96.12 98.81 99.68 98.41 99.40 99.48
5 93.51 100.00 99.96 99.36 99.84 99.87
6 91.69 88.19 96.38 99.33 98.74 99.15
7 88.22 95.45 94.82 98.82 100.00 96.42
8 81.92 87.81 88.29 95.63 85.14 93.15
9 100.00 99.77 99.49 98.46 100.00 99.42

OA 91.17 93.55 96.91 97.75 98.06 98.09
AA 90.66 92.95 96.39 97.33 98.03 97.57

Kappa 88.16 91.14 95.91 97.01 97.43 97.47

TABLE III: Training and testing time of different network
models on PaviaU dataset. Boldfaced numbers highlight

the best and the second best are underlined.

Dataset Algorithm Training Times (s) Testing Times (s)

PaviaU

SVM 26.13 7.60
CDCNN 19.03 4.17
SSRN 77.81 9.74

FDSSC 67.29 10.11
DBDA 76.49 13.43
SCNN 40.69 3.78

The experimental results for the IP dataset are detailed
in Tables IV and V, and visually represented in Fig. 6.
An examination of Table IV alongside Fig. 6 indicates
that while the algorithm proposed in this study did not
achieve the highest metrics, it performs comparably to the
leading DBDA algorithm, with only marginal differences
0.05 in OA and 0.06 in the Kappa. Excluding the DBDA
algorithm, the proposed model maintains a leading posi-
tion among the evaluated algorithms. Specifically, within
the IP dataset, the proposed algorithm excelled in several
categories, achieving a classification accuracy of 96.59%
for the second category and 99.00% for the sixth category.
Table V further illustrates the computational efficiency of
the proposed algorithm, which demonstrates a shorter model
training time compared to the DBDA algorithm, indicative of
faster convergence. Fig. 6 highlight the limitations of SVM,
which exhibits numerous noise points in the classification
effect diagram due to their reliance solely on spectral features
of HSIs without leveraging additional feature information.
In contrast, the use of algorithms based on 3D-CNN and

2D-CNN significantly reduces the number of noise points in
the classification results. The model developed in this study
shows superior performance relative to other algorithms, as
evidenced by a clearer classification effect diagram and fewer
noise points. This improved performance underscores the
effectiveness of the proposed algorithm in integrating diverse
feature information and achieving more distinct and accurate
classification outcomes.

TABLE IV: The categorized results of different network
models on the IP dataset. Boldfaced numbers highlight the

best and the second best are underlined.

Class Color SVM CDCNN SSRN FDSSC DBDA SCNN

1 25.92 0.00 92.30 75.67 97.67 73.52
2 62.35 70.73 92.33 94.18 95.85 96.02
3 69.33 69.95 89.57 93.79 97.11 96.59
4 59.13 74.07 97.29 92.62 99.02 96.44
5 86.00 95.35 97.23 98.97 97.83 99.00
6 84.52 93.90 96.50 98.12 95.73 99.01
7 84.61 0.00 91.66 81.73 72.72 89.53
8 87.55 86.60 97.87 97.46 100.00 96.70
9 53.84 36.36 100.00 77.78 100.00 73.86

10 72.70 82.84 93.35 93.03 95.56 93.18
11 71.44 73.62 93.00 96.84 99.06 98.20
12 64.92 48.70 87.86 95.35 97.01 97.11
13 90.35 92.00 99.13 99.83 100.00 99.31
14 90.54 89.35 98.79 97.54 94.43 97.77
15 70.29 85.61 83.33 94.14 97.72 96.15
16 98.41 98.83 89.23 98.33 95.50 96.68

OA 74.74 78.17 93.51 95.81 96.97 96.92
AA 73.24 68.62 93.72 92.84 95.95 93.69

Kappa 70.97 74.90 92.59 95.22 96.55 96.49

TABLE V: Training and testing time of different network
models on IP dataset. Boldfaced numbers highlight the

best and the second best are underlined.

Dataset Algorithm Training Times (s) Testing Times (s)

IP

SVM 28.80 2.25
CDCNN 13.20 1.28
SSRN 51.36 4.14

FDSSC 52.81 2.63
DBDA 85.17 3.76
SCNN 64.32 8.74

The experimental analysis of various algorithms on the
SV dataset is detailed in Tables VI and VII, and visually
represented in Fig. 7. A comparative analysis between Table
VI and Fig. 7 indicates that SVM outperforms the CDCNN
algorithm. This superiority is attributed to the diverse sample
types present in the SV dataset, which pose challenges for
the CDCNN algorithm due to its limited ability to han-
dle datasets with extensive category variability. The results
from the different algorithms reveal that while the method
proposed in this study did not achieve the top metrics, it
demonstrated more effective classification results compared
to those algorithms that rely solely on either 2D-CNN or 3D-
CNN, such as CDCNN, SSRN, and FDSSC. As illustrated
in Table VII, although the classification accuracy of the pro-
posed algorithm slightly trails that of the DBDA algorithm,
it significantly reduces the time required for model training
and testing by 41.63 seconds and 12.34 seconds, respec-
tively. This efficiency suggests that the proposed method
is particularly adept at balancing computational efficiency
with classification accuracy, offering a compelling solution
for scenarios where both are critical.
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(a) FCI (b) GT (c) SVM (d) CDCNN

(e) SSRN (f) FDSSC (g) DBDA (h) SCNN

Fig. 5. Classification maps of different network models on PaviaU dataset. (a) False color image(FCI). (b) Ground-truth(GT).
(c)-(h) The classification maps with different network models.

(a) FCI (b) GT (c) SVM (d) CDCNN

(e) SSRN (f) FDSSC (g) DBDA (h) SCNN

Fig. 6. Classification maps of different network models on IP dataset. (a) False color image(FCI). (b) Ground-truth(GT).
(c)-(h) The classification maps with different network models.
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(a) FCI (b) GT (c) SVM (d) CDCNN

(e) SSRN (f) FDSSC (g) DBDA (h) SCNN

Fig. 7. Classification maps of different network models on SV dataset. (a) False color image(FCI). (b) Ground-truth(GT).
(c)-(h) The classification maps with different network models.

(a) FCI (b) GT

(c) SVM (d) CDCNN

(e) SSRN (f) FDSSC

(g) DBDA (h) SCNN

Fig. 8. Classification maps of different network models on BS dataset. (a) False color image(FCI). (b) Ground-truth(GT).
(c)-(h) The classification maps with different network models.
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The experimental results for various algorithms on the BS
dataset are detailed in Tables VIII and IX, and illustrated
in Fig. 8. An analysis of Table IX and Fig. 8 reveals that
algorithms employing 3D-CNNs outperform those based on
2D-CNNs and traditional methods in terms of classification
accuracy. This underscores the crucial role of joint spectral-
spatial feature extraction performed by 3D-CNNs in the
classification of HSIs. While the algorithm proposed in this
study did not achieve the best results across all metrics, it
consistently demonstrated a high accuracy rate, exceeding
93%. Table VIII shows that although the classification accu-
racy of the proposed algorithm is slightly below that of the
leading algorithms, it records the shortest model training and
testing times. This underscores the computational efficiency
of the proposed method, highlighting its ability to balance
performance with speed, thereby making it a viable option for
applications requiring rapid processing without a significant
compromise in accuracy.

TABLE VI: The categorized results of different network
models on the SV dataset. Boldfaced numbers highlight

the best and the second best are underlined.

Class Color SVM CDCNN SSRN FDSSC DBDA SCNN

1 99.74 0.00 99.91 99.99 100.00 99.88
2 99.64 64.97 99.87 99.99 100.00 99.94
3 92.47 97.34 96.72 99.17 100.00 99.77
4 97.76 93.36 98.69 98.23 95.81 97.22
5 95.40 98.52 99.43 99.52 99.56 99.41
6 100.00 95.47 99.95 99.98 100.00 99.52
7 97.59 99.43 99.75 99.99 99.74 100.00
8 71.67 84.48 93.27 94.92 97.15 93.48
9 98.76 99.73 99.66 99.61 99.77 100.00
10 89.50 85.27 97.94 98.95 99.62 99.19
11 94.21 91.49 96.13 96.21 100.00 99.17
12 96.27 98.22 99.00 98.96 100.00 100.00
13 96.81 91.55 98.28 99.73 100.00 99.87
14 94.79 98.57 98.76 98.66 99.42 98.45
15 68.35 73.04 87.60 88.12 96.38 91.24
16 99.87 99.30 99.65 99.75 100.00 99.42

OA 87.89 87.29 96.22 96.50 98.70 97.19
AA 93.30 85.67 97.79 98.26 99.21 98.53

Kappa 86.47 85.85 95.79 96.10 98.56 96.87

TABLE VII: Training and testing time of different network
models on SV dataset. Boldfaced numbers highlight the

best and the second best are underlined.

Dataset Algorithm Training Times(s) Testing Times(s)

SV

SVM 18.78 10.63
CDCNN 17.09 6.73
SSRN 49.51 11.82

FDSSC 75.95 13.11
DBDA 70.79 17.77
SCNN 29.16 5.43

TABLE VIII: Training and testing time of different network
models on BS dataset. Boldfaced numbers highlight the

best and the second best are underlined.

Dataset Algorithm Training Times(s) Testing Times(s)

BS

SVM 2.27 0.60
CDCNN 2.65 0.36
SSRN 6.46 0.88

FDSSC 6.88 0.97
DBDA 3.42 1.28
SCNN 1.93 0.31

TABLE IX: The categorized results of different network
models on the BS dataset. Boldfaced numbers highlight the

best and the second best are underlined.

Class Color SVM CDCNN SSRN FDSSC DBDA SCNN

1 100.00 99.62 98.13 96.33 96.33 97.04
2 70.70 55.36 100.00 100.00 100.00 98.93
3 84.10 89.53 100.00 100.00 100.00 100.00
4 65.95 100.00 94.93 91.73 94.61 99.46
5 82.62 90.00 95.75 93.43 83.03 76.67
6 65.71 52.09 72.64 80.87 100.00 87.75
7 78.77 69.88 99.21 79.55 100.00 91.66
8 65.87 45.45 97.02 98.98 100.00 93.33
9 75.18 61.71 77.48 96.56 95.06 99.63

10 69.82 90.19 93.48 96.06 97.21 92.77
11 95.49 71.42 100.00 100.00 99.66 100.00
12 93.10 51.01 96.70 97.77 95.65 94.62
13 76.25 81.32 100.00 100.00 100.00 96.87
14 90.41 49.06 100.00 100.00 100.00 100.00

OA 78.63 69.59 92.92 93.96 96.77 94.05
AA 79.57 71.90 94.67 95.09 97.25 94.91

Kappa 76.87 67.08 92.32 93.45 96.50 93.56
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Fig. 9. OAs of different methods at various training sample
proportions on PaviaU datasets.
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Fig. 10. OAs of different methods at various training sample
proportions on IP datasets.
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Fig. 11. OAs of different methods at various training sample
proportions on SV datasets.
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Fig. 12. OAs of different methods at various training sample
proportions on BS datasets.

F. Analysis of the impact of training sample proportion on
classification performance

The number of training samples significantly impacts
the performance of deep learning-based HSI classification
methods. Consequently, this study compares the OA results
of various methods under different training sample ratios. As
illustrated in Fig. 9, Fig.10, Fig.11 and Fig.12, the PaviaU
dataset was trained with 2%, 3%, 5%, 7%, and 9% of
samples, the IP dataset with 5%, 10%, 15%, 20%, and 25%
of samples, the SV dataset with 1%, 2%, 3%, 4%, and 5%
of samples and the BS dataset with 0.5%, 1%, 3%, 5%, and
10% of samples.

The experimental results indicate that the classification
accuracy of all methods improves with an increase in the
number of training samples, and the accuracy differences
among various methods gradually diminish. Specifically,
the CDCNN method exhibits lower classification accuracy
compared to other methods. The SSRN method shows a
continuous improvement in classification accuracy with more
training samples, but it does not outperform other algorithms.
FDSSC and DBDA achieve the best classification results

under certain training sample ratios. Comparatively, SCNN
attains the highest accuracy across most training sample
ratios and maintains a high classification accuracy even with
fewer training samples.

IV. CONCLUSION

A novel multi-dimensional sequential CNN model called
SCNN is designed for HSI classification in this paper. The
SCNN leverages a serial concatenation strategy to integrate
diverse features, thereby enhancing the representation ca-
pability of abstract features. This approach ensures high-
precision classification of HSIs while maintaining a balance
in computational efficiency. The SCNN model comprehen-
sively utilizes convolutional kernels of varying dimensions
within the network, enabling the extraction of a broad spec-
trum of features from HSIs and minimizing information loss
during the feature extraction process. The designed network
model was validated through simulations on various HSI
datasets, demonstrating favorable results. Simulation out-
comes indicate that, compared to classifications based solely
on 2D-CNN or 3D-CNN algorithms, the proposed SCNN
algorithm not only significantly improves the classification
accuracy of HSIs but also considers computational efficiency.
This balance of accuracy and efficiency renders the proposed
method particularly suitable for HSI classification tasks.
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