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Abstract—The primary objective of this article is to compre-
hensively investigate and elucidate the characteristics associated
with both T-ordering and minus-ordering within the realm of
picture fuzzy matrices. Furthermore, we aim to explore and elu-
cidate various properties pertaining to T-ordering and minus-
ordering when applied to picture fuzzy matrices, leveraging the
framework of generalized inverses for a more comprehensive
understanding of these ordering techniques. Additionally, the
article explores a novel concept termed reverse T ordering
and reverse Minus ordering and Left-T and Right-T Partial
Orderings on Picture Fuzzy Matrix, introducing and elucidating
these concepts through illustrative examples. Finally, we apply
picture fuzzy to a decision-making case study.

Index Terms—Picture Fuzzy Set(PicFS),Picture Fuzzy Ma-
trices(PicFMs), T-ordering, Minus ordering, Moore-Penrose
inverse.

I. INTRODUCTION

THe increasing complexity of problems encountered in
fields such as Economics, Engineering, Environmen-

tal Sciences, and Social Sciences, which elude resolution
through classical mathematical approaches, presents a signif-
icant challenge in the contemporary practical landscape. To
address such intricate scenarios, like those encountered in
fuzzy Mathematics, the research community has witnessed
a continuous surge in scholars dedicated to exploring the
theoretical underpinnings and practical applications of fuzzy
sets since the seminal work introduced by Zadeh [1].
The inception of the concept of fuzzy matrices dates back
to 1977 when Thomasan introduced this novel idea [2].
Since its initial introduction, fuzzy matrices have undergone
continuous development, thanks to the contributions of nu-
merous researchers [3], [4], [5]. One significant stride in
this domain was made by Jianmiao Cen [6], who led the
way in establishing partial orderings for fuzzy matrices, a
concept akin to the star ordering used in complex matrices.
Subsequently, this groundbreaking work opened the door for
a plethora of research endeavors exploring the implications
and applications of these partial orderings in the context
of fuzzy matrices. Building upon this foundation, A.R.
Meenachi made noteworthy advancements by providing a
characterization of the minus ordering applied to matrices,
a characterization framed within the context of their gen-
eralized inverses [7]. This insightful work added depth and
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clarity to our understanding of how matrices can be ordered
and compared, particularly in relation to their generalized
inverses.
Conventional fuzzy sets, while powerful, sometimes en-
counter formidable obstacles when it comes to assigning
precise membership values. In response to this limitation,
Intuitionistic Fuzzy Sets (IFS), introduced by Atanassov
[8], have emerged as a fitting alternative. Sriram S and
Murugadas P examined the Moore-Penrose Inverse of In-
tuitionistic Fuzzy Matrices[9]. Susanta K Khan and Anita
Pal conducted research on the Generalized Inverse of In-
tuitionistic Fuzzy Matrices [10]. Subsequently, Pradhan R
and Pal M investigated Some Results on the Generalized
Inverse of Intuitionistic Fuzzy Matrices [11], [12]. Bhowmik
M and Pal M studied Some results on Generalized Interval-
Valued Intuitionistic Fuzzy Sets [13], Generalized Interval-
Valued Intuitionistic Fuzzy Sets [14]. IFS excels in managing
incomplete information by considering both truth member-
ship (simple membership) and falsity-membership (or non-
membership) values. However, it is essential to note that
IFS, while capable of handling incomplete data, does not
address the challenges posed by indeterminate and inconsis-
tent information that often permeate belief systems. Across
a spectrum of disciplines spanning the social sciences and
medical sciences, researchers have encountered instances
where employing just two factors proves inadequate for
adequately characterizing specific types of data. In these
particular scenarios, it becomes imperative to incorporate an
additional component to ensure a comprehensive representa-
tion of the data. It is in response to this need that the concept
of Picture Fuzzy Sets (PicFS) was pioneered by Cuong
and Kreinovich in the year 2013, serving as an extension
and generalization of Intuitionistic Fuzzy Sets (IFS) [15],
[16]. Moreover, in more contemporary developments in 2020,
the investigation into Picture Fuzzy Matrix (PicFM) and
its real-world applications was brought into focus by the
research efforts of Shovan Dogra and Madhumangal Pal
[17], illuminating the capabilities and significance of PicFS
in diverse contexts. P. Murugadas focused on Implication
operations on Picture Fuzzy Matrices [18]. Subsequently, V.
Kamalakannan, P. Murugadas, and M. Kavitha delved into
the Generalized Inverse of Picture Fuzzy Matrices [19], while
V. Kamalakannan and P. Murugadas concentrated on Modal
Operators on Picture Fuzzy Matrices [20] and Some Results
on Generalized Inverse of Picture Fuzzy Matrix [21]
In our research, we delve into the application of T-ordering
and minus ordering to Picture Fuzzy Matrices, employing
a diverse set of generalized inverses, which encompass the
g-inverse and the Moore-Penrose Inverse. Our investigation
aims to scrutinize the intricate interplay between these order-
ing schemes. Additionally, we undertake the task of deducing
equivalent conditions for each ordering method through the
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utilization of generalized inverses. Through our rigorous
analysis, we demonstrate that both T-ordering and Minus
ordering adhere to the principles of partial ordering within
the encompassing set of all regular Picture Fuzzy Matrices.
Furthermore, we take a step further in our study by providing
a comprehensive characterization of the minus ordering when
applied to matrices. This characterization is framed within
the context of their generalized inverses, offering a valuable
perspective on how these ordering criteria relate to the
inherent properties of matrices.

II. PRELIMINARIES

Throughout the manuscript, Pjk denotes PicFMs of order
j × k and Pj denotes PicFMs of order j × j.

Definition II.1. For M ∈ P(m,n), X ∈ P(n,m) is said to
be
(i) {1, 2}-inverse or semi-inverse of M, if MXM = M and
XMX = X.
(ii) {1, 3}-inverse or a least square g-inverse of M, if
MXM = M and (MX)T = MX.
(iii) {1, 4}-inverse or a minimum norm g-inverse of M, if
MXM = M, and (XM)T = XM.
(iv) a Moore-Penrose inverse of M, if MXM =
M, XMX = X, (MX)T = MX and (XM)T = XM.
The Moore-Penrose inverse of M is denoted by M+.

Definition II.2. M{λ} is the collection of all λ-inverse of
M, where λ is an element of {1, 2, 3, 4}.

III. T-ORDERING ON PICTURE FUZZY MATRIX

Definition III.1. Let M, N ∈ P(m,n). The T-ordering M
T
≤

N in P(m,n) is defined as M
T
≤ N ⇔ MTM = MTN and

MMT = NMT .

Example III.1. Let M =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
and N =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
then,

MTM =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
..................(1)

MTN =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
...................(2)

Hence from (1) and (2), we get MTM = MTN.
Similarly we have MMT = NMT .

Therefore M
T
≤ N.

Theorem III.1. Let M, N ∈ P(m,n) and M+ exists.
Then the following conditions are equivalent.

(i) M
T
≤ N

(ii) M+M = M+N and MM+ = NM+

(iii) MM+N = M = NM+M
Proof. (i)⇒(ii)
By (i) we have MTM = MTN and MMT = NMT .
Then

M+M = M+MM+M

= M+(M+)TMTM

= M+(M+)TMTN

= M+MM+N

= M+N.

Similarly we have, MM+ = NM+.
(ii)⇒(iii)
M+M = M+N implies M = MM+M = MM+N and
MM+ = NM+ implies M = MM+M = NM+M.
(iii)⇒(i)
By M = MM+N, (MM+)TM = (MM+)TN.
Then MT (M+)TMTM = MT (M+)TMTN.
Hence MTM = MTN.
Similarly we have MMT = NMT by M = NM+M.

Theorem III.2. Let M, N ∈ P(m,n). If M+ and N+ both
exist, then the following conditions are equivalent.

(i) M
T
≤ N

(ii) M+M = N+M and MM+ = MN+

(iii) N+MM+ = M+ = M+MN+

(iv) MTMN+ = MT = N+MMT

Proof: (i)⇒(iv)
MTM = MTN implies MTM = MTNN+N ,
Then MTM = (MTM)T = (N+N)T (MTNT

= N+NMTM.
Hence, MTMM+ = N+NMTMM+

and MT (MM+)T = N+NMT (MM+)T .
Therefore, MT = N+NMT = N+MMT .
Similarly, MT = MTMN+ by MMT = NMT .
(iv)⇒(ii)
By MT = N+MMT ,MT (M+)T = N+MMT (M+)T .
Then, M+M = N+MM+M = N+M.
Similarly we have, MM+ = MN+ by MT = MTMN+.
(ii)⇒ (i)

M+M = (M+M)T

= (N+M)T

= (N+NN+M)T

= (N+M)T (N+N)T

= (M+M)TN+N

= M+MN+N

= M+MM+N

= M+N.

Similarly we have, MM+ = NM+.
Thus, (i) holds by Theorem III.1(ii).
(ii)⇒(iii)
By M+M = N+M, M+ = M+MM+ = N+MM+.
Similarly we have,
MM+ = MN+ implies M+ = M+MN+.
(iii)⇒(ii)
N+MM+ = M+ = M+MN+ implies
M+M = N+MM+M = N+M
and MM+ = MM+MN+ = MN+.

Theorem III.3. In P+
(m,n), the set of all matrices M ∈

P(m,n) for which M+ exists,
T
≤ is a partial ordering.

Proof. M
T
≤ M obvious. If M

T
≤ N, N

T
≤ M, then

M = NM+M, N = NN+M by Theorem III.1.(iii).
Thus, by Theorem III.2.(ii), N = NN+M = NM+M =
M.

If M
T
≤ N, N

T
≤ L, then M = NM+M and N = LN+N

by Theorem III.1.(iii). By Theorem III.2(ii), we have
M = NM+M = LN+NM+M = LN+M = LM+M.
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Similarly, we have M = MM+L. Thus, M
T
≤ L,

by Theorem III.1.(iii).

Example III.2. Let M =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
,

N =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
and

L =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.2, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
then,

MTM =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
............(1)

MTN =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
............(2)

Hence from (1) and (2), we get MTM = MTN.

Similarly we have MMT = NMT . Therefore M
T
≤ N.

NTN =

[
⟨0.4, 0.5, 0.0⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
...........(3)

NTL =

[
⟨0.4, 0.5, 0.0⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
...........(4)

Hence from (3) and (4), we get NTN = NTL.

Similarly we have NNT = LNT . Therefore N
T
≤ L.

MMT =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.4, 0.1⟩
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.5, 0.1⟩

]
...........(5)

LMT =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.4, 0.1⟩
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.5, 0.1⟩

]
...........(6)

Hence from (5) and (6), we get MMT = LMT .

Similarly we have MTM = MTL. Therefore M
T
≤ L.

Theorem III.4. If M
T
≤ N, then we have

(i) N+M = M+N and MN+ = NM+

(ii) NTM = MTN and NMT = MN+

that is NTM and NMT are symmetric
(iii) MN+M = M = NN+M = NMN+ = N+MN,
NM+M = M = MM+N = MNM+ = M+NM
(iv) NMTM = MMTN = MTNM = MNMT ,
MNTN = NNTM = NTMN = NMMT

Theorem III.5. If M
T
≤ N, then we have

(i) MT
T
≤ NT

(ii) M+
T
≤ N+

(iii) NTM
T
≤ NTN ,MNT

T
≤ NNT

(iv) N+M
T
≤ N+N ,MN+

T
≤ NN+

(v) MTM
T
≤ NTN ,MMT

T
≤ NNT

(vi) M+M
T
≤ N+N ,MM+

T
≤ NN+

(vii) If NTN+ = N+NT then MTM+ = M+MT

Proof. (i) and (ii) hold clearly.
(iii)

(NTM)TNTM = MTNNTM

= MTMMTM

= MTMMTN

= MTMNTN

= MTNNTN.

Similarly we have NTM(MTM)T = NTN(NTM)T

thus NTM
T
≤ NTN.

Similarly we have MNT
T
≤ NNT . Thus (iii) holds.

(iv)

(N+M)TN+M = (M+M)TM+M

= MT (M+)TM+M

= MT (M+)TM+N

= MT (M+)TN+N

= (M+M)TN+N

= (N+M)TN+N,

and N+M(N+M)T = N+N(N+M)T .

Thus, N+M
T
≤ N+N. Similarly we have MN+

T
≤ NN+.

(v)

(MTM)TMTM = MTMMTN

= MTMNTN

= (MTM)TNTN.

and MTM(MTM)T = NTN(MTM)T .

Thus, MTM
T
≤ NTN.

Similarly we have MMT
T
≤ NNT . Thus (v) holds

(vi)

(M+M)TN+N = MT (M+)TN+N

= MT (M+)TM+N

= MT (M+)TM+M

= (M+M)TM+M.

and N+N(M+M)T = M+M(M+M)T .

Then M+M
T
≤ N+N.

Similarly we have MM+
T
≤ NN+.

Thus (vi) holds Similarly we can prove (vii).

IV. MINUS ORDERING ON PICTURE FUZZY MATRIX

In this section we define minus-ordering of PicFM. We
establish that in the set of all regular picture fuzzy matrices,
the minus ordering is a partial ordering.
Through out this section, let P−

(m,n) denote the set of all
regular PicFMs in P(m,n).

Definition IV.1. If M ∈ P(m,n) and X ∈ P(n,m) satisfies
the relation MXM = M then X is called a generalized
inverse(g-inverse) of M which is denoted by M−. The g-
inverse of a PicFM is not necessarily unique. We denote the
set of all g-inverses of M by M{1}.

Definition IV.2. For M ∈ P−
(m,n) and N ∈ P(m,n), the mi-

nus ordering denoted as <̄ is define as M<̄ N ⇔ M−M =
M−N and MM− = NM− for some M− ∈ M{1}.

Example IV.1. Let M =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
,

then
M− =

[
⟨0.3, 0.3, 0.2⟩ ⟨0.4, 0.5, 0.1⟩
⟨0.5, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
and

N =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
Now,

M−M =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.3, 0.3, 0.2⟩
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
...........(1)
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M−N =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.3, 0.3, 0.2⟩
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
...........(2)

Hence from (1) and (2), we get MM− = M−N.
Similarly we have MM− = NM−.
Therefore M<̄ N.

Lemma IV.1. For M ∈ P−
(m,n) and N ∈ P(m,n), the

following are equivalent
(i) M <̄ N.
(ii) M = MM−N = NM−M = NM−N.
Proof.
(i) ⇒ (ii)
M <̄ N ⇒ MM− = NM− and M−M = M−N
for some M− ∈ M{1}.
Now, M = M(M−M) = MM−N
M = (MM−)M = NM−M
M = N(M−M) = NM−N.
(ii) ⇒(i) Let X = M−MM−

MXM = M(M−MM−)M

= (MM−M)M−M

= M

⇒ X ∈ M{1}.
Now

XM = (M−MM−)MM−N

= M−(MM−M)M−N

= (M−MM−)N

= XN.

Similarly we have MX = NX.
Hence M <̄ N with respect to X ∈ M{1}.

Theorem IV.1. Let M, N ∈ P−
(m,n). If M <̄ N, then

N{1} ⊆ M{1}.
Proof: By Lemma IV.1,
M <̄ N ⇒ M = MM−N = NM−M.
For N− ∈ N{1},

MN−M = (MM−N)N−(NM−M)

= MM−(NN−N)MM−

= (MM−N)M−M

= MM−M

= M

Hence MN−M = M for each N− ∈ N{1}.
Therefore, N{1} ⊆ M{1}.

Lemma IV.2. For M, N ∈ P−
(m,n).

(i) R(M) ⊆ R(N) ⇔ M = MN−N for each N− of N.
(ii) C(M) ⊆ C(N) ⇔ M = NN−M for each N− of N.

Theorem IV.2. If M, N ∈ P−
(m,n), then the following are

equivalent.
(i) M <̄ N
(ii) R(M) ⊆ R(N), C(M) ⊆ C(N) and MN−M = M.
Proof. (i)⇒(ii)
By Lemma IV.1,

M = NM−N

= NM−(NN−N)

= (NM−N)N−N

= MN−N

Therefore M = MN−N for each N− ∈ N{1}
⇒ R(M) ⊆ R(N)
Similarly we have M = NN−M for each N− ∈ N{1}
⇒ C(M) ⊆ C(N)
(ii)⇒(i)
Let X = N−MN−,

MXM = M(N−MN−)M

= (MN−M)N−M

= MN−M

= M

⇒ X ∈ M{1}.
Now By Lemma IV.2

MX = M(N−MN−)

= NN−M(N−MN−)

= NN−(MN−M)N−

= NX

Similarly we have XM = XN and MN−M = M
by Lemma IV.2
Hence M <̄ N for X ∈ M{1}.

Theorem IV.3. In P−
(m,n) the minus ordering <̄ is a partial

ordering.
Proof: (i) M<̄M is obvious. Hence <̄ is reflexive.
(ii) By Lemma IV.1 M<̄N ⇒ M = NM−N.
N<̄M ⇒ N = NN−M = MN−N.

M = NM−N

= (NN−M)M−(MN−N)

= NN−(MN−N)

= NN−N

= N.

A<̄N and N<̄M ⇒ M = N . Hence <̄ is antisymmetric.
(iii) By Theorem IV.2
M<̄N ⇒ M = MN−M and M = MN−N = NN−M
by Lemma IV.1 N<̄L ⇒ N = NN−L = LN−N .
Let X = N−MN−

MXM = M(N−MN−)M

= (MN−M)N−M

= MN−M

= M

⇒ X ∈ M{1}.
Since M<̄N and N<̄L, by applying Theorem IV.2,
repeatedly. We have,

MX = M(N−MN−)

= NN−M(N−MN−)

= NN−(MN−M)N−

= NN−MN−

= (LN−N)N−MN−

= LN−(NN−M)N−

= L(N−MN−)

= LX

Similarly we have XM = XC.
Since X ∈ M{1} with MX = LX and XM = XL, it
follows that M<̄L.
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Theorem IV.4. For M, N ∈ Pm,n and M+ exists, then
the following are equivalent.
(i) M <̄ N.
(ii) M+M = M+N ; MM+ = NM+.
(iii) MM+N = M = NM+M.
Proof: (i) ⇒ (ii)
M <̄ N ⇒ MM− = NM− and M−M = M−N
for some M− ∈ M{1}.
Now, M = M(M−M) = MM−N as M− ∈ M{1}.
So M+M = M+MM+N = M+N.
Similarly, MM+ = NM+.
(ii) ⇒ (iii)
M+M = M+N . This gives M = MM+M = MM+N.
Also, from MM+ = NM+ implies
M = MM+M = NM+M.
Thus M = MM+N = NM+M.
(iii) ⇒ (i)
Let X = M+MM+.

MXM = M(M+MM+)M

= (MM+M)M+M

= MM+M

= M

Thus, X is a g-inverse of M.
Now,

XM = (M+MM+)MM+N

= M+(MM+M)M+N

= (M+MM+)N

= XN

Similarly, MX = NX.
Hence M <̄ N for some X ∈ M{1}.

Example IV.2. Let M =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
,

then
M+ =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.5, 0.1⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
M− =

[
⟨0.3, 0.3, 0.2⟩ ⟨0.4, 0.5, 0.1⟩
⟨0.5, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
and

N =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
Now,

MM− =

[
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.4, 0.1⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.5, 0.1⟩

]
...........(1)

and
NM− =

[
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.4, 0.1⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.5, 0.1⟩

]
...........(2)

Hence from (1) and (2), we get MM− = NM−.

M−M =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
..........(3)

M−N =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
...........(4)

Hence from (3) and (4), we get M−M = M−N.
Therefore M<̄ N.

M+M =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
...........(5)

M+N =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
............(6)

Hence from (5) and (6), we get M+M = M+N.

MM+ =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.4, 0.1⟩
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.5, 0.1⟩

]
............(7)

NM+ =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.4, 0.1⟩
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.5, 0.1⟩

]
............(8)

Hence from (7) and (8), we get MM+ = NM+.
Also,

MM+N =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
= M .....(9)

NM+M =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
= M ....(10)

Hence from (9) and (10), we get MM+N = M = NM+M.

Lemma IV.3. If M and N are two PicFMs, then
M<̄ N ⇒ MT <̄ NT .
Proof: M<̄ N ⇒ MM− = NM− and M−M = M−N.
Here,
MM− = NM− ⇔ (MM−)T = (NM−)T

⇔ (M−)TMT = (M−)TNT

⇔ (MT )−MT = (MT )−NT .
Hence, MM− = NM− ⇔ (MT )−MT = (MT )−NT .
Similarly, M−M = M−N ⇔ MT (MT )− = NT (MT )−.
Hence, M<̄ N ⇒ MT <̄ NT .

Example IV.3. Let M =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
,

then
M− =

[
⟨0.3, 0.3, 0.2⟩ ⟨0.4, 0.5, 0.1⟩
⟨0.5, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
and

N =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
MT =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.5, 0.1⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
and

NT =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.5, 0.1⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
Here, M<̄ N and MT <̄ NT .

Lemma IV.4. Let M and N are two PicFMs, If M<̄ N and
N is idempotent then M is also idempotent.
Proof:

M2 = M.M

= (MM−N)(NM−M)

= MM−N2M−M

= (MM−N)M−M

= MM−M

= M.

Example IV.4. Let M =

[
⟨0.5, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.5, 0.1⟩

]
,

then
M− =

[
⟨0.5, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.5, 0.1⟩

]
and

N =

[
⟨0.5, 0.4, 0.0⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.5, 0.1⟩

]
then N2 = N , which is an idempotent PicFM.

M−N =

[
⟨0.5, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.5, 0.1⟩

]
.............(1)

and
NM− =

[
⟨0.5, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.5, 0.1⟩

]
..................(2)
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MM− =

[
⟨0.5, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.5, 0.1⟩

]
..................(3)

Hence from (1), (2) and (3), we get M−N = MM−. and
NM− = MM−.
Therefore, M<̄ N .
Also, M2 = M is also an idempotent PicFM.

Theorem IV.5. Let M, N ∈ Pm,n. If M+ and N+ both
are exists and M ∈ N{2}, then the following are equivalent.
(i) M <̄ N.
(ii) M+M = N+M and MM+ = MN+.
(iii) N+MM+ = M+ = M+MN+.
(iv) MTMN+ = MT = MTNM+.
Proof:
(i) ⇒ (ii)
Let M <̄ N, then MM− = NM− and M−M = M−N
We know that,

M = MN+M

M+M = M+MN+M

(M+M)T = (M+MN+M)T

M+M = (N+M)T (M+M)T

M+M = N+MM+M

M+M = N+M

Similarly, MM+ = MN+.
(ii) ⇒ (iii)
M+M = N+M and MM+ = MN+.
Now, M+ = M+MM+ = N+MM+.
Similarly, M+ = M+MM+ = M+MN+.
(iii) ⇒ (iv)

M = MM+M

MT = MT (MM+)T

MT = MTMM+

MT = MTM(M+MN+)

MT = MT (MM+M)N+

MT = MTMN+

Similarly, MTNM+ = MT .
Therefore, MTMN+ = MT = MTNM+.
(iv) ⇒ (i) Take MT = MTMN+

M = MN+M

MN+ = (MN+M)N+

MN+ = M(N+M)N+)

MN+ = MM+

Similarly, M+M = M+N.
Therefore, by Theorem IV.4, (iv) ⇒ (i) holds.

Example IV.5. Let M =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
,

then
M+ =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.5, 0.1⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
M− =

[
⟨0.3, 0.3, 0.2⟩ ⟨0.4, 0.5, 0.1⟩
⟨0.5, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
and

N =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
Now,

MM− = NM− =

[
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.4, 0.1⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.5, 0.1⟩

]
.....(1)

and
M−M = M−N =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
.....(2)

Hence from (1) and (2), we get M−N = MM− and
NM− = MM−. Therefore, M<̄ N .

Now,

M+M = M+N =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
......(3)

MM+ = NM+ =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.4, 0.1⟩
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.5, 0.1⟩

]
......(4)

Hence from (3) and (4), we get
M+N = MM+ and NM+ = MM+.
Also,

N+MM+ = M+MN+ =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.5, 0.1⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
= M+

and
MTMN+ = M+NM+ =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.5, 0.1⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
= MT .

V. REVERSE T-ORDERING ON PICTURE FUZZY MATRIX

Definition V.1. Let M, N ∈ P(m,n). The T- Reverse

ordering M
T
≥ N in P(m,n) is defined as M

T
≥ N ⇔

NTN = NTM and NNT = MNT .

Example V.1. Let M =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.45, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩

]
and N =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩

]
then,

NTN =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩

]
..................(1)

NTN =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩

]
...................(2)

Hence from (1) and (2), we get NTM = NTN.
Similarly we have MNT = NNT .

Therefore M
T
≥ N.

Theorem V.1. Let M, N ∈ P(m,n) and N+ exists.
Then the following conditions are equivalent.

(i) M
T
≥ N

(ii) N+N = N+M and NN+ = MN+

(iii) NN+M = N = MN+N
Proof. (i)⇒(ii)
By (i) we have NTN = NTM and NNT = MNT .
Then

N+N = N+NN+N

= N+(N+)TNTN

= N+(N+)TNTM

= N+NN+M

= N+M

Similarly we have, NN+ = MN+.
(ii)⇒(iii)
N+N = N+M implies N = NN+N = NN+M and
NN+ = MN+ implies N = NN+N = MN+N.
(iii)⇒(i)
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By N = NN+M, (NN+)TN = (NN+)TM.
Then NT (N+)TNTN = NT (N+)TNTM.
Hence NTN = NTM.
Similarly we have NNT = MNT by N = MN+N.

Theorem V.2. Let M, N ∈ P(m,n). If M+ and N+ both
exist, then the following conditions are equivalent.

(i) M
T
≥ N

(ii) N+N = M+N and NN+ = NM+

(iii) M+NN+ = N+ = N+NM+

(iv) NTNM+ = NT = M+NNT

Proof: (i)⇒(iv)
NTN = NTM implies NTN = NTMM+M ,
Then NTN = (NTN)T = (M+M)T (NTMT )
= M+MNTN.
Hence, NTNN+ = M+MNTNN+

and NT (NN+)T = M+MNT (NN+)T .
Therefore, NT = M+MNT = M+NNT .
Similarly, NT = NTNM+ by NNT = MNT .
(iv)⇒(ii)
By NT = M+NNT , NT (N+)T = M+NNT (N+)T .
Then, N+N = M+NN+N = M+N.
Similarly we have, NN+ = NM+ by NT = NTNM+.
(ii)⇒ (i)

N+N = (N+N)T

= (M+N)T

= (M+MM+N)T

= (M+N)T (M+M)T

= (N+N)TM+M

= N+NM+M

= N+NN+M

= N+M.

Similarly we have, NN+ = MN+.
Thus, (i) holds by Theorem V.2(ii).
(ii)⇒(iii)
By N+N = M+N, N+ = N+NN+ = M+NN+.
Similarly we have,
NN+ = NM+ implies N+ = N+NM+.
(iii)⇒(ii)
M+NN+ = N+ = N+NM+ implies
N+N = M+NN+N = M+N
and NN+ = NN+NM+ = NM+.

Theorem V.3. In P+
(m,n), the set of all matrices M ∈

P(m,n) for which M+ exists,
T
≥ is a partial ordering.

Proof. Similar to Theorem III.3

Example V.2. Let M =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
,

N =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
and

L =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.2, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
then,

NTM =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
............(1)

NTN =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
............(2)

Hence from (1) and (2), we get NTM = NTN.

Similarly we have NNT = MNT .

Therefore M
T
≥ N.

LTN =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
...........(3)

LTL =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
...........(4)

Hence from (3) and (4), we get LTN = LTL.
Similarly we have NLT = LLT .

Therefore N
T
≥ L.

LTM =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
...........(5)

LTL =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
...........(6)

Hence from (5) and (6), we get LTM = LTL.
Similarly we have MLT = LLT .

Therefore M
T
≥ L.

VI. REVERSE MINUS ORDERING ON PICTURE FUZZY
MATRIX

Definition VI.1. For M ∈ P−
(m,n) and N ∈ P(m,n), the

reverse minus ordering denoted as >̄ is define as M>̄ N ⇔
N−N = N−M and NN− = MN− for some N− ∈ N{1}.

Example VI.1. Let M =

[
⟨0.0, 0.0, 0.5⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
,

then
N =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
Now,

N− =

[
⟨0.0, 0.0, 0.5⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩

]
and

N−N =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩

]
...........(1)

N−M =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩

]
...........(2)

Hence from (1) and (2), we get NN− = N−M.
Similarly we have NN− = MN−.
Therefore M>̄ N.

Lemma VI.1. For N ∈ P−
(m,n) and M ∈ P(m,n), the

following are equivalent
(i) M >̄ N.
(ii) N = NN−M = MN−N = MN−M.
Proof.
(i) ⇒ (ii)
M >̄ N ⇒ NN− = MN− and N−N = N−M
for some N− ∈ N{1}.
Now,

N = N(N−N) = NN−M

N = (NN−)N = MN−N

N = M(N−N) = MN−M

(ii) ⇒(i)
Let X = N−NN−

NXN = N(N−NN−)N

= (NN−N)N−M

= N
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⇒ X ∈ N{1}.
Now

XN = (N−NN−)NN−M

= N−(NN−N)N−M

= (N−NN−)M

= XM.

Similarly we have NX = MX. Hence M >̄ N with respect
to X ∈ N{1}.

Theorem VI.1. Let M, N ∈ P−
(m,n). If M >̄ N, then

M{1} ⊆ N{1}.
Proof: By Lemma VI.1,
M >̄ N ⇒ N = NN−M = MN−N.
For M− ∈ M{1},

NM−N = (NN−M)M−(MN−N)

= NN−(MM−M)NN−

= (NN−M)N−N

= NN−N

= N.

Hence NM−N = N for each M− ∈ M{1}.
Therefore, M{1} ⊆ N{1}.

VII. LEFT-T AND RIGHT-T PARTIAL ORDERINGS ON
PICTURE FUZZY MATRIX

Definition VII.1. Let M,N ∈ P(m,n). We say that M is
below N with respect to left-T ordering if MTM = MTN
and C(M) ⊆ C(N) and is denoted by Mt < N . We say that
M is below N with respect to right-T ordering if MMT =
NMT and R(M) ⊆ R(N) and is denoted by M < tN .
In general there is no relation between these two orderings.
This is illustrated in the following example.

Example VII.1. Let M =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
and N =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
then

MTM = MTN =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩

]
Therefore, MTM = MTN and

Let Y =

[
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩

]
then

NY = M ⇒ C(M) ⊆ C(N)
Hence Mt < N . But M ≮ tN Since MMT ̸= NMT .

In particular, for M ∈ P+
(m,n) since M+ = MT the above

definition is equivalent to the following
Mt < N ⇔ M+M = M+N and C(M) ⊆ C(N)
M < tN ⇔ MM+ = NM+ and R(M) ⊆ R(N)

Theorem VII.1. Let M ∈ P+
(m,n), N ∈ P(m,n). Mt < N

and M < tN ⇔ M
T
< N

Proof. Mt < N and M < tN
⇒ MTM = MTN and MMT = NMT

⇒ M
T
< N .

Conversely, M
T
< N

⇒ MTM = MTN and MMT = NMT

⇒ M+M = M+N and MM+ = NM+

Now, M
T
< N ⇒ M+M = M+N

⇒ MM+M = MM+N (premultiply by M )
⇒ M = XN where X = MM+

⇒ R(M) ⊆ R(N)
Similarly, MM+ = NM+

⇒ M = NM+M
⇒ M = NY
⇒ C(M) ⊆ C(N)

Thus M
T
< N ⇔ Mt < N and M < tN .

Example VII.2. Let M =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
and N =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
then

MTM = MTN =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
and

MMT = NMT =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.4, 0.1⟩
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.5, 0.1⟩

]
⇒ M

T
< N

Let X =

[
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.2, 0.3⟩
⟨0.4, 0.5, 0.1⟩ ⟨0.4, 0.5, 0.1⟩

]
and

Y =

[
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩

]
then

XN = M ⇒ R(M) ⊆ R(N)
NY = M ⇒ C(M) ⊆ C(N)
Hence Mt < N .

Theorem VII.2. Let M ∈ P+
(m,n) and N ∈ P(m,n), if

either Mt < N or M < tN then M<̄ N
Proof. Mt < N ⇒ MTM = MTN
⇒ M+M = M+N
⇒ MM+M = MM+N
⇒ M = (MM+)N
⇒ R(M) ⊆ R(N)
Now, MTM = MTN
⇒ MTMN−M = MTNN−M
⇒ M+MN−M = M+NN−M
⇒ (MM+M)N−M = MM+(NN−M)
⇒ MN−M = M
Hence Mt < N ⇒ C(A) ⊆ C(B), R(M) ⊆ R(N) and
MN−M = M
⇒ M<̄ N
Proof of M < tN ⇒ M<̄ N can be proved in the same
manner.

Theorem VII.3. For M,N ∈ P+
(m,n) we have

(i) Mt < N ⇔ M+t < N+.
(ii) M < tN ⇔ M+ < tN+.
Proof. Mt < N
⇒ MTM = MTN and C(M) ⊆ C(N).
Now, C(M) ⊆ C(N)
⇒ M = NN+M
⇒ M = NNTM
⇒ MT = MTNNT

⇒ MT = (NTM)NT

⇒ MT = NT (MNT )
⇒ C(M) ⊆ C(N)
Now,MTM = MTN ⇒ M(MTM)NT = M(MTN)NT

⇒ MNT = M(NNTM)T
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⇒ MNT = MMT

⇒ MN+ = MM+

Thus (M+)TN+ = (M+)TM+ and C(M+) ⊆ C(N+)
⇒ M+t < N+.
Converse follows from above part by using (M+)+ = M .
Proof of (ii) is similar to the same manner.

Theorem VII.4. For M,N ∈ P+
(m,n) we have

(i) Mt < N ⇔ MM+ = MN+ and
R(M) ⊆ R(N) ⇔ M < tN .
(ii) M < tN ⇔ M+M = N+M and
C(M) ⊆ C(N) ⇔ Mt < N .
Proof. (i) Mt < N ⇔ M+t < N+

⇔ (M+)TM+ = (M+)TN+ and C(M+) ⊆ C(N+)

VIII. DECISION-MAKING USING PICTURE FUZZY
MATRIX

ALGORITHM:
Step 1 Define the PFM: Identify the criteria and alternatives,
and assign the corresponding picture fuzzy numbers
(⟨µ, η, ν⟩) to each alternative under each criterion.
Step 2 Calculate the Weighted Sum: Assign weights to
each criterion based on their importance. Then, compute
the weighted sum of the picture fuzzy numbers for each
alternative.
Step 3 Defuzzification: Convert the picture fuzzy numbers
into crisp values for easier comparison.
Step 4 Rank the Alternatives: Compare the crisp values of
the alternatives and rank them.

Case Study: Choosing the Optimal Car Based on
Multi-Criteria Decision Making.
Background:
You are in the market for a new car and need to make a
decision based on multiple criteria. The decision-making
problem involves evaluating three car options against three
key criteria: Price, Fuel Efficiency, and Safety.

This case study will guide you through the process
of selecting the best car by analyzing these criteria
systematically.

Criteria for Evaluation:
1. Price (C1): The cost of purchasing the car.
2. Fuel Efficiency (C2): The cars efficiency in terms of fuel
consumption, typically measured in miles per gallon (MPG)
or liters per 100 kilometers.
3. Safety (C3): The cars safety features and ratings,
including crash test ratings, airbags, and advanced safety
technologies.
Normalize the data for each criterion to ensure comparability.
This can be done by scaling the data so that it falls within
a common range (e.g., 0 to 1).

Objective: To identify which of the three cars − Car
A, Car B, and Car C, provides the highest overall value
considering the criteria of Price, Fuel Efficiency, and Safety.

Step 1 Define the PFM:
Consider the following picture fuzzy numbers assigned to
each car for each criterion:

For Car−A:
Price (C1): ⟨0.7, 0.1, 0.2⟩
Fuel Efficiency (C2): ⟨0.6, 0.1, 0.3⟩
Safety (C3): ⟨0.8, 0.1, 0.1⟩

For Car−B:
Price (C1): ⟨0.6, 0.1, 0.3⟩
Fuel Efficiency (C2): ⟨0.7, 0.1, 0.2⟩
Safety (C3): ⟨0.7, 0.1, 0.2⟩

For Car−C:
Price (C1): ⟨0.8, 0.1, 0.1⟩
Fuel Efficiency (C2): ⟨0.6, 0.1, 0.3⟩
Safety (C3): ⟨0.6, 0.1, 0.3⟩

Step 2 Calculate the Weighted Sum:
Assume the weights for the criteria are as follows:
• W1 (Price) = 0.4
• W2 (Fuel Efficiency) = 0.3
• W3 (Safety) = 0.3

To calculate the weighted sum for Car A, for example:
WSCarA = 0.4 × ⟨0.7, 0.2, 0.1⟩ + 0.3 × ⟨0.6, 0.3, 0.1⟩ +
0.3× ⟨0.8, 0.1, 0.1⟩
WSCarAµ = 0.7
WSCarAη = 0.1
WSCarAν = 0.2
So, the weighted sum for Car A is ⟨0.7, 0.1, 0.2⟩.

Step 3 Defuzzification:
To convert the picture fuzzy numbers into crisp values, use
a defuzzification formula. One simple method is:
For Car A:
DCarA = WSCarAµ −WSCarAν = 0.7− 0.2 = 0.5
Similarly, we get
DCarB = WSCarBµ −WSCarBν = 0.44
DCarC = WSCarCµ −WSCarCν = 0.57
Step 4 Rank the Alternatives:
Now, compare the defuzzified values:
• Car A: 0.5
• Car B: 0.44
• Car C: 0.57
Ranking:
1. Car C (0.57)
2. Car A (0.5)
3. Car B (0.44)
Based on this decision-making algorithm, Car C is the best
option.

IX. CONCLUSION

This article has undertaken a comprehensive exploration of
T-ordering and Minus-ordering characteristics in the domain
of Picture Fuzzy Matrices. We have studied the relationship
of T-ordering on Moore-Penrose Inverse, as well as the
relationship between minus ordering and different g-inverses
of Picture Fuzzy Matrices. We have also provided proof that
T-ordering and Minus ordering satisfy the partial ordering
relation. Furthermore, we have conducted a study of several
properties of T-ordering and Minus ordering with various
g-inverses, supported by suitable examples. Towards the
end, we also delve into a new concept called reverse T
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ordering and reverse Minus ordering and Left-T and Right-
T Partial Orderings on Picture Fuzzy Matrix, introducing
and elucidating these concepts through illustrative examples.
Finally, we apply picture fuzzy to a decision-making case
study.
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