
Performance-guaranteed Control for Discrete-time
Systems Under Communication Constraints: An

Event-triggered Mechanism and Quantized
Data-based Protocol

Lanlan He, Xiaoqing Zhang, Xinrui Wang, and Jianping Zhou

Abstract—This paper deals with the issue of performance-
guaranteed control for discrete-time systems under commu-
nication constraints. To alleviate communication burdens, an
event-triggered mechanism and quantized data-based protocol
is presented. The protocol integrates the advantages of the dual-
threshold event-triggered mechanism and signal quantization,
leading to a reduced channel occupancy rate compared to the
normal weighted try-once-discard protocol and dual-threshold
event-triggered protocol. Building upon this protocol, a state
feedback controller relying on scheduling signals is proposed.
A criterion on stability and energy-to-peak performance is
established using the Lyapunov function method and some
inequality approaches. Then, a numerically tractable method
for determining the desired controller gain via solving linear
matrix inequalities. Finally, a double-sided linear switched
reluctance machine system is used as an example to illustrate
the effectiveness of the designed protocol and the controller.

Index Terms—Try-once-discard protocol, event-triggered
mechanism, signal quantization, performance-guaranteed con-
trol, discrete-time system

I. INTRODUCTION

W ITH the continuous development and proliferation
of mobile communication technologies, networked

control systems (NCSs) have garnered widespread attention
in the academic community, yielding substantial research
outcomes [1–6]. Compared to conventional point-to-point
connection systems, NCSs exhibit increased flexibility and
scalability. However, it is important to note that NCSs often
encounter challenges related to limited bandwidth in practical
applications, which may result in packet disordering [7, 8],
communication delays [9–11], and even packet dropouts
[12, 13]. To conserve bandwidth resources and alleviate these
transmission limitations, various scheduling protocols have
been proposed, including the round-robin protocol [14, 15],
stochastic communication protocol [16–18], and weighted
try-once-discard protocol (WTODP) [19–21]. Among these,
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WTODP, which is based on the “maximum-error-first” prin-
ciple [22], demonstrates active selection and often achieves
higher efficiency.

However, as shown in [19–21], WTODP results in a single
sensor node occupying the transmission channel at any given
time, potentially leading to unnecessary resource wastage.
In pursuit of more efficient utilization of network resources,
Cheng et al. [23] proposed an event-triggered WTODP and
applied it to address the observer-based asynchronous control
problem of discrete-time nonlinear systems with communica-
tion constraints. Zhou et al. [24] further applied this protocol
to study Markov jump systems under the influence of decep-
tion attacks, and proposed a filter design method. Different
from [23] and [24], in the study of sliding-mode control for
fuzzy systems, Yang et al. [25] introduced a novel dual-
threshold event-triggered protocol (DTETP). This protocol
dynamically adjusts the number of sensor nodes occupying
transmission channels according to the relationship between
thresholds and each sensor node, offering advantages over
the event-triggered WTODP in [23, 24], which only allows
a single node to transmit.

In addition to the event-triggered mechanism, signal quan-
tization offers an effective means of alleviating the communi-
cation burden [26]. Consequently, protocols based on quan-
tized data have found widespread application in NCSs. Using
quantized data-based round-robin protocol, Li et al. [27]
proposed a new distributed observer consensus method to
address the quasi-consensus control problem for multi-agent
systems with random external disturbances. Using quantized
data-based stochastic communication protocol, Wu et al.
[28] designed a dynamic feedback controller via the Takagi-
Sugeno fuzzy model, addressing the H∞ control problem
for discrete-time nonlinear systems. Using quantized data-
based WTODP, Wang et al. [29] investigated a class of fuzzy
networked singularly perturbed systems by an observer-based
method, while Li et al. [30] proposed a controller design
scheme under lossy digital networks.

Motivated by the above discussion, we address the issue
of performance-guaranteed control for discrete-time systems
under communication constraints. The purpose is to de-
sign a state-feedback controller (SFC) dependent on the
scheduling signal to ensure stability while satisfying energy-
to-peak performance. To alleviate communication burden-
s, an event-triggered mechanism and quantized data-based
protocol (ETQDP) is presented. The protocol combines the
advantages of the DTET mechanism and signal quantization,
leading to the reduction of the channel occupancy rate (COR)
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compared to the normal WTODP [19–21] and DTETP [25].
A criterion on stability and energy-to-peak performance is
established by using the Lyapunov function method and some
inequality approaches. Then, a numerically tractable method
for determining the desired controller gain via solving linear
matrix inequalities (LMIs). Finally, a double-sided linear
switched reluctance machine system is applied to verify
the effectiveness of the ETQDP and the suitability of the
proposed controller.

Notation. Throughout this paper, Ra denotes an a-
dimensional real matrix. The notation diag{·} represents a
block-diagonal matrix. For any matrix W , W > 0 indicates
that W is symmetric and positive definite. The symbol ‘*’ is
used as a symmetry block in a square matrix. The function
arg max

χ1≤χ≤χ2

(f(χ)) determines the value of the independent

variable χ ∈ [χ1, χ2] at which f(χ) reaches its maximum.
Additionally, I and 0 denote the identity and zero matrices
with suitable dimensions, respectively.

II. PRELIMINARIES

Consider the following discrete-time linear system:{
x(h+ 1) = Ax(h) +Bu(h) +Dω(h),

z(h) = Cx(h),
(1)

where x(h) = [x1(h), x2(h), · · · , xn(h)]T ∈ Rn, u(h) ∈
Rnu , z(h) ∈ Rnz , and ω(h) ∈ Rnω are the system state,
control input, control output, and exterior disturbance input,
respectively. A, B, C, and D are constant matrices with
proper dimensions.

In the process of network communication, to mitigate com-
munication congestion effectively, it is crucial to quantize
signals before their transmission into the network space.
Therefore, we suppose there exist n sensor nodes, and
xi(h)(i ∈ N = {1, 2, · · · , n}) denotes the ith sensor
node of the system state. Before being transmitted into the
communication network, using a logarithmic quantizer q(·)
to quantize the system state, expressed as follows:

q(x(h)) = [q1(x1(h)), q2(x2(h)), · · · , qn(xn(h))]T . (2)

For each qi(·), the quantization level is defined as

Π = {±πι : πι = ριπ0, ι = 0,±1,±2, · · · } ∪ {±π0} ∪ {0} ,

where π0 > 0 denotes the initial value of qi(·), ρ (0 < ρ < 1)
represents the quantization density. A higher quantization
density results in more accurate quantization and better
performance. Then, the logarithmic quantizer qi(·) can be
represented as:

qi(xi(h)) =


πι, xi(h) ∈

(
πι
1+ξ ,

πι
1−ξ

]
,

0, xi(h) = 0,

−qi(−xi(h)), xi(h) ≤ 0,

(3)

where ξ = 1−ρ
1+ρ . Based on (3), utilizing the sector-bound

method [31], the quantized state in (2) is redefined as:

q(x(h)) = (I + ∆)x(h), (4)

where ∆ = diag{∆1, · · · ,∆i} with ∆i ∈ [−ξ, ξ].
In order to alleviate bandwidth pressure on the commu-

nication network, the communication protocol is employed
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Fig. 1. Structure of the control system under ETQDP.

to schedule the transmission sequence after quantization,
thereby determining which sensor nodes can access the
transmission channel.

As illustrated in Fig. 1, we define x̂(h) = [x̂1(h), x̂2(h),
· · · , x̂n(h)]T ∈ Rn, with x̂i(h) as the actual data of the
ith node received by the controller. For the ith sensor node,
define φi(h) as:

φi(h) = (x̂i(h− 1)− xi(h))Tψi(x̂i(h− 1)− xi(h)), (5)

where φi(h) represents the deviation between the current
state and the signal received by the controller at the pre-
vious instant, and ψi > 0 is the specified weight. We set
x̂i(−1) = 0 when h = 0.

The scheduling signal is defined as ϑ(h) ∈ N , which
represents the selected sensor node at instant h. According
to the WTODP [19–21], ϑ(h) is defined as

ϑ(h) = arg max
1≤i≤n

(φi(h)). (6)

However, unlike WTODP [19–21] and DTETP [25], we
adopt the following ETQDP to schedule the transmission data
on any instant h ∈ {1, 2, · · · }:

Given two positive threshold values fmin and fmax,
satisfying fmin < fmax, along with a positive scalar θi, we
consider the following cases:

Case 1. If there exists i ∈ N such that

φi(h) ≥ fmaxxTi (h)θixi(h) (7)

hold, the quantized data of these nodes will be transmitted.
For the nodes that do not satisfy this condition, the com-
pensation strategy is employed, in which their previously
transmitted values are retained. Consequently, the actual
signals received by the controller are given as follows:

x̂i(h) =

{
qi(xi(h)), if xi(h) satisfies (7),
x̂i(h− 1), otherwise.

(8)

Case 2. If case 1 does not hold, but there exists i ∈ N
such that

fmaxx
T
i (h)θixi(h) > φi(h) ≥ fminxTi (h)θixi(h), (9)

hold, the quantized data of only one node which not only
satisfies (9) but also satisfies (6) will be transmitted. In this
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case, utilizing the compensation strategy, the actual signals
received by the controller are given as follows:

x̂i(h) =

{
qi(xi(h)), if i = ϑ(h),

x̂i(h− 1), otherwise.

Then, at the current instant h, the overall received data x̂(h)
can be expressed as

x̂(h) = Φϑ(h)q(x(h)) + Φ̃ϑ(h)x̂(h− 1)

= Φϑ(h)((I + ∆)x(h)) + Φ̃ϑ(h)x̂(h− 1), (10)

where

Φϑ(h) = diag{δ(ϑ(h)− 1), δ(ϑ(h)− 2), · · · , δ(ϑ(h)− n)},
Φ̃ϑ(h) = I − Φϑ(h),

and δ(·) ∈ {0, 1} is the Kronecker delta function, defined as

δ(·) =

{
1, if ϑ(h)− i = 0,

0, otherwise.

Case 3. Cases 1 and 2 do not hold. In other words, for
any i ∈ N such that

φi(h) < fminx
T
i (h)θixi(h),

hold, under this case, none of the sensor nodes are allowed
to transmit their quantized data, the actual signals received
by the controller can be given as

x̂(h) = x̂(h− 1). (11)

According to (8), (10), and (11), the SFC dependent on
the scheduling signal is defined as

u(h) = Kν(h)x̂(h), (12)

where Kν(h) is the control gain, and ν(h) represents the
scheduling signal.

Combining (1) and (12), the closed-loop system (CLS) is
formulated as follows:{

x(h+ 1) = Ax(h) +BKν(h)x̂(h) +Dω(h),

z(h) = Cx(h).
(13)

Remark 1. It is worth noting that the control gain Kν(h)

will be affected by the scheduling signal ν(h). In Case 2,
the scheduling signal ν(h) (i.e. ϑ(h) in (6).) can take values
in the set N . Moreover, for Cases 1 and 3, we define the
scheduling signal ν(h) as 0 and n + 1, respectively. Thus,
as mentioned in the above ETQDP, the scheduling signal
ν(h) will take values in the set I , {0, 1, 2, · · · , n+ 1} for
different cases.

For the convenience of discussion, define the sets T1, T2,
and T3 to represent the instants that satisfy Cases 1, 2, and
3, respectively.

Definition 1. The CLS (13) is said to have the energy-to-
peak performance if the following conditions are satisfied:

1) For ω(h) = 0, the CLS (13) is asymptotically stable in
distinct instant sets T1, T2, and T3.

2) Under the zero-initial condition, and given a prescribed
energy-to-peak performance index γ > 0, the following
condition holds for all nonzero ω(h) ∈ L2[0,+∞):

sup
h≥0

zT (h)z(h) ≤ γ2
∞∑
h=0

ωT (h)ω(h). (14)

Lemma 1. [32]. For any matrices W1, W2, and W3 with
appropriate dimensions,[

W1 W2

∗ W3

]
< 0

W3 < 0 and W1 −W2W−13 WT
2 < 0.

Lemma 2. [33]. For any matrices S1 and S2 of suitable di-
mensions, and for a constant υ > 0, the following inequality
is satisfied:

S1ST2 + S2ST1 ≤ υ−1S1ST1 + υS2ST2 .

III. MAIN RESULTS

In this section, we first study the asymptotic stability
and energy-peak-performance analysis of CLS (13) under
ETQDP and propose sufficient conditions as follows:

Theorem 1. For given scalars γ > 0, κ > 0, fmax >
fmin > 0, and ψi > 0, suppose that there exist positive
definite matrices P > 0 and R > 0, diagonal matrix Θ > 0,
gain matrices K0, Kα and Kn+1, positive scalar λαβ > 0
with

∑n
β=1 λαβ = 1 (α ∈ N) such that

fmaxΘ−∆2Ψ ≥ 0, (15)[
−P CT

∗ −γ2I

]
< 0, (16)

Ξ0 =


Ξ11
0 Ξ12

0 Ξ13
0 0

∗ Ξ22
0 Ξ23

0 0
∗ ∗ Ξ33

0 0
∗ ∗ ∗ −R

 < 0, (17)

Ξα =

Ξ11
α Ξ12

α Ξ13
α

∗ Ξ22
α Ξ23

α

∗ ∗ Ξ33
α

 < 0, (18)

Ξn+1 =

Ξ11
n+1 Ξ12

n+1 Ξ13
n+1

∗ Ξ22
n+1 Ξ23

n+1

∗ ∗ Ξ33
n+1

 < 0 (19)

hold, where

Ξ11
0 = ATPA+ATPBK0 +KT

0 B
TPA+KT

0 B
TPB

×K0 +R− P + κfmaxΘ,

Ξ12
0 = ATPBK0 +KT

0 B
TPBK0 +R,

Ξ13
0 = ATPD +KT

0 B
TPD,

Ξ22
0 = KT

0 B
TPBK0 +R− κΨ, Ξ23

0 = KT
0 B

TPD,

Ξ33
0 = DTPD − I,

Ξ11
α = ATPA+ATPBKαΦα(I + ∆) + (I + ∆)TΦTα

×KT
αB

TPA+ (I + ∆)TΦTαK
T
αB

TPBKαΦα(I

+ ∆) + (I + ∆)TΦTαRΦα(I + ∆)− P + Υα,

Ξ12
α = ATPBKαΦ̃α + (I + ∆)TΦTαK

T
αB

TPBKαΦ̃α

+ (I + ∆)TΦTαRΦ̃α −Υα,

Ξ13
α = ATPD + (I + ∆)TΦTαK

T
αB

TPD,

Ξ22
α = Φ̃TαK

T
αB

TPBKαΦ̃α + Φ̃TαRΦ̃α −R+ Υα,

Ξ23
α = Φ̃TαK

T
αB

TPD, Ξ33
α = DTPD − I,

Ξ11
n+1 = ATPA+ATPBKn+1 +KT

n+1B
TPA+KT

n+1

×BTPBKn+1 − P + κfminΘ,

Ξ12
n+1 = ATPBKn+1 +KT

n+1B
TPBKn+1,

Ξ13
n+1 = ATPD +KT

n+1B
TPD,
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Ξ22
n+1 = KT

n+1B
TPBKn+1 − κΨ,

Ξ23
n+1 = KT

n+1B
TPD, Ξ33

n+1 = DTPD − I,

Υα = Ψ
n∑
β=1

λαβ(Φα − Φβ), Θ = diag{θ1, θ2, · · · , θn},

Ψ = diag{ψ1, ψ2, · · · , ψn}.

Then, the controller in (12) can make sure that CLS (13) in
distinct instant sets T1, T2, and T3 is asymptotically stable
with energy-to-peak performance γ.

Proof: Consider the Lyapunov function as

V(h) = xT (h)Px(h) + x̂T (h− 1)Rx̂(h− 1). (20)

Subsequently, we will analyze the ∆V(h) under different
transmission cases.

For h ∈ T1, we obtain

∆V(h) = V(h+ 1)− V(h)

= xT (h+ 1)Px(h+ 1) + x̂T (h)Rx̂(h)− xT (h)P

× x(h)− x̂T (h− 1)Rx̂(h− 1)

=
[
Ax(h) +BKν(h)x̂(h) +Dω(h)

]T
P
[
Ax(h)

+BKν(h)x̂(h) +Dω(h)
]

+ x̂T (h)Rx̂(h)

− xT (h)Px(h)− x̂T (h− 1)Rx̂(h− 1). (21)

Define ei(h) = x̂i(h)− xi(h)(i ∈ N). When xi(h) satisfies
(7), according to (8), we have ei(h) = (1+∆i)xi(h)−xi(h),
then eTi (h)ψiei(h) = xTi (h)∆2

iψixi(h). Thus, from (15), we
obtain:

fmaxx
T
i (h)θixi(h)− eTi (h)ψiei(h) ≥ 0.

When xi(h) does not satisfy (7), we have x̂i(h) =
x̂i(h − 1), then eTi (h)ψiei(h) = φi(h), which implies
fmaxx

T
i (h)θixi(h) > eTi (h)ψiei(h). It is not difficult to

deduce that
n∑
i=1

[
fmaxx

T
i (h)θixi(h)− eTi (h)ψiei(h)

]
=fmaxx

T (h)Θx(h)− eT (h)Ψe(h) ≥ 0, (22)

where e(h) = [eT1 (h), eT2 (h), · · · , eTn (h)]T . To simplify the
expression, define the scheduling signal ν(h) = 0. Then,
from (21) and (22), for scalar κ > 0, we can derive that

∆V(h) ≤
[
Ax(h) +BK0x(h) +BK0e(h) +Dω(h)

]T
P

×
[
Ax(h) +BK0x(h) +BK0e(h) +Dω(h)

]
+
[
x(h) + e(h)

]T
R
[
x(h) + e(h)

]
− xT (h)P

× x(h)− x̂T (h− 1)Rx̂(h− 1) + κ
[
fmaxx

T (h)

×Θx(h)− eT (h)Ψe(h)]

= ηT1 (h)Ξ0η1(h) + ωT (h)ω(h),

where η1(h) = [xT (h) eT (h) ωT (h) x̂T (h−1)]T . According
to (17), we have

∆V(h) ≤ ωT (h)ω(h). (23)

When ω(h) = 0, we can obtain ∆V(h) ≤ 0. Therefore,
according to Lyapunov stability theory, it can be concluded
that CLS (13) is asymptotically stable.

When ω(h) 6= 0, we define a performance index function
as follows:

J (h) , V(h)−
h−1∑
µ=0

ωT (µ)ω(µ). (24)

Then, under the zero initial condition, we obtain

J (h) = V(h)− V(0)−
h−1∑
µ=0

ωT (µ)ω(µ)

=
h−1∑
µ=0

{∆V(µ)− ωT (µ)ω(µ)}

which, in conjunction with (23), results in J (h) ≤ 0. It
follows that

V(h) ≤
h∑
µ=0

ωT (µ)ω(µ). (25)

Utilizing Lemma 1 to (16), we can abtain

CTC < γ2P. (26)

By means of (13), (20), (25), and (26), we have

zT (h)z(h) = xT (h)CTCx(h)

≤ γ2xT (h)Px(h)

≤ γ2V(h)

≤ γ2
h∑
µ=0

ωT (µ)ω(µ)

≤ γ2
∞∑
h=0

ωT (h)ω(h),

which implies the energy-to-peak performance.
For h ∈ T2, we can obtain

∆V(h) = V(h+ 1)− V(h)

=
[
Ax(h) +BKν(h)x̂(h) +Dω(h)

]T
P
[
Ax(h)

+BKν(h)x̂(h) +Dω(h)
]

+ x̂T (h)Rx̂(h)

− xT (h)Px(h)− x̂T (h− 1)Rx̂(h− 1). (27)

To simplify the expression, define the scheduling signal
ν(h) = α ∈ N . Then, according to the selection principle of
the WTODP [19–21], we derive that

(x̂(h−1)−x(h))TΨ(Φα−Φβ)(x̂(h−1)−x(h)) ≥ 0, (28)

holds for all β ∈ N . Combining (10), (27), and (28) yields

∆V(h) ≤
[
Ax(h) +BKα

[
Φα(I + ∆)x(h) + Φ̃αx̂(h− 1)

]
+Dω(h)

]T
P
[
Ax(h) +BKα

[
Φα(I + ∆)x(h)

+ Φ̃αx̂(h− 1)
]

+Dω(h)
]

+
[
Φα(I + ∆)x(h)

+ Φ̃αx̂(h− 1)
]T
R
[
Φα(I + ∆)x(h) + Φ̃α

× x̂(h− 1)
]
− xT (h)Px(h)− x̂T (h− 1)

×Rx̂(h− 1) + (x̂(h− 1)− x(h))TΥα

× (x̂(h− 1)− x(h))

= ηT2 (h)Ξαη2(h) + ωT (h)ω(h), (29)

where η2(h) = [xT (h) x̂T (h − 1) ωT (h)]T . From (18), we
can obtain ∆V(h) ≤ ωT (h)ω(h). Following a similar line of
reasoning as above h ∈ T1, we can subsequently conclude
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that CLS (13) is asymptotically stable and with the energy-
to-peak performance.

For h ∈ T3, in this case, x̂(h) = x̂(h− 1), we have

∆V(h) = xT (h+ 1)Px(h+ 1)− xT (h)Px(h)

=
[
Ax(h) +BKν(h)x̂(h) +Dω(h)

]T
P
[
Ax(h)

+BKν(h)x̂(h) +Dω(h)
]
− xT (h)Px(h). (30)

Owing to φi(h) < fminx
T
i (h)θixi(h) for all i ∈ N , and

ei(h) = x̂i(h− 1)− xi(h), we can get

n∑
i=1

[
fminx

T
i (h)θixi(h)− eTi (h)ψiei(h)

]
> 0.

It is not difficult to deduce that

fminx
T (h)Θx(h)− eT (h)Ψe(h) > 0. (31)

To simplify the expression, define the scheduling signal
ν(h) = n + 1. Then, for scalar κ > 0, we can derive from
(30) and (31) that

∆V(h) ≤
[
Ax(h) +BKn+1x(h) +BKn+1e(h) +D

× ω(h)
]T
P
[
Ax(h) +BKn+1x(h) +BKn+1

× e(h) +Dω(h)
]
− xT (h)Px(h) + κ

[
fmin

× xT (h)Θx(h)− eT (h)Ψe(h)
]

= ηT3 (h)Ξn+1η3(h) + ωT (h)ω(h), (32)

where η3(h) = [xT (h) eT (h) ωT (h)]T . From (19) we can
obtain ∆V(h) ≤ ωT (h)ω(h). Following a similar line of
reasoning as above h ∈ T1, we can subsequently conclude
that CLS (13) is asymptotically stable with the energy-to-
peak performance. The proof is completed.

Remark 2. Since the quantized state signal reaches the
controller through ET-WTODP in distinct instant sets, T1, T2,
and T3 have different forms. Therefore, to achieve stability
and satisfy the desired performance index, we analyzed the
sufficient conditions required under different transmission
cases.

Next, we provide a feasible solution based on some
inequality approaches to ensure the stability conditions (15)-
(19) in Theorem 1.

Theorem 2. For given scalars γ > 0, κ > 0, fmax >
fmin > 0, and ψi > 0, suppose that there exist positive
definite matrices P > 0 and R > 0, diagonal matrix Θ > 0,
gain matrices K0, Kα, and Kn+1, positive scalar υ > 0 and
λαβ > 0 with

∑n
β=1 λαβ = 1 (α ∈ N) such that

fmaxΘ− ξ2Ψ ≥ 0, (33)[
−P CT

∗ −γ2I

]
< 0, (34)

Ξ0 =


Ξ11
0 R 0 AT +KT

0 B
T 0

∗ R− κΨ 0 KT
0 B

T 0
∗ ∗ −I DT 0
∗ ∗ ∗ P − 2I 0
∗ ∗ ∗ ∗ −R

 < 0,

(35)

Ξα =



Ξ11
α −Υα 0 Ξ14

α ΦTαR 0

∗ Ξ22
α 0 Ξ24

α Φ̃TαR 0
∗ ∗ −I DT 0 0
∗ ∗ ∗ Ξ44

α 0 BKαΦα
∗ ∗ ∗ ∗ −R RΦα
∗ ∗ ∗ ∗ ∗ − υ

ξ2 I

 < 0,

(36)

Ξn+1 =


Ξ11
n+1 0 0 AT +KT

n+1B
T

∗ −κΨ 0 KT
n+1B

T

∗ ∗ −I DT

∗ ∗ ∗ P − 2I

 < 0 (37)

hold, where

Ξ11
0 = R− P + κfmaxΘ, Ξ11

α = −P + Υα + υI,

Ξ14
α = AT + ΦTαK

T
αB

T , Ξ22
α = −R+ Υα,

Ξ24
α = Φ̃TαK

T
αB

T , Ξ44
α = P − 2I,

Ξ11
n+1 = −P + κfminΘ, Θ = diag{θ1, θ2, · · · , θn},

Υα = Ψ
n∑
β=1

λαβ(Φα − Φβ),Ψ = diag{ψ1, ψ2, · · · , ψn}.

Then, the controller in (12) can make sure that CLS (13) in
distinct instant sets T1, T2, and T3 is asymptotically stable
with energy-to-peak performance γ.

Proof: Firstly, applying Lemma 1 to (36), we have

Ξα = Ξ̄α +
ξ2

υ
ST1 S1 < 0, (38)

where

Ξ̄α =


Ξ̄11
α −Υα 0 AT +ΦTαK

T
αB

T ΦTαR

∗ −R+ Υα 0 Φ̃TαK
T
αB

T Φ̃TαR
∗ ∗ −I DT 0
∗ ∗ ∗ P − 2I 0
∗ ∗ ∗ ∗ −R

 ,
Ξ̄11
α = −P + Υα + υI,

S1 =
[
0 0 0 ΦTαK

T
αB

T ΦTαR
T
]
.

Because of ∆2 ≤ ξ2, we can deduce from (38) that

Ξ̄α + υ−1ST1 ∆2S1 < 0. (39)

Utilizing Lemma 2 to (39), we get

Ξ̃α ≤ Ξ̂α + υ−1ST1 ∆2S1 + υST2 S2, (40)

where

Ξ̃α =


−P + Υα −Υα 0 Ξ̃14

α Ξ̃15
α

∗ −R+ Υα 0 Φ̃TαK
T
αB

T Φ̃TαR
∗ ∗ −I DT 0
∗ ∗ ∗ P − 2I 0
∗ ∗ ∗ ∗ −R

 ,

Ξ̂α =


−P + Υα −Υα 0 Ξ̂14

α ΦTαR

∗ −R+ Υα 0 Φ̃TαK
T
αB

T Φ̃TαR
∗ ∗ −I DT 0
∗ ∗ ∗ P − 2I 0
∗ ∗ ∗ ∗ −R

 ,
S2 =

[
I 0 0 0 0

]
, Ξ̃14

α = AT + ΦTαK
T
αB

T ,

Ξ̃15
α = (I + ∆)TΦTαR, Ξ̂14

α = AT + ΦTαK
T
αB

T .

For any matrix P > 0, the following inequality holds:

(I − P )P−1(I − P )T ≥ 0,
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which implies P − 2I ≥ −P−1. Therefore, by utilizing
Lemma 1, it is easy to prove that (18) can be ensured by (36).
Similarly, according to (35) and (37), it can be concluded that
(17) and (19). The proof is completed.

If the signal quantization is not considered, the protocol
will degenerate into the DTETP. Subsequently, the following
stability criterion can be derived:

Corollary 1. For given scalars γ > 0, κ > 0, fmax >
fmin > 0, and ψi > 0, suppose that there exist positive
definite matrices P > 0 and R > 0, diagonal matrix Θ > 0,
gain matrices K0, Kα, and Kn+1, positive scalar λαβ > 0
with

∑n
β=1 λαβ = 1 (α ∈ N) such that

[
−P CT

∗ −γ2I

]
< 0, (41)

Ξ0 =


Ξ11
0 R 0 AT +KT

0 B
T 0

∗ R−κΨ 0 KT
0 B

T 0
∗ ∗ −I DT 0
∗ ∗ ∗ P−2I 0
∗ ∗ ∗ ∗ −R

 < 0,

(42)

Ξα =


Ξ11
α −Υα 0 Ξ14

α ΦTαR

∗ −R+Υα 0 Φ̃TαK
T
αB

T Φ̃TαR
∗ ∗ −I DT 0
∗ ∗ ∗ P−2I 0
∗ ∗ ∗ ∗ −R

 < 0,

(43)

Ξn+1 =


Ξ11
n+1 0 0 AT +KT

n+1B
T

∗ −κΨ 0 KT
n+1B

T

∗ ∗ −I DT

∗ ∗ ∗ P−2I

 < 0 (44)

hold, where

Ξ11
0 = R− P + κfmaxΘ, Ξ11

α = −P + Υα,

Ξ14
α = AT + ΦTαK

T
αB

T , Ξ11
n+1 = −P + κfminΘ,

Υα = Ψ
n∑
β=1

λαβ(Φα − Φβ),

Θ = diag{θ1, θ2, · · · , θn},
Ψ = diag{ψ1, ψ2, · · · , ψn}.

Then, the controller in (12) can make sure that CLS (13) in
distinct instant sets T1, T2, and T3 is asymptotically stable
with energy-to-peak performance γ.

If the signal quantization and ET mechanism are not
considered, the protocol will degenerate into the conventional
WTODP. Subsequently, the following stability criterion can
be derived:

Corollary 2. For given scalars γ > 0, and ψi > 0, suppose
that there exist positive definite matrices P > 0 and R > 0,
gain matrices Kα, positive scalar λαβ > 0 with

∑n
β=1 λαβ =

1 (α ∈ N) such that

[
−P CT

∗ −γ2I

]
< 0, (45)
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Fig. 2. State trajectories without control.
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Fig. 3. State trajectories of CLS under ETQDP.

Ξα =


Ξ11
α −Υα 0 Ξ14

α ΦTαR

∗ −R+ Υα 0 Φ̃TαK
T
αB

T Φ̃TαR
∗ ∗ −I DT 0
∗ ∗ ∗ P − 2I 0
∗ ∗ ∗ ∗ −R

 < 0

(46)

hold, where

Ξ11
α = −P + Υα, Ξ14

α = AT + ΦTαK
T
αB

T ,

Υα = Ψ
n∑
β=1

λαβ(Φα − Φβ),

Ψ = diag{ψ1, ψ2, · · · , ψn}.

Then, the controller in (12) can make sure that CLS (13) is
asymptotically stable with energy-to-peak performance γ.

IV. NUMERICAL EXAMPLE

In this section, the proposed energy-to-peak control based
on the ETQDP design is applied to the double-sided linear
switched reluctance machine system as in [34]. Using the
online least squares identification method, at the sampling
time of T = 0.001s, we obtain the system parameters as
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Fig. 4. Trajectory of γ(h).

TABLE I
γmin FOR VARIOUS ρ.

ρ 0.95 0.96 0.97 0.98 0.99

γmin 0.1350 0.1348 0.1345 0.1343 0.1341

follows:

A =

[
1.0004 0.0909
0.0085 0.8247

]
, B =

[
0.0047
0.0909

]
.

The other system parameters are given by

C =

[
0.1 0.1
0 −0.1

]
, D =

[
0.01
0.02

]
.

Assuming there are two sensor nodes, choose κ = 0.8,
fmax = 1.98, fmin = 1.71, ρ = 0.99, and the weight matrix
Ψ = diag{0.1, 1}. We initialize the system state x(0) =
[0 0]T . The exogenous disturbance input is assumed to be
w(h) = cos(0.15πh)exp(−0.06h). The state trajectories
without control are shown in Fig. 2. By utilizing the MOSEK
and YALMIP toolboxes to solve the LMIs in Theorem 2, we
can obtain the minimum energy-to-peak performance index
γmin = 0.1317 and the control gains as

K0 =
[
−1.1648 −2.9507

]
,K1 =

[
−1.1781 −0.0562

]
,

K2 =
[
−1.1746 −7.6679

]
,K3 =

[
−1.1651 −2.9517

]
.

Fig. 3 depicts the state trajectories of CLS under ETQDP.
Define

γ(h) =

√
suph≥0 z

T (h)z(h)√∑∞
h=0 ω

T (h)ω(h)
,

COR =
The total occupied channel moments

The total moments
× 100%.

Then, the trajectory of γ(h) is illustrated in Fig. 4. Fur-
thermore, for various values of the quantization density ρ,
different values of γmin can be obtained, as shown in Table
I. It is evident that as the value of ρ increases, γmin gradually
decreases.

When setting γ = 2.1 and ρ = 0.98, with the other
parameters remaining the same, the selection of the sensor
nodes under ETQDP, DTETP, and WTODP are displayed in

TABLE II
COR FOR DIFFERENT PROTOCOL.

protocol WTODP [19–21] DTETP [25] ETQDP

COR 100% 47.33% 35.67%
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Fig. 5. Selected sensor nodes under ETQDP.
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Fig. 6. Selected sensor nodes under DTETP.
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Fig. 7. Selected sensor nodes under WTODP.
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Figs. 5, 6, and 7, respectively. It can be seen that the number
of sensor nodes occupying the transmission channel in Figs.
5 and 6 changes with time, and there are some instants when
no node occupies the transmission channel, while in Fig. 7,
there is one sensor node occupies the transmission channel
at each moment. Moreover, Table II presents a statistical
evaluation that shows the COR of the DTETP stands at
142/300 = 47.33%, representing a reduction of 52.67%
compared to that of the conventional WTODP. The COR of
ETQDP is 107/300 = 35.67%, which is reduced by 11.66%
based on DTETP.

V. CONCLUSION

This paper addressed the issue of performance-guaranteed
control for discrete-time systems under communication con-
straints. To alleviate communication burdens, an ETQDP was
presented. The protocol combined the advantages of both
the DTET mechanism and signal quantization, resulting in a
decrease in the COR compared to the conventional WTODP
and DTETP. Additionally, a SFC relying on scheduling
signals was proposed based on this protocol. A criterion
of stability and energy-to-peak performance was established
by employing the Lyapunov function method and various
inequality approaches. Subsequently, a numerically tractable
method was developed for determining the desired controller
gain by solving LMIs. Finally, a double-sided linear switched
reluctance machine system was used to verify the effective-
ness of the ETQDP and the suitability of the controller.
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