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Abstract—The particle swarm optimization (PSO) path
planning algorithm often suffers from low population diversity
and rapid early convergence, which can lead to the algorithm
easily falling into local optima and affecting its stability. This
paper proposes an improved PSO algorithm with two key
enhancements: (1) the introduction of a particle reactivation
module during the iteration process, and (2) the incorporation
of the Simulated Annealing (SA) concept during the global
optimal solution update phase. These improvements enhance
the diversity of the particle population, slow down the early
convergence rate of the algorithm, reduce the probability of the
algorithm getting trapped in local optima, and increase its
overall stability. Experiments were conducted to compare the
proposed algorithm with the standard PSO algorithm, genetic
algorithms, and other improved PSO path planning algorithms.
The results indicate that the improved algorithm shows
superior performance in both average path length and
algorithm stability.

Index Terms—path planning, particle swarm optimization,
particle reactivation, simulated annealing

I. INTRODUCTION

NTELLIGENT mobile robots hold tremendous potential

for development and find extensive applications in various
fields, including industrial automation, logistics, military
operations, and the Internet of Things (IoT). Path planning
involves determining an optimal route for a robot to reach its
destination while avoiding obstacles in either static or
dynamic environments, based on specific performance
metrics[1]. An excellent path planning algorithm not only
saves significant response time for robots but also reduces
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wear and tear, thereby lowering operational costs.
Consequently, path planning is a critical component of
robotics technology, possessing significant practical value,
and has emerged as a research hotspot in recent years.

Generally, path planning is divided into local path
planning and global path planning based on the information
provided to the robot. Global path planning, typically
conducted in static environments, provides the robot with
comprehensive environmental information and generates a
complete path from the starting point to the destination. In
global path planning, the robot is aware of the optimal path it
should follow[2]. Conversely, local path planning involves
navigating within a short-term, small-scale environment to
avoid obstacles and ultimately reach the destination guided
by a reference line. Local path planning encounters unknown
environmental factors, such as the size and position of
dynamic obstacles[3].

For intelligent mobile robot path planning algorithms, they
are typically categorized into graph-based path planning,
potential field-based path planning, and intelligent
bio-inspired algorithm-based path planning [4].

Graph-based algorithms for path planning involve
deterministic search methods that traverse graphs. They are
commonly employed in low-dimensional spaces, such as
two-dimensional spaces. The performance of such algorithms
relies on the chosen resolution of the map. If the map
resolution is too low, suitable paths may not be generated,
while excessively high resolution may lead to excessive time
consumption. Moreover, as the scale of the map increases,
the search performance tends to deteriorate. Notable
examples of graph-based algorithms include Dijkstra's
algorithm [5], the A* algorithm, the D* algorithm [6], and
various improved variants of the A* algorithm. Graph-based
path planning algorithms are characterized by their simplicity
and are often used for static path planning, computing initial
paths, or optimizing other algorithms using heuristic
approaches.

Potential field-based path planning involves finding
appropriate paths by tracking the steepest descent of a
potential field composed of both attractive and repulsive
components. The attractive force originates from the goal
point, while the repulsive force arises from obstacles. The
resultant force direction indicates the desired direction of
movement, and its magnitude represents the desired speed.
The artificial potential field method, first proposed by Khatib
in 1986 [7], is one of the potential field-based path planning
algorithms. Its advantages lie in its simple structure, ease of
computation, and generation of smooth and safe paths.
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However, it suffers from issues such as acceleration
oscillations and high energy consumption when multiple
obstacles are present in the vicinity.

Intelligent bio-inspired algorithms represent a class of
stochastic search methods that mimic natural biological
evolution or collective social behaviors [8]. Examples of such
algorithms include genetic algorithms (GA), ant colony
optimization (ACO), particle swarm optimization (PSO) [9],
simulated annealing, firefly algorithms, and grey wolf
optimization algorithms. These bio-inspired algorithms,
characterized by their strong adaptability to the environment,
are commonly employed for global planning tasks. However,
they are susceptible to issues such as high iteration counts,
slow convergence speeds, and low path quality.

The Particle Swarm Optimization (PSO) algorithm was
introduced by Eberhart et al. in 1995 and represents a type of
swarm optimization algorithm. It is inspired by the foraging
behavior of bird flocks and other animal populations, where
each particle possesses only position and velocity attributes.
The fundamental concept of PSO revolves around leveraging
information sharing within the swarm to cooperatively search
for the optimal solution to a problem. Since its inception, the
PSO algorithm has been applied to numerous optimization
problems, with particularly widespread utilization in the field
of mobile robot path planning [10].

Path planning based on the PSO algorithm offers
advantages such as simplicity, ease of implementation, and
wide applicability. However, it suffers from insufficient
population diversity during the iterative process, leading to
rapid convergence to local optima and thus instability in the
algorithm [11]. To address these issues, subsequent
researchers have primarily focused on improving the
parameters of the PSO algorithm (such as inertia weight
coefficients and learning factors), particle population
initialization methods, and integration with concepts from
other algorithms. These improvements have led to some
degree of enhancement in the aforementioned problems, yet
each approach also has its limitations.

This paper primarily focuses on three aspects: (1) The
introduction of an adaptive particle reactivation module. This
module performs "reactivation" operations on the population
particles based on their state, maintaining population
diversity and mitigating the issue of the PSO algorithm's
rapid early convergence, which often leads to local optima; (2)
The improvement of the global best solution update strategy
by incorporating the concept of Simulated Annealing (SA),
further enhancing population diversity; (3) The design of
simulation experiments to compare the proposed method
with the standard PSO algorithm, the Genetic Algorithm (GA)
path planning method, and other improved PSO path
planning algorithms from the past two years that operate
under similar experimental conditions and integrate other
algorithmic concepts.

The remaining structure of this paper is as follows: Section
IT provides an overview of standard PSO path planning
algorithms and their evolutionary development. In Section III,
the environmental modeling method employed in this study
is introduced, followed by descriptions of the adaptive
particle reactivation module and the updated strategy for the
global best solution, which incorporates the simulated
annealing concept. Section IV outlines the simulation

experiment environment and presents the comparative
experimental results. Finally, Section V summarizes the
findings of this paper and outlines future research directions.

II. PARTICLE SWARM OPTIMIZATION PATH PLANNING

A. Standard PSO Algorithm for Path Planning

The PSO algorithm, proposed by Kennedy in 1995, is a
bio-inspired intelligent algorithm that mimics the foraging
behavior of bird flocks. It conceptualizes the search space for
problem-solving as analogous to the spatial domain of bird
flight. Each bird in the flock is abstracted as a particle with
volume and mass, representing a potential solution. The
process of birds in a population searching for food is
analogous to solving an optimization problem. Similar to
other evolutionary algorithms, particle swarm optimization
(PSO) is based on the concepts of population and evolution.
Through collaboration and competition among individuals, it
seeks to find the optimal solution in complex spaces. In the
context of path planning problems based on the PSO
algorithm, each potential solution is considered a particle.
Through continuous evolution and iteration, the optimal
solution, or the optimal path, is obtained.

In PSO-based path planning algorithms, several critical
parameters must be considered[12-14]:

1) Dimension (D) of the search space for the target
solution: This parameter denotes the number of control points,
indicating that the target path comprises multiple points.

2) Population size (N): This signifies the quantity of
particles within the solution space, representing the number
of paths that are initialized, generated, and continuously
evolving within the solution space.

3) Position of the i-th particle (Xi, Yi): This indicates the
current coordinates of the i-th particle. As this study focuses
on paths within a two-dimensional plane, the particle
positions consist of two axes: X and Y.

X = o
i (le Xia xD) i=1,2,"'N° (1)
Yi=(y,.1,y,~2,"'ayi0)

4) The velocity of the i-th particle (VXi, VYi) represents
the current velocity of the i-th particle, with both X and Y
components. Typically, there is a limit imposed on the
particle's velocity, and if it exceeds the maximum limit, it is
replaced by the maximum velocity.

VX, = (vx vxl.z,---,vxiD)

o i=1,2,-N. (2
VY, = (Vyi1’Wi2""’VyiD )

5) The individual historical best solution of the i-th particle
(PXi, PYi) represents the best position encountered by the
i-th particle during the iteration process.

PX. =(px,,px.,, ", px,
(P, px; D)izl,z,---No 3)
PY, = (pyasPVos PV

6) The global historical best solution (gbestX, gbestY)
denotes the optimal position experienced by the entire
population during the iteration process.
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ghestX = ( gbestx,,gbestx,,---,gbestx , )

ghestY = (gbestyl,gbeslyz, > -,gbeslyD)
The standard PSO path planning algorithm is shown in

Figure 1 [15].
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Fig. 1. Standard Particle Swarm Optimization Path Planning Algorithm
Process

The PSO path planning algorithm commences by
initializing the population, generating N valid paths
randomly at the outset to ensure they avoid collisions with
obstacles. Following initialization, the algorithm proceeds to
the iteration phase. Each iteration computes the fitness value
of every particle using a fitness function, typically associated
with the path's length. Subsequently, it updates the historical
optimal positions of individuals and groups based on these
fitness values. Next, the algorithm updates the velocity and
position of particles according to equations (5), (6), (7), and
(8).

VX =V X! +cr; (pbesﬂ(f —Xi’)+czr2 (gbestX’ —X;) 5)
VY =alVY +cr; (pbest}j’ —Z’)+czr2 (gbestY’ —Yi’)
t+1 t t
{X,. = X! +VX| ©)
Y=Y, +VY!

In the formula, ® is the inertia weight coefficient, which

ensures the global convergence performance of the algorithm.

The parameters cl and c2 are learning factors, while pbestX
and pbestY are the X and Y components of the individual's
historical optimal position, respectively. gbestX and gbestY

represent the X and Y components of the global historical
optimal position of the entire particle population. The first
term of the formula represents the ability to maintain the
original velocity. The second term indicates the tendency to
approach the individual's optimal position, and the third term
reflects the tendency to approach the global optimal position.
rl and r2 are random numbers in the range of 0 to 1,
providing a degree of randomness for velocity updates.[16].
After meeting the iteration count condition, the loop will exit,
output GX and GY, and form the optimal path.

B. The Evolution of PSO Algorithm

In the PSO algorithm, the inertia weight coefficient (@)
and the two learning factors (cl and c2) are crucial
parameters. In the traditional PSO algorithm, these three
parameters are typically fixed and remain constant
throughout the iterations. However, subsequent research has
shown that adapting the inertia weight coefficient and
learning factors based on the number of iterations can lead to
improved performance. As a result, various strategies for
adjusting the inertia weight coefficient have been developed,
including linear, nonlinear, fuzzy rule-based, and adaptive
approaches. Additionally, strategies such as nonlinear
adjustment and compression of learning factors have been
proposed for optimizing the learning process. Moreover,
recent research has focused on improving population
initialization techniques and integrating them with other
heuristic algorithms, which has emerged as a prominent
research direction[17].

1) Improvement of Inertia Weight Coefficient

For the inertia weight coefficient, in equations (5) for
velocity update, the part where it is located is called the
"inertia" part, representing the tendency of the particle to
maintain its previous velocity[18]. The larger the value, the
stronger the global convergence ability and the weaker the
local convergence ability. Conversely, the weaker the global
convergence ability and the stronger the local convergence
ability. In the process of searching for the best path, the
requirements for global convergence ability and local
convergence ability vary at different stages. Generally
speaking, at the beginning of the algorithm, a larger value
should be given to the inertia weight coefficient, so that
particles can approach better regions faster on a global scale.
And in the later stages of the search, we need smaller ones ®
Value is used to ensure that particles can perform a more
precise search near the optimal solution, making the
algorithm more likely to converge towards the global optimal
position. There are several improvements and evolutions for
the inertia weight coefficient as follows:

Linear decreasing inertia weight coefficient:The linearly
decreasing inertia weight coefficient is shown in equation (7).

t
a)next = a)max - (a)max - a)min ) P (7)
max

Compared with the previously fixed inertia weight
coefficients, the current weight coefficients will decrease
linearly with increasing iteration times. among ® Max is
generally taken as 0.9, © Take 0.4 for min. The advantage of
linear descent method is that the algorithm is simple and easy
to implement. But it's not precise enough, and the effect is not
good enough.
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. Linearly decreasing inertia weight
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Fig. 2. Linear decreasing inertial weight system

Nonlinear decreasing inertia weight coefficients: There are
mainly two forms of non-linear decreasing inertia weight

coefficients, as shown in equations (6) and (7).
2

t
a)nex = a)m X a)m X _a)min N (8)
t " ( ’ ) Tmax
2t t
wnext = a)max - (a)max _a)min )X T_- T_ (9)

The inertia weight coefficient will decrease nonlinearly with
increasing iteration times. Among them ® Max and ® Min is
also generally taken as 0.9 and 0.4. This inertia weight
coefficient adjustment method is currently the most
commonly used form, and selecting a more suitable formula
based on different situations can achieve better results.
However, this method has not effectively improved the
population diversity of the PSO algorithm, and it still
frequently leads to the problem of getting stuck in local
optima too early, resulting in the algorithm being not stable
enough.

w

Nonlinear decreasing inertia

W pax weight coefficient

0 Tmax

Fig. 3. Nonlinear decreasing inertia weight coefficient

t

Random inertia weight coefficient[19]:The random inertia
weight coefficients are shown in equation (10).

(rand (0, 1))

o=05+—— (10)
rand (0,1) is a random number between 0 and 1 in the formula,
® The range of values for is 0.5 to 1. The random inertia
weight coefficient is mainly used to improve the randomness

of speed updates, in order to increase the population diversity
of particles.

Adaptive inertia weight coefficients:There is also an
adaptive inertia weight coefficient, and the basic method is
shown in equation (11).

S~ ()
¢ a)min + (wmax _a)min )

FAREY SO
i max average

max ?

t t
f (xi )Z average

L)< e
(1)

Compared with the first two more common linear and
nonlinear decreasing methods, the biggest feature of adaptive
inertia weight coefficients is that all particles have one inertia
weight coefficient, while the first two are shared by all
particles. The inertia weight coefficient is now related to the
fitness of each particle, and the inertia weight coefficient of
the particles is adjusted based on the average fitness value of
the population particles in the current iteration round. This is
very helpful for global optimization and fast convergence.
However, adopting an adaptive adjustment method may
result in premature convergence of the algorithm to the local
optimal solution, and may also lead to oscillation and
instability of the algorithm[20].

Yang et al. proposed a new particle swarm optimization
method, LHNPSO, based on the basic nonlinear inertia
weight reduction method. This method uses non-linear
functions with significant order changes to adjust inertia
weights, cognitive parameters, and social parameters. After
performance analysis, it was found that this method can
converge faster. However, there has been no improvement in
the issue of insufficient population diversity[21].

Yan et al. proposed an improved nonlinear adaptive inertia
weight particle swarm optimization algorithm supplemented
by linear change learning factors. By combining the
improved particle swarm optimization algorithm with a
coevolutionary algorithm, the convergence speed of the
algorithm is improved, while also improving the problem of
standard PSO algorithms easily getting stuck in local
optima[22].

2) Acceleration coefficient

For the learning factor, in equations (1) of velocity update,
the part where cl is located is the "cognitive" part, which
represents the particle's experience of its best position and
represents the trend of the particle moving towards its
historical best position. C1 is also known as a cognitive factor;
The part where c2 is located is the "social" part, which
reflects the mutual cooperation and information sharing
between particles, representing the trend of particles moving
towards the optimal position of the group. Generally
speaking, a larger cl value and a smaller c2 value are
required at the beginning of the algorithm to enable particles
to approach the global optimal position faster. At the end of
the algorithm, a larger c2 value and a smaller cl value are
required to facilitate better convergence of particle fitness
[23]. How to adjust learning factors in the algorithm process
is also a worthwhile research question.

For learning factors, non-linear adjustment strategies are
commonly used nowadays, as shown in equations (12) and
(13).
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t
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This strategy can to some extent balance the search ability
within its own local range and the ability to converge to the
local optimal value, so that the algorithm cannot converge too
early and will not always search within its own range. But the
effect is not particularly outstanding.

Compressing learning factors is also a strategy for
adjusting two learning factors, which can ensure the
convergence of the PSO algorithm to a certain extent by
selecting appropriate parameters. The speed update formula
with the introduction of compressed learning factors is shown
in equation (14).
vt =K -[a)vi’ +cn (R’ - X,.’)+ c,r, (G’ - X,.’)J (14)
The value of K is shown in equation (15), and generally
speaking, both c1 and c2 are taken as 2.05.

2
2-4-\p -4 s

The compressed learning factor method can control the
forward speed of particles to balance the ability of global
search and local search. However, there is still no significant
improvement in improving the population diversity of the
PSO algorithm and avoiding the problem of getting stuck in
local optima too early[24].

3) Improvements for population initialization

Improving the initialization steps of PSO algorithm is also
one of the research directions in recent years. The population
initialization of the standard PSO algorithm randomly
generates the attributes of the population particles, and this
relatively simple processing method has become a point of
improvement for subsequent researchers.

In 2022, Chu et al. proposed an improved unmanned aerial
vehicle path planning algorithm based on PSO. This method
introduces speed adaptive adjustment for chaotic
initialization, and introduces an improved logistic chaotic
mapping in the algorithm to improve the convergence speed
and reduce the initialization time of the algorithm[25].

Yang et al. proposed an improved hybrid PSO path
planning algorithm for population initialization in 2023. This
algorithm divides particles into three categories based on
their fitness values: excellent performance, average
performance, and poor performance. At the beginning of
each iteration, the algorithm initializes poorly performing
particles to increase population diversity and prevent
premature convergence[26].

4) Hybrid PSO algorithm

Integrating concepts from other algorithms to enhance the
PSO algorithm has emerged as a popular strategy for
improvement in recent years. For instance, in 2023, Huang et
al. introduced a hybrid path planning algorithm for mobile
robots, integrating A* and PSO. This method employs a
redundant point removal strategy to optimize the path
initially planned by the A* algorithm, obtaining a set of key

(12)

(13)

K = , §=c,+c,

nodes to guide the PSO algorithm in searching for the optimal
solution. This approach effectively reduces computation
time .

In the realm of hybrid PSO algorithms, fusion with other
heuristic algorithms is deemed as one of the most significant
hybridization methods. Tao et al. proposed an enhanced path
planning algorithm for PSO mobile robots, integrating the
cross-mutation operation from the genetic algorithm to
update particle positions, thereby addressing the issue of the
PSO algorithm becoming easily trapped in local optimal
solutions [27].

Additionally, Ayad et al. introduced an improved hybrid
PSO path planning algorithm. This algorithm combines two
naturally inspired metaheuristic algorithms—namely, a blend
of grey wolf optimization and particle swarm
optimization—to enforce distance limitations and adhere to
path optimization criteria, refining the algorithm's original
structure and enhancing its performance [28].

III. METHODS

A. The environmental model of this paper

This paper uses a two-dimensional plane coordinate
system to represent the space of robot motion. In order to
simplify the model, obstacles are represented by circles of
different radii, and the radius of the k-th obstacle is rx. The
center coordinates of the circle (xx, yx) are shown in Figure 4.

model

obstac{;\\\

/
/
(ka yk) /_

)

Fig. 4. Obstacle Model

The path length dis is represented by equation (16).
D+1

dis = Z\/('xmﬂ X )2 + (ym+1 “Vm )2
m=0

This method uses the Euclidean distance method. Where D
represents the particle dimension, (Xo, yo) and (Xp+1, yp+1)
represent the starting and ending points, respectively.

The fitness function used in this paper is represented by
equation (17).

(16)

100 collision

fit dis {17
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In the equation, dis is the path length in the above equation;
Collision is an indicator that determines whether the path
collides with an obstacle. If the path collides with an obstacle,
the value is 0; if the path does not collide with an obstacle, the
value is 0.1; The function is multiplied by 100 in order to
retain more decimal places in the simulation software and
improve the accuracy of the algorithm.

Under the setting of the fitness function, the higher the
fitness, the better the path; If colliding with obstacles, the
fitness is 0, which is an illegal path. The following
mathematical model is used to determine whether the path
collides with obstacles, as shown in Figure 5.

obstacle

obstacle

L . J
J Sampling points

Sampliné points

(@) (b)
Fig. 5. Determining whether the path collides with obstacles. (a) Indicates
not colliding with obstacles, (b) indicates colliding with obstacles

Determine whether the line segment formed by every two
points collides with a circular obstacle: first, uniformly
sample s points from the line segment, and then use equation
(18) to calculate the d?, which is the square of the distance
from each sampling point to the center of the circle.

) 2 2
d* =(xs,—x, ) +(35,-3,) (18)
If equation (19) holds, then it means that the distance from
the sampling point to the center of the obstacle circle is less
than the redundancy, then the line segment collides with the
obstacle, otherwise it does not collide (redundancy is a
redundant value set by the user according to their needs).

d? —r* <redundance® (19)
We judge the line segment formed by every two adjacent
points in each path and each obstacle. If they do not collide,
the entire path is legal, with a collision value of 0.1. Although
theoretically there is a possibility of judgment errors in this
mathematical model, in reality, as long as the number of
sampling points is appropriate, the probability of errors can
be reduced to a very low level, while also ensuring
computational efficiency. At the same time, the mathematical
model of the obstacle takes into account a certain degree of
redundancy, and the actual obstacle must be smaller than the
constructed model. The algorithm generally does not use a
redundancy value of 0, but rather 0.01, 0.04, or 0.09. So the
possibility of the model failing can be ignored.

B. The method of this paper

Compared to traditional PSO path planning algorithms, the
enhanced algorithm framework presented in this paper

exhibits the following distinctions: (1) integration of an
adaptive particle reactivation module within the iteration
process, aimed at mitigating the issue of premature
convergence to local optima frequently encountered by PSO
path planning algorithms due to inadequate population
diversity; (2) incorporation of the simulated annealing
algorithm to refine the updating strategy of global historical
optimal solutions, thereby augmenting the diversity of the
population.

The improved algorithm framework is shown in Figure 6.

Population particle
initialization

[teration
}4—

’ Calculate the fit_value of each particle

|
Particle Reactivation Module

)

Update individual historical optimal position
: l
Updating the Global Historical
Optimal Solution Combined with SA
I

5 ‘ Update the velocity and position of particles ‘

Has the maximum number of
iterations been reached?

Yes

Output the global optimal
solution as the optimal path

End

Fig. 6. Improved PSO path planning algorithm framework

Initially, the population is initialized, with "position" and
"velocity" vectors of N particles randomly generated. Each
particle's "position" is determined as a path comprising D
points in a predetermined sequence, ensuring randomness
while avoiding collision with obstacles within a constrained
range. Concurrently, the initialization of each particle's
"velocity" entails the generation of a D-dimensional random
row vector within the limits of velocity [Vmin, Vmax]. As
the paths are situated on a two-dimensional plane, the
"position" and "velocity" of each particle are represented by
two components, denoted as "X" and "Y".

Then enter the part of the loop iteration. Firstly, the fitness
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value (fit_value) of each particle will be calculated and stored
in an N-dimensional column vector. After obtaining the
fit_value of each particle, you will enter the core part of this
paper: the adaptive particle reactivation module. This module
will ensure that the particle swarm always maintains a certain
level of population diversity, improving the problem of
algorithms easily falling into local optima. This section will
be explained in detail later. After the adaptive particle
reactivation module, a global historical optimal solution
update strategy that integrates the idea of simulated annealing
algorithm is used for updating, and then the velocity and
position are updated.

C. Adaptive particle reactivation module

During the research process, the author found that in PSO
based path planning algorithms, only during the initialization
phase will the generated random path be judged for legality.
In the subsequent iteration process, updating the position of
particles can cause collisions between the path and obstacles.
And due to the existence of a speed limit, particles may not be
able to update to their legal positions quickly and move
towards a more optimal direction. This algorithm will
generate a large number of "illegal" paths during the iteration
process. Therefore, this paper introduces an adaptive particle
reactivation module during the algorithm iteration process to
solve this problem. The structure of this module is shown in
Figure 7.

/------------q

\
Evaluator

Does it meet the
mandatory reactivation
conditions

No

Calculate the number of

Y
es particles with a fit_value of 0

Is the number of "inactive"
particles greater than the
threshold

No

Activator

Initialize "inactive" particles

Calculate the fitness value of the
reactivated particle swarm

/

Fig. 7. Adaptation particle reactivation module

\

oo o e e e e b oo oo e oo e e e e e = =

The particle reactivation module consists of two distinct
segments: the discriminator at the outset and the activator
towards the conclusion. Initially, the algorithm traverses the
"discriminator" phase, which assesses whether particle
reactivation is warranted. A successful assessment transitions
the algorithm to the subsequent "activator" phase, whereas
failure prompts a return to the iteration process.

The discrimination stage comprises two primary
evaluations: (1) forced reactivation discrimination and (2)
adaptive reactivation discrimination. Forced reactivation
discrimination entails predefining a threshold for forced
reactivation attempts before algorithmic execution, ensuring
a minimum number of reactivation operations during each
run. If the current iteration meets the criteria for forced
reactivation, subsequent judgment stages are bypassed, and
the reactivation operation within the "activator" section is
promptly initiated.

In adaptive reactivation discrimination, an "inactive" state
is initially defined. This state occurs when a path intersects
with an obstacle during the position optimization update
process, designating the corresponding particles as
"inactive." If the mandatory reactivation condition is not met
during the current iteration, the count of "inactive" particles
within the population is computed. Success is declared when
the proportion of "inactive" particles surpasses a predefined
threshold, leading to entry into the "activator" phase.
Conversely, failure prompts an immediate exit from the
particle reactivation module to pursue alternative operations
within the ongoing iteration.

Through iterative experimental testing, it was observed
that setting the threshold too low leads to excessive
reactivation operations, thereby consuming excessive
computational resources, while setting it too high results in
insufficient reactivation occurrences. Consequently, this
paper introduces a linearly increasing threshold, as depicted
in Equation (20), to strike a balance between computational
efficiency and reactivation frequency.

Num,, =O.5+(0.95—0.5)-% (20)
The minimum threshold set in this paper is 50%, and the
maximum threshold is 95%.

Upon entering the "Activator" phase, the algorithm
reactivates the population particles by selecting the "inactive"
ones and initializing them, transforming their represented
paths from illegal to legal. This procedure reinstates
previously "deactivated" particles while also preserving
population diversity, thereby mitigating the risk of the
algorithm converging prematurely to local optima owing to
the stochastic nature of its initialization.

Finally, we will recalculate the fit value of the population
particles to overwrite the original value, in order for the
algorithm to perform subsequent operations.

D. Global Historical Optimal Solution Update

Mechanism Based on Simulated Annealing

This paper integrates the simulated annealing algorithm to
enhance the update strategy for the global historical optimal
solution within the PSO algorithm framework. In the
standard PSO algorithm, updating occurs whenever the
fitness value of the current population's optimal solution

Volume 51, Issue 10, October 2024, Pages 1534-1545



TAENG International Journal of Computer Science

surpasses that of the global historical optimal solution[29].
However, such updates invariably diminish population
diversity, thereby increasing the susceptibility of the
algorithm to local optima. Refer to Figure 8 for an illustration
of this process.

Select the current optimal solution GBest,,, and its
corresponding fit(x.;) from the current population

S fit(x) > fit)?
|No New value GBest,,, as
; optimal solution ;

~_ rand(0,1)) <P o
0| Thereisa probability of P |
NO | accepting suboptimal |
| solutions i

Gbest, .~

GBest,,w (Do not update) Ghestoex=GBestyey (update)

Fig. 8. Global Historical Optimal Solution Update Strategy Combined with
Simulated Annealing Algorithm

Firstly, there is a probability P, which represents the
likelihood of accepting a worse solution as the global
historical optimal solution. In other words, if the newly
calculated global historical optimal solution in this iteration
is worse than the current global historical optimal solution,
there is still a probability P that it will be updated as the
global historical optimal solution[30].

The calculation method of probability P is shown in

equation (21).
_ fit(x)— fit(x,,)
Temp,

P=exp 1)

Among them, fit (x;) and fit (x«+1) are the fitness values of
the current global historical optimal solution and the current
population optimal solution, collectively referred to as the
previous and new values. If the new value is greater than the
previous value, the new solution is better than the previous
solution, and P is greater than 1, it will naturally be directly
updated to the global historical optimal solution. If the new
value is smaller than the previous value, there is a probability
of P updating the new value to the new global historical
optimal solution[31].

Tempt is the temperature. However, if the temperature is
too high at the end of the algorithm iteration, resulting in a
probability P that is too high and close to 1, it will cause the

algorithm to be unstable and difficult to converge. So during
the algorithm iteration process, it is necessary to gradually
lower the temperature. We have set a shrinkage coefficient r
here to reduce the temperature, as shown in equation (22).

Ienp,, =rate-Tenp, (22)

Regarding the shrinkage coefficient rate in the equation, if
its value is too large, the speed of temperature reduction will
be too slow, and the algorithm is more likely to accept
suboptimal solutions, resulting in the algorithm consuming
too much time. If the rate value is too small, it will cause the
algorithm to converge too quickly and easily fall into local
optima. Therefore, we let the rate decrease as the number of
iterations increases, as shown in equation (23).

Tm ax B t

rate = (23)

max
In the formula, Tmax is the maximum number of iterations,
and t is the current number of iterations. This formula causes
the temperature to decrease from the highest temperature
MaxTempto the lowest temperature minTemp.

IV. EXPERIMENT

To assess the efficacy of the enhanced algorithm proposed
in this study, we conducted two control experiments: (1) A
performance evaluation comparing it with standard PSO and
genetic algorithm (GA) within the experimental environment
devised in this research. (2) Comparative analyses were
carried out with fusion PSO algorithms IPSO [26] and
HGWO-PSO [28], both of which were augmented for
population diversity and evaluated under identical conditions
as described in this paper.

A. experimental environment

The platform hardware and software specifications utilized
in the experiments are as follows: The CPU is an AMD
Ryzen 7 5800H with Radeon Graphics, operating at 3.2GHz,
with 16GB of RAM. The GPU is an NVIDIA GeForce
RTX3060 Laptop GPU. The system operates on a 64-bit
Windows 11 operating system. The simulation software
employed is MATLAB 2022b.

B. Performance comparison experiment with standard
PSO algorithm and GA algorithm

This paper compares the path planning of standar PSO
algorithm and GA algorithm with the improved algorithm in
this paper.. After repeated experiments, the experimental
parameters used in this paper are shown in Table 2. In the
comparative experiment, each algorithm was run 50 times
and data such as the generated path, algorithm convergence
curve, path length, and computation time were recorded.

The experimental environment is set in a 10 x 10 Cartesian
coordinate system, with a starting point at (0,0), represented
by blue squares. The endpoint is at (10,10), represented by
green blocks, and there are four circular obstacles set up, as
shown in Figure 9. The coordinates and radius of the
obstacles are shown in Table 1.
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Fig. 9. Experimental Environment Diagram
TABLE I
OBSTACLE DATA

Obstacles coordinate radius
Obstaclel (2.0,2.0) 1.0
Obstacle2 (6.5,7.0) 1.8
Obstacle3 (2.5,5.5) 1.5
Obstacle4 (6.5,2.5) 1.5

The experimental parameters are set as follows: the
particle population size N is 80; the dimensionality D
(number of control points) is 3; the maximum number of

iterations 7 max 18 400; the maximum and minimum inertia
are 0.9 and 0.3,
respectively; the maximum and minimum values of the

and C

Imin

weight coefficients @ and @

max min

learning factors C are 2 and 1, respectively,

Imax
and C,  and C

»min are also 2 and 1, respectively; the

maximum velocity ¥ is 1; and the minimum reactivation

X

count relife num is 4.

The experimental simulation results are shown in Figure
10.The experimental data comparison of each algorithm is
shown in Table II.
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Figure. 10. Results and convergence curves of improved PSO path planning
algorithm and traditional algorithm.(a) (b) represents the path planning
results and convergence curve of the improved PSO algorithm; (c¢) and (d)
represent the standard PSO algorithm path planning results and convergence
curve; (e) and (f) represent the GA algorithm path planning results and
convergence curve.

TABLE I
COMPARISON OF EXPERIMENTAL DATA
algorithm Optimum Average STD
distance distance
My algorithm 14.5875 14.7269 0.2079
PSO 14.6306 15.7243 0.4820
GA 14.9423 15.7776 0.4750

Based on the aforementioned experimental outcomes, the
enhanced PSO path planning algorithm exhibits minimal
variance in terms of iteration count when compared with
traditional PSO variants. In terms of runtime, it marginally
lags behind conventional PSO algorithms but outperforms
GA algorithms in efficiency. Notably, the average path
length and its standard deviation demonstrate notable
advantages, underscoring the enhanced algorithm's enhanced
stability.

C. Comparative experiments with other improved PSO
path planning algorithms

This study contrasts two enhanced PSO path planning
algorithms: IPSO [26], which integrates the dynamic window
method (IDWA) to enhance PSO, and HGWO-PSO [28], a
hybrid algorithm combining PSO with the grey wolf
optimization algorithm. Experimental evaluations are
conducted using an improved PSO path planning algorithm
within obstacle environments and basic parameter
configurations outlined in two prior studies. Comparative
analyses are then performed against data extracted from these
references.

1) Comparison experiment with IPSO

The experimental obstacle environment is shown in Figure

11, with a population of 50 and a maximum iteration of 300.

e

(1]
0 2 4 6 8 10

Figure. 11. Obstacle Environment Setting in Comparison Experiment with
IPSO
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(=2}
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The optimal path of the algorithm in this environment is
shown in Figure 12, and the comparison with IPSO data is
shown in Table III.
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Figure. 12. The result chart of the improved algorithm in IPSO experimental
environment in this article

TABLE III
COMPARISON OF ALGORITHM AND IPSO DATA IN THIS PAPER
algorithm Optimum Average
My algorithm 14.5509 14.8106
IPSO[26] 14.5374 15.0966

From the data in Table III, it can be seen that our algorithm
is slightly inferior to the IPSO algorithm in the shortest
distance, but superior to the IPSO algorithm in the average
distance.

2) Comparison experiment with HGWO-PSO

The experimental obstacle environment is shown in Figure

13, with a population of 50 and a maximum iteration of 300.
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Figure. 13. Obstacle Environment Setting in Comparison Experiment with
HGWO-PSO

The optimal path of the algorithm in this environment is

shown in Figure 14, and the comparison with IPSO data is
shown in Table IV.
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Figure. 14. The result chart of the improved algorithm in the HGWS-PSO
experimental environment

TABLE IV
COMPARISON OF ALGORITHM AND IPSO DATA IN THIS PAPER
algorithm Average distance STD  Average time/s
My 14.8990 0.2002 0.3402
algorithm
HGWO- 15.0858 1.0758 28
PSO[28]

Based on the data presented in Table IV, it is evident that
while the enhanced algorithm proposed in this study slightly
underperforms compared to HGWO-PSO in terms of the
shortest distance metric, it surpasses HGWO-PSO in average
distance. Furthermore, the proposed algorithm demonstrates
significantly lower runtime compared to HGWO-PSO.
Additionally, the distance standard deviation of the proposed
algorithm is superior to that of HGWO-PSO, indicating better

stability in the algorithm presented in this study.

V. CONCLUSION

In this paper, we proposed an improved PSO path planning
algorithm to address the path planning problem based on the
Particle Swarm Optimization (PSO) algorithm. Firstly, a
particle reactivation module was added during the algorithm
iteration process. This module can adaptively reinitialize the
particles based on their states, thus maintaining population
diversity. Secondly, inspired by the Simulated Annealing
algorithm, we improved the update strategy for the global
historical optimal solution of the particles, further enhancing
population diversity. The experimental results demonstrate
that the proposed method effectively maintains population
diversity, mitigates the problem of the PSO algorithm's
tendency to quickly converge to a local optimum in the early
stages, and improves the algorithm's stability. Future work
aims to: (1) optimize the algorithm process to enhance its
applicability; (2) further optimize the algorithm for complex
environments; (3) apply the algorithm to actual intelligent
mobile robots to verify its effectiveness and robustness, and
study the algorithm's real-time performance.
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