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Abstract—Diabetes retinopathy (DR) is one of the complica-
tions of diabetes. Early diagnosis of retinopathy is helpful to
avoid vision loss or blindness. The difficulty of this task lies
in the significant differences in the size and shape of lesions
between different DR samples, with a higher proportion of
small lesions. We propose a new multi-disease segmentation
method based on UNet++ to improve the segmentation accuracy
of DR lesions. We chose Resnet50 as the backbone network
and introduced a new hybrid residual module to replace the
original residual module. At the same time, to compensate
for the loss of information in DR small lesions during the
feature extraction process, we introduce the Across Feature
Map Attention (AFMA) is an auxiliary branch that enhances
the segmentation accuracy of small-scale lesions. Finally, in
response to the difficulty in extracting DR lesions in shallow
models, the model abandoned the deep supervision structure in
UNet++. In addition, we use a weighted mixed loss function to
train the model. We conducted experiments on IDRID and DDR
public datasets, simultaneously segmenting four typical DR
lesions. The results on intersection over union (IOU) and dice
similarity coefficient (Dice) showed that our method achieved
competitive performance compared to other research methods.

Index Terms—Diabets retinopathy, Convolutional Neural
Network, semantic segmentation, Attention mechanism.

I. INTRODUCTION

D IABETS retinopathy (DR) is a common chronic com-
plication of diabetes. It is a series of typical patholog-

ical changes caused by retinal microvascular damage caused
by diabetes, which affects vision and even causes blindness.
DR patients will have different pathological characteristics
at various stages of the disease, such as soft exudation
(SE), hard exudation (EX), microaneurysm (MA), bleeding
point (HE), etc. According to the occurrence time, formation
reason, and distribution characteristics of different lesions,
diabetes retinopathy can be divided into two stages: the early
stage of DR, known as nonproliferative diabetes retinopathy
(NPDR). Currently, there is no evident focus on the patient’s
fundus. Early diagnosis of NPDR can help patients under-
stand the disease status and promptly predict the disease’s
development. The second stage is the proliferative diabetes
retinal stage (PDR). At this time, the patient’s fundus ap-
pears to have severe retinal ischemia and new capillaries,
and vision begins to decline or even become blind. Early
screening of these NPDR lesions is the most effective method
to slow down DR progress and prevent vision loss [1]. In
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clinical applications, ophthalmologists screen by manually
observing the lesions in color fundus images. However, this
screening method is not only affected by the subjective
factors of doctors but also has a large workload. Therefore, it
is essential to create an automatic focus segmentation method
for DR screening.

With the rapid development of computer vision and deep
learning technology, automatic lesion segmentation methods
are gradually emerging in DR screening. In recent years,
much research has been based on Convolutional Neural
Networks (CNN), and some pixel-level lesion annotation
databases have been published. These models can automat-
ically extract the features of specific lesions and perform
accurate segmentation in the image by learning annotated
fundus images. Compared to traditional image processing
methods, deep learning has shown better performance in
processing complex fundus images. Although these works
have made significant progress in the automatic segmentation
of DR lesions, they are still full of significant challenges.
Firstly, the structure of DR lesions is complex, and there are
differences in size, shape, color, brightness, and other aspects
among various lesions. Secondly, there are many small and
medium-sized lesions in DR lesions. In the IDRID dataset,
the lesion size of images with a resolution of 4288 x 2848
is counted, and 50% of lesions are less than 269 pixels [2].
Such a small lesion size poses an excellent challenge for
CNN-based segmentation methods in learning discriminative
representations with sufficient spatial information. In addi-
tion, the color, contour, and texture of tissues on the retina
(such as blood vessels and optic disc) are similar to those of
lesions, which can easily lead to false positive results.

We propose an improved model based on UNet++ to
address the issues of multiple small-scale lesions, complex
structures of various lesions, and tissue influence on the
retina and fundus in DR lesions. Discarding deep supervised
training, replacing the ResNet50 backbone network, and
integrating CAR The fusion of AFMA into feature extraction
solved the problem of low segmentation accuracy caused by
the complex structure and significant differences of fundus
lesions. We validated the effectiveness of our model using
IDRID and DDR datasets.

The rest of the paper is organized as follows: Chapter 2
reviews related work on DR lesion segmentation. Chapter 3
provides a detailed description of our improved structural
model. Chapter 4 compares our model with other deep
learning-based models, highlighting its superior performance.
Finally, we conclude our work and provide suggestions for
future research.

II. RELATED WORK

DR lesion segmentation is generally achieved by analyzing
color fundus images. The lesion segmentation methods can
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be roughly divided into two categories: traditional methods-
based and deep learning-based. The following will introduce
these two types of methods separately.

A. Traditional methods

Early methods for DR lesion segmentation were primarily
based on digital image processing. Wynne Hsu et al. [3]
employed a clustering-based approach, first preprocessing
retinal images with median filtering. They then divided the
images into several blocks, identifying the maximum value
in each block as the lesion center and the minimum value
as the background center. Subsequently, segmentation was
achieved through dynamic clustering iterations until conver-
gence. Thomas Walter et al. [4] utilized morphology-based
algorithms for retinal lesion segmentation. They leveraged
the higher pixel intensity in lesion areas to detect lesions
and then used morphology algorithms to reconstruct lesion
contours. After eliminating interference from vascular struc-
tures, areas containing exudates were determined using local
contrast. Alan et al. [5] employed region-growing algorithms
for retinal image segmentation. They initially eliminated
image intensity variations caused by retinal illumination
changes through median filtering and normalized contrast.
Then, they utilized closing operations to generate images
and obtained edges through thresholding. Subsequently, they
performed region growth along edge gradients and merged
similar regions using the watershed algorithm.

However, the performance of the above methods is often
hindered by limitations in the brightness and contrast of
fundus images, resulting in poor robustness and difficulty
in achieving ideal segmentation results, which do not meet
the requirements of clinical screening.

B. Deep learning methods

Deep learning-based methods with promising results have
recently been applied to DR lesion segmentation. In 2017,
Tan et al. [6] first utilized a 10-layer CNN to simultaneously
segment multiple lesions, including exudates, hemorrhages,
and microaneurysms. They evaluated the output at the pixel
level, demonstrating the feasibility of using a single CNN
structure for segmenting multiple lesions simultaneously. In
2018, Playout et al. [7] proposed an extension to U-Net
that could simultaneously segment red and bright lesions.
Their decoder incorporated new architectures such as residual
convolution, global convolution, and mixed pooling, em-
ploying two identical decoders, each dedicated to a specific
lesion category. In 2019, Guo et al. [8] introduced a small
object segmentation network, Lseg, capable of simultane-
ously segmenting four types of lesions: microaneurysms, soft
exudates, hard exudates, and hemorrhages. The backbone
network was VGG-16, with the fully connected layers and
the fifth pooling layer removed and an additional lateral
extraction layer added. The output was obtained through a
multi-scale weighted fusion of the lateral extraction layers.
Subsequently, Yan et al. [9] proposed a novel cascaded
architecture to address the computational burden of high-
resolution DR color images and the poor global background
capture resulting from image tiling. The model consisted of
three components: GlobalNet, LocalNet, and Fusion module.
GlobalNet received downsampled features of the image as

input and generated coarse segmentation maps of the same
size as the input. LocalNet processed cropped image patches
as input and generated segmentation maps at the original
resolution. The Fusion module was used to crop feature
maps from GlobalNet and concatenate them into LocalNet
to simultaneously capture global and local information. Ad-
dressing the scale variation of different DR lesions, Liu et
al. [2] modified the upsampling and downsampling parts
of the convolutional neural network, designing a universal
multi-to-multi feature recombination network (M2MRF) to
segment them. This achieved a significant improvement in
the segmentation accuracy of small-scale DR lesions.

This study aims to devise a method for segmenting DR
lesions, aiming to overcome the limitations posed by existing
approaches, including the small size of DR lesions and
the significant variations between lesions across different
samples. To address these challenges, we introduce an en-
hanced UNet++ architecture for the automated segmentation
of multiple lesions in DR images.

III. METHODS

Unet++ network [10] is a widely adopted and efficient
network architecture that introduces a series of nested and
skip connections to better capture multi-scale feature infor-
mation in images, reduce feature loss problems, and improve
the model’s perception ability. At the same time, it provides
more contextual and detailed information, enabling it to
handle better complex situations such as target boundaries
and small structures. However, when processing DR fundus
images, UNet++ still has certain limitations, as traditional
encoder structures cannot solve the problems of slight target
information loss and significant sample differences in feature
extraction. Further optimization of the algorithm and model
structure is needed.

A. Image Preprocessing

Before training the network, we perform necessary pre-
processing on the original images for lesion enhancement
and data augmentation. Firstly, sizeable black background
areas at the boundaries of fundus images do not contain any
eye-related information and can waste hardware resources.
We use the Canny edge detection algorithm and apply
thresholding to detect the edges of the fundus images. Then,
we adaptively crop the fundus images to remove areas with
zero pixels. Secondly, since the sizes of images in different
datasets vary, we resize all images to 1024 × 1024. Finally,
due to the limited number of image samples, we apply data
augmentation to the original images: (1) Scaling according
to random scaling factors. (2) Random flipping of images
based on random probabilities. (3) Color transformations on
images based on color space conversion parameters.

B. Framework Design

To address the challenges above, we have devised a new
medical image segmentation model based on the UNet++
framework. We utilize ResNet50 [11] as the backbone net-
work to enhance the model’s feature extraction capabilities.
Additionally, the Conditional Convolution Attention Residual
Module (CAR) dynamically covers, expresses, and utilizes
relationships between samples, mitigating the significant
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Fig. 1: Network structure

Fig. 2: Image Cropping

variability among different samples in DR fundus images,
thereby further improving the segmentation accuracy of the
model. To compensate for the loss of information in the
feature extraction process for small-scale lesions in DR fun-
dus images, we introduce Across Feature Mapping Attention
(AFMA) [12]. AFMA represents the similarity of objects
within the same category by computing the relationship ma-
trix between intermediate feature blocks and original image
blocks, compensating for the information loss associated
with small-scale lesions by acting on the output module.
Considering the large proportion of small target samples in
DR samples, we have omitted deep supervision in UNet++.
The overall architecture of the model is illustrated in Figure
1.

C. Encoder Design

1) Backbone Network: In order to improve the model’s
ability to fit different types or stages of lesions in DR fundus
images, more complex calculations are needed to extract
features. The Unet++ model only uses simple convolution
and pooling operations in the feature extraction, resulting in
weak feature capabilities. In theory, the deeper the network,
the stronger the fitting ability. However, in practice, when
the network depth reaches a certain level, the problem of
network degradation will occur. ResNet effectively solves the
problem of model degradation in deep neural networks by
introducing residual structures, which allow specific layers
in the neural network to skip the next feature extraction
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Fig. 3: CondConv MoudleCBAM
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Fig. 4: CBAM Moudle

layer and connect to other layers, thereby weakening strong
connections between layers. As the depth of the network
increases, each residual block can learn additional feature
changes, enhancing the network’s expression and modeling
capabilities. Considering hardware resources and feature
extraction capabilities, the model chooses ResNet50 as the
backbone network for feature extraction.

2) CAR Module: Considering the considerable variations
in lesions among different samples of DR fundus images,
we propose employing Conditional Convolution (CondConv)
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[13] instead of traditional convolution modules for feature
extraction. In traditional convolution, the same convolutional
kernels are applied to all input samples, with fixed parameters
determined solely by backpropagation during model training.
However, in CondConv modules, the convolutional kernel
parameters are determined by the input samples. The core
idea is to equip each convolutional layer with multiple
sets of weights and to weigh the convolutional kernels,
thereby generating unique convolutional kernel parameters
for each sample, which is particularly crucial for DR image
segmentation, as the parameters of ordinary convolutions
are fixed and cannot adapt well to the features of lesions
with significant scale differences. This limitation results in
suboptimal performance when dealing with DR images con-
taining lesions of varying scales. The computation formula
for CondConv is as follows:

Output(x) = σ((α1 ·W1 + · · ·+ αn ·Wn) ∗ x) (1)

Here αi represents a scalar weight derived from the
input feature x, Wi stands for the convolution parameters,
n indicates the dimension of αi, and αi can be obtained
through a routing function r(x). The routing function is
defined as:

r(x) = Sigmoid(GlobalAveragePool(x)R) (2)

in the equation, R denotes a learnable routing weight
matrix multiplied by the features after average pooling to
map them to n scalar weights.

The Convolutional Block Attention Module (CBAM) [14]
is a hybrid attention mechanism, as illustrated in Figure 3,
consisting of a Channel Attention Module (CAM) and a
Spatial Attention Module (SAM). CAM models relationships
between different channels of the feature map to better cap-
ture dependencies among features. Conversely, SAM models

relationships between different spatial positions of the feature
map to better capture the spatial distribution of features.

CAM(x) = SigmoidMLP (AvgPool(x)) +MLP (MaxPool(x))) (3)

As shown in Equation 3, CAM modifies the spatial dimen-
sion of the feature map x using both average pooling and
max pooling layers while keeping the number of channels
unchanged. After passing through the MLP module, the
results from the two layers are added together, and finally,
the output result is obtained through a sigmoid activation
function.

SAM(x) = sigmioid(fn×n([AvgPool(x); MaxPool(F )])) (4)

SAM transforms the input features into feature maps with
a single channel each through max pooling and average
pooling layers. Subsequently, the two feature maps are con-
catenated and passed through a convolutional layer to create
a one-channel feature map. Finally, an activation function
is applied to generate the spatial attention feature map, as
depicted in Equation 4.

Through conditional convolution, the network can dy-
namically generate convolutional kernel weights tailored to
different samples, thereby better understanding and utilizing
relationships among samples, thus improving model perfor-
mance. Considering the complex structure and diverse lesion
types in DR images, the CBAM module helps the network
better understand the relationships among different channels
and spatial positions in the images, thereby more accurately
capturing and segmenting lesion areas, enhancing perception
of lesion features, and improving segmentation accuracy
of lesion areas. We propose a new module, CARMoudle,
which combines the hybrid attention module with conditional
convolution and residual structures, enhancing the model’s
ability to learn feature dependencies and feature extraction.
This integration is more suitable for extracting features of
multiple lesions in DR fundus images and replacing the resid-
ual modules in ResNet50. Our research results demonstrate
that the CAR module improves the segmentation accuracy
of lesions in DR images. The module architecture is shown
in Figure 5.

D. AFMA

DR fundus images contain many different types of small-
scale lesions, and statistics on the IDRID dataset with a
resolution of 4288 * 4288 show that 50% of lesions are less
than 269 pixels. At the same time, the shape and location
of lesions, such as microaneurysms and bleeding points, can
also vary depending on the patient’s condition and stage,
which poses challenges for small target segmentation of DR
lesions. Traditional models often use convolution and pooling
operations to capture high-level semantic features in images,
which reduces the resolution of image features and causes
information loss of some small objects (small targets) in
the image, making it difficult for the model to recover the
information of small targets from these low-resolution feature
maps.

The AFMA module is designed to address information loss
resulting from feature propagation by exploiting relationships
among objects of similar sizes within the same category. It
computes a relationship matrix between intermediate feature
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blocks and the input image to depict the similarity of objects
within the same category. Subsequently, it utilizes these
relationships to bolster the segmentation of small targets.Its
structure is depicted in Figure six. It consists of two stages.
In the first stage, within the encoder part, convolution is
applied separately to the input image img ∈ RH×W×C

and a certain stage feature map Fi ∈ RHi×Wi×Ci .Their
channel numbers are transformed to 1 and the number of
object classes Nc , resulting in Rimg ∈ RH×W×1 and
Ri ∈ RHi×Wi×Nc respectively. Rimg is segmented into
fixed-size dd patches and reshaped into a two-dimensional
patch Pimg ∈ R

HW
d2

×d2

. The same segmentation and reshap-
ing operations are performed for each channel of Ri, and
the results are concatenated along the channel dimension
to obtain Pi ∈ R

HiWi
d2

×d2×Nc . Finally, the dot product is
computed between each channel category P k

i of Pi and Pimg

to determine the relationship between each patch block in
the image and the feature map related to the kth category.
The resulting relationship matrices are concatenated along
the channel dimension to obtain the final relationship map
Ai ∈ R

HW
d2

×HiWi
d2

×Nc . In the second stage, average pooling
is applied to adjust the predicted map Mmask ∈ RH×W×Nc

from the decoder output to the size of Ri, denoted as
Rmask ∈ RHi×Wi×Nc . Similar segmentation, reshaping,
and concatenation operations as those applied to Ri are
applied to Rmask to obtain PmaskR

HiWi
d2

×d2×Nc . Then, the
dot product is computed between Rmask and Ai, and the
results from each channel are concatenated. The resulting
Mi ∈ R

HW
d2

×d2×Nc is unfolded into the same size as Mmask

to obtain Oi ∈ RH×W×Nc . Finally,Oi is added to Mmask to
obtain the final output feature map Pre ∈ RH×W×Nc .

We choose to apply the AFMA module to the input image
and the backbone feature network’s third layer output feature
map to obtain the relationship feature map. The obtained
relationship feature map is modulated in the decoder output
feature map to obtain the final segmentation map. Our exper-

imental results indicate that The AFMA module significantly
improves the accuracy of DR lesion segmentation.

E. Training module

1) Deep supervision: The deep supervision structure in
UNet++ facilitates model pruning and reduces the number
of model parameters. However, the difficulty of extracting
model features due to the small scale of DR lesions and
significant differences between samples makes it difficult,
and the shallow features of the model contain less informa-
tion. For pruning mode, the segmentation accuracy of sub-
network output feature maps is not high, and pruning will
cause a decrease in segmentation accuracy. For ensemble
mode, collecting the segmentation results of all segmentation
branches and taking their average will cause information
loss in profound network segmentation results, leading to
a decrease in model segmentation accuracy. Therefore, our
model abandons the deep supervision structure and uses the
last layer of upsampled feature maps as output. The results
of ablation experiments indicate that abandoning the deep
supervision structure improves the segmentation accuracy of
the model in DR.

2) Loss Function: The overall loss of the model is com-
posed of two weighted losses. First, the standard segmen-
tation loss aims to minimize the difference between the
predicted values and basic facts of each pixel in the retinal
image. Second, utilizing AFMA’s auxiliary branch loss to
supervise the generated relationship feature maps further
improves their quality.

We use a weighted combination of cross-entropy loss and
dice loss functions for the standard segmentation loss. Let
P and G represent the predicted and ground truth maps,
respectively. Let < c, i, j > denote a pixel’s channel, hori-
zontal, and vertical coordinates. Let C represent the number
of classes, where 1 ≤ c ≤ C, and H, W represent the height
and width of the output image. Then, the dice loss function
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and the cross-entropy loss function can be represented by
equations 5 and 6, respectively.

LDice(P,G) = C −
C∑

c=1

2
∑H,W

i,j=1 p < c, i, j > G < c, i, j >∑H,W
i,j=1 p

2 < c, i, j > +
∑H,W

i,j=1G
2 < c, i, j >

(5)

LCE(P,G) =
−1

C ·H ·W

C∑
c=1

H,W∑
i,j=1

G < c, i, j > log(p < c, i, j >) (6)

the standard segmentation loss can be expressed as:

Lseg = λ1LCE + λ2LDice (7)

For the AFMA auxiliary branch, mean squared error loss
is used.

Lafma=
1

C· l1· l2

C∑
c=1

l1∑
i=1

l2∑
j=1

[Ai<c, i, j>−Agt<c, i, j>]
2 (8)

In the equation,Airepresents the relationship feature map
obtained by the AFMA module in the first stage, where
l1 and l2 denote the height and width of Ai, respectively.
Agt is computed based on the label G, initially compressed
to the size of Ri ∈ RHi×Wi×Nc using an average pooling
layer, denoted as Rgt ∈ RHi×Wi×Nc . Subsequently, the same
segmentation, reshaping, and dot product operations are per-
formed on Rgt and G for each corresponding channel using
the AFMA module. Finally, the results from each channel are
concatenated to obtain the feature Agt ∈ R

HW
d2

×HiWi
d2

×Nc .
The specific formula is as follows:

Rk
gt = ψ(Gk,

H

Hi
,
W

Wi
,
H

Hi
,
W

Wi
) (9)

Ak
gt = ϕ(Gk, d)⊗ ϕ(Rk

gt, d)
−1 (10)

Agt = A1
gt||A2

gt · · · ||AC
gt (11)

here,Ψ(input,Kh,Kw, Sh, Sw) represents the average
pooling operation, where (K h ,Kw) are the kernel sizes
and (Sh, Sw) are the stride sizes. ϕ(input, d) epresents
the segmentation and reshaping operation, and || denotes
the concatenation operation. Thus, the overall loss can be
represented as:

L = αLseg + βLafma (12)

IV. EXPERIMENTS AND ANALYSIS

A. Dataset

We evaluated the segmentation performance of our model
architecture on two retinal image datasets: IDRID and DDR.
Here is some general information about the datasets:

1) IDRID: The images were captured using the Kova VX-
10 50° FOV alpha retinal camera. It is used for challenges
consisting of three subtasks: segmentation, grading, and
localization. The segmentation subset of IDRID consists of
81 retinal images from India with a resolution of 4288
× 2848 pixels. Each retinal image has pixel-level labels
for hemorrhages (HE), soft exudates (SE), microaneurysms
(MA), and exudates (EX). In the experiments, 54 images
were used for training and 27 for testing.In this experiment,
we allocated 54 training set images as 46 training images
and 8 validation images.

2) DDR: The CFP images in the dataset were captured
using various retinal cameras with a 45° FOV. It contains
757 color retinal images of Chinese individuals, each corre-
sponding to four lesions with manufactured labels. The image
resolutions range from 1380 × 1382 to 2736 × 1824 pixels.
In the experiments, 383 images were used for training, 149
for validation, and 225 for testing.

B. Experimental environment

This work experimented on a server with an NVIDIA
GeForce RTX V100 (32GB) GPU. The comparative exper-
iments on the DDR dataset were carried out on a server
equipped with two NVIDIA TITAN XP (12GB) GPUs.
The comparative experiments on the IDRID dataset were
carried out on a workstation equipped with a single NVIDIA
GeForce RTX 3090 (24GB) GPU.

We utilized PyTorch as our deep learning framework and
trained and tested the models on each dataset separately using
uninitialized networks. Prior to entering the model, images
underwent preprocessing. We employed the Adam training
strategy for rapid convergence training, with a batch size of
2 and a maximum iteration count of 650. The initial learning
rate, momentum, and weight decay were set to 1e-4, 0.9, and
0.1, respectively. For the loss function hyperparameters, λ1
and λ2 were set to 1, while α and β were set to 5 and 1,
respectively. We employed a strategy to adjust the learning
rate adaptively based on the batch size.

C. Evaluation Criteria

To evaluate the segmentation performance of our method
on the IDRID and DDR datasets, we adopted the widely
accepted evaluation metrics in the field of semantic segmen-
tation, namely the Dice Similarity Coefficient (Dice) and
Intersection over Union (IoU). The definitions of these

Dice =
2TP

2TP + FP + FN
(13)

IOU =
TP

TP + FN + FP
(14)

Where TP (True Positives) represents the number of correctly
predicted positive cases, FP (False Positives) represents the
number of incorrectly predicted positive cases, and FN (False
Negatives) represents the number of incorrectly predicted
negative cases. In some test images, specific lesions may
not be present. Therefore, each pixel is treated as a case
during evaluation, and the test set is considered a large
pixel set. Evaluation metrics are then computed for all pixels
accordingly.

D. Ablation Experiments

To explore the contributions of backbone networks, CAR
modules, AFMA modules, and deep supervised learning to
DR lesion segmentation performance, we tested them on the
IDRID dataset. Compare the performance improvement of
different modules using the deep supervised UNet++ as the
benchmark model.

The results in Table 1 indicate that UNet++ without deep
supervision has better accuracy in lesion segmentation than
UNet++ with deep supervision. In addition, each added
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TABLE I: Ablation study results on IDRID

Model Encoder DS CAR AFMA mIou(%) mDice (%)

Baseline UNet++
√

- - 38.98 55.58

(a) UNet++ - - - 40.37 56.25

(b) ResNet50 - - - 40.53 55.82

(c) ResNet50 -
√

- 42.05 57.94

(d) ResNet50 -
√ √

47.58 63.29

module significantly improves the segmentation ability of the
model, especially the AFMA module, which has the most
apparent ability to substitute for the model’s segmentation
effect.

E. Comparative Experiments

To validate the effectiveness of our proposed method,
we compared our model with other mainstream semantic
segmentation models on the DDR and IDRID datasets. The
results are presented in Table 2 for the IDRID dataset
and DDR dataset. The best results are highlighted in bold.
We implemented the UNet, Deeplabv3+, TransUnet, and
UNeXt results, with Deeplabv3+ and TransUnet utilizing the
ResNet50 backbone. Other results are sourced from Paper
[2].

The comparison results on the DDR dataset demonstrate
that our model exhibits superior segmentation performance.
Specifically, our model achieves the best performance on
the MA lesion, with Dice and IOU metrics being 2.04%
and 1.4% higher than the second-best segmentation result,
respectively. Moreover, the model outperforms the overall
average segmentation metrics for EX, HE, SE, and MA
lesions, reaching 46.07% and 30.46% in Dice and IOU
metrics, respectively.

The comparative analysis of the IDRID dataset reveals
that our model exhibits the best performance on EX and
SE lesions. Within EX lesions, Dice and IoU are 1.39% and
1.82% higher than the next-best structure. Similarly, in SE
lesions, Dice and IoU are 2.24% and 2.42% higher. The
segmentation performance for other lesions still surpasses
most models, with the overall average segmentation metrics
reaching state-of-the-art levels.

Overall, the proposed model in this paper demonstrates
balanced segmentation capabilities in both DDR and IDRID
datasets, showcasing competitive performance. Figure 7 de-
picts the segmentation results of partial fundus images,
where (a) represents the ground truth labels, (b) shows
the segmentation results of the UNet model, (c) shows the
segmentation results of the Deeplabv3+ model, (d) shows
the segmentation results of the TransUNet model, (e) shows
the segmentation results of the UNeXt model and (f) shows
the segmentation results of our model. In the segmentation
images, red indicates EX lesions, green indicates HE lesions,
yellow indicates SE lesions, and blue indicates MA lesions.

V. CONCLUSION

DR is one of the significant causes of blindness, making
accurate detection and segmentation of DR lesions crucial.

Deep learning-based DR lesion segmentation has made good
progress in recent years. Still, it faces challenges such as
significant differences in lesion shape and scale between
samples and many small lesions. We have improved the
Unet++ architecture and introduced ResNet50 as the back-
bone network to enhance feature extraction. Then, we used a
new residual structure called CAR to perceive lesions better
and address differences between DR lesions. Finally, we
introduced the AFMA module to compensate for the loss
of DR small lesions during the feature extraction process.
In addition, we abandoned the deep regulatory structure and
used a weighted mixed loss function. Although our model
has improved the segmentation accuracy of DR lesions, our
model still encounters missed and false detections of DR
lesions due to the limitations of manually annotated high-
quality DR lesion data, and the segmentation accuracy of
small lesions such as MA still needs to be improved. In future
research, we will focus on medical image generation based
on deep learning to alleviate the impact of data on model
segmentation while further optimizing our model to improve
the segmentation accuracy of small lesions and exploring
methods for creating lightweight network models without
affecting segmentation accuracy.

REFERENCES

[1] R. Chakrabarti, C. A. Harper, and J. E. Keeffe, “Diabetic retinopathy
management guidelines,” Expert review of ophthalmology, vol. 7, no. 5,
pp. 417–439, 2012.

[2] Q. Liu, H. Liu, W. Ke, and Y. Liang, “Automated lesion segmentation
in fundus images with many-to-many reassembly of features,” Pattern
Recognition, vol. 136, p. 109191, 2023.

[3] W. Hsu, P. Pallawala, M. L. Lee, and K.-G. A. Eong, “The role
of domain knowledge in the detection of retinal hard exudates,”
in Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001, vol. 2. IEEE,
2001, pp. II–II.

[4] T. Walter, J.-C. Klein, P. Massin, and A. Erginay, “A contribution of
image processing to the diagnosis of diabetic retinopathy-detection
of exudates in color fundus images of the human retina,” IEEE
transactions on medical imaging, vol. 21, no. 10, pp. 1236–1243, 2002.

[5] A. D. Fleming, S. Philip, K. A. Goatman, G. J. Williams, J. A.
Olson, and P. F. Sharp, “Automated detection of exudates for diabetic
retinopathy screening,” Physics in medicine & biology, vol. 52, no. 24,
p. 7385, 2007.

[6] J. H. Tan, H. Fujita, S. Sivaprasad, S. V. Bhandary, A. K. Rao, K. C.
Chua, and U. R. Acharya, “Automated segmentation of exudates,
haemorrhages, microaneurysms using single convolutional neural net-
work,” Information sciences, vol. 420, pp. 66–76, 2017.

[7] C. Playout, R. Duval, and F. Cheriet, “A multitask learning archi-
tecture for simultaneous segmentation of bright and red lesions in
fundus images,” in Medical Image Computing and Computer Assisted
Intervention–MICCAI 2018: 21st International Conference, Granada,
Spain, September 16-20, 2018, Proceedings, Part II 11. Springer,
2018, pp. 101–108.

[8] S. Guo, T. Li, H. Kang, N. Li, Y. Zhang, and K. Wang, “L-seg: An
end-to-end unified framework for multi-lesion segmentation of fundus
images,” Neurocomputing, vol. 349, pp. 52–63, 2019.

[9] Z. Yan, X. Han, C. Wang, Y. Qiu, Z. Xiong, and S. Cui, “Learning
mutually local-global u-nets for high-resolution retinal lesion segmen-
tation in fundus images,” in 2019 IEEE 16th International Symposium
on Biomedical Imaging (ISBI 2019). IEEE, 2019, pp. 597–600.

[10] Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang,
“Unet++: A nested u-net architecture for medical image segmenta-
tion,” in Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support: 4th International Workshop,
DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held
in Conjunction with MICCAI 2018, Granada, Spain, September 20,
2018, Proceedings 4. Springer, 2018, pp. 3–11.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1587-1595

 
______________________________________________________________________________________ 



TABLE II: Performance comparison with others for lesion segmentation.

Dataset Methods
Dice (%) IoU (%)

EX HE SE MA mDice EX HE SE MA mIoU

DDR

UNet [15] 45.3 27.99 32.8 24.81 32.73 29.29 16.27 19.62 14.17 19.83

TransUnet [16] 56.64 47.82 40.46 24.54 42.37 39.52 31.43 25.36 13.99 27.57

UNeXt [17] 50.73 28.92 31.43 14.94 31.5 33.99 16.91 18.65 8.07 19.41

Swin-base [18] 59.79 50.53 46.77 23.31 45.1 42.64 33.82 30.62 13.19 30.07

M2MRF-C [2] 60.62 45.16 47.78 28.04 45.4 43.49 29.17 31.39 16.31 30.09

Ours 57.43 49.9 46.87 30.08 46.07 40.29 33.25 30.61 17.71 30.46

IDRID

UNet [15] 77.31 49.04 54.85 35.48 54.17 63.01 32.49 37.80 21.56 38.72

Deeplabv3+ [19] 70.18 51.35 59.47 37.94 54.74 54.07 34.55 42.32 23.44 38.60

TransUnet [16] 78.81 64.88 63.01 44.68 62.84 65.03 48.02 46.0 28.77 46.95

UNeXt [17] 73.90 52.79 46.75 27.79 50.30 58.60 35.87 30.50 16.14 35.28

Ours 80.20 63.70 65.25 44.01 63.29 66.95 46.74 48.42 28.21 47.58

(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

(e)

(e)

(f)

(f)

(f)

(f)

(d)

(d)

(b)

(b)

(c)

(c)

(e)

(e)

(e)

Fig. 7: Segmentation Images

[12] S. Sang, Y. Zhou, M. T. Islam, and L. Xing, “Small-object sensitive
segmentation using across feature map attention,” IEEE transactions
on pattern analysis and machine intelligence, vol. 45, no. 5, pp. 6289–
6306, 2022.

[13] B. Yang, G. Bender, Q. V. Le, and J. Ngiam, “Condconv: Conditionally
parameterized convolutions for efficient inference,” Advances in neural
information processing systems, vol. 32, 2019.

[14] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional
block attention module,” in Proceedings of the European conference
on computer vision (ECCV), 2018, pp. 3–19.

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in Medical image
computing and computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October 5-9, 2015, pro-

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1587-1595

 
______________________________________________________________________________________ 



ceedings, part III 18. Springer, 2015, pp. 234–241.
[16] J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L.

Yuille, and Y. Zhou, “Transunet: Transformers make strong encoders
for medical image segmentation,” 2021.

[17] J. M. J. Valanarasu and V. M. Patel, “Unext: Mlp-based rapid medical
image segmentation network,” in International conference on medical
image computing and computer-assisted intervention. Springer, 2022,
pp. 23–33.

[18] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2021, pp. 10 012–10 022.

[19] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 801–818.

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1587-1595

 
______________________________________________________________________________________ 




