
A Queuing Theory Approach to Task Scheduling
in Cloud Computing with Generalized Processor

Sharing Queue Model and Heavy Traffic
Approximation

Mohamed Ghazali, Abdelghani Ben Tahar

Abstract—Cloud computing has transformed data storage,
management, and processing by offering scalable and flexible
resources via the internet. A key component of this technology
is the efficient allocation and management of resources, partic-
ularly through task scheduling at the level of virtual machines
(VMs). Task scheduling is critical for maximizing resource
utilization and system performance in cloud environments.
However, it presents significant challenges due to the dynamic
and distributed nature of these environments. Effective task
scheduling algorithms are necessary to balance load, minimize
response time, and optimize resource usage, making it a crucial
area for ongoing research and development in cloud computing.

This paper addresses the challenge of task scheduling in
cloud computing by employing an analytical approach based
on queuing theory. We model the system using a generalized
processor sharing (GPS) queue and evaluate its performance
through heavy traffic approximation. This method allows us
to derive performance metrics for queuing systems prone
to congestion, considering general interarrival and service
time distributions, thus providing a comprehensive analysis of
scheduling efficiency.

Index Terms—cloud computing, task scheduling, virtual ma-
chines, generalized processor sharing, heavy traffic approxima-
tion, performance evaluation, queue model.

I. INTRODUCTION

In the rapidly evolving realm of information technology,
the need for adaptable, scalable, and efficient computing
solutions has become more pronounced than ever. Businesses
and individuals are actively seeking innovative approaches
to handle data, streamline operations, and promptly adapt to
changing needs. In this dynamic context, traditional comput-
ing models often prove insufficient. It is within this context
of technological advancement and the pursuit of increased
efficiency that the concept of cloud computing emerges as
a transformative influence. Cloud computing involves pro-
viding computing services over the internet, encompassing
storage, processing power, and software. Instead of possess-
ing and managing physical servers or computing infrastruc-
ture, individuals and businesses have the option to utilize
these resources on a pay-as-you-go model through a cloud
service provider. Key characteristics of cloud computing
include on-demand self-service, where users autonomously

Manuscript received March 28, 2024; revised September 6, 2024.
Mohamed Ghazali is a PhD student of Hassan First University of Settat,

Faculty of Science and Technology, B.P. 577, Settat 26000, Morocco. (e-
mail: m.ghazali@uhp.ac.ma).

Abdelghani Ben Tahar is a professor of Hassan First University of Settat,
Faculty of Science and Technology, B.P. 577, Settat 26000, Morocco. (e-
mail:abdelghani.bentahar@uhp.ac.ma).

manage resources for enhanced flexibility. The broad net-
work access feature enables ubiquitous data and application
access across various devices. Through resource pooling,
providers dynamically allocate shared resources, optimizing
efficiency. Rapid elasticity allows quick resource scaling to
adapt to changing demand, ensuring optimal performance
and cost efficiency. The measured service aspect involves
metered resources, promoting a pay-as-you-go model for
cost efficiency and transparency. Cloud computing provides
diverse service models to meet user needs. Infrastructure as
a service (IaaS) offers virtualized computing resources, such
as virtual machines and storage. Platform as a service (PaaS)
provides a platform with tools for application development,
eliminating the need to manage underlying infrastructure.
Software as a service (SaaS) delivers applications over the
internet, removing the burden of installation, maintenance,
and updates for users. In terms of elasticity and scalability,
cloud services can scale both vertically (increasing resources
within a single virtual machine) and horizontally (adding
more virtual machines) to handle varying workloads. This
flexibility ensures that applications can seamlessly grow or
shrink in response to demand.

Within this dynamic context, queuing theory emerges as a
mathematical approach for analyzing and modeling the flow
of entities through a system of queues, playing a pivotal role
in addressing challenges within the realm of cloud comput-
ing. Firstly, it can be used to create performance models
for cloud systems. By analyzing the arrival rate of user
requests, service times, and the number of servers available,
performance metrics such as response time, throughput, and
utilization can be predicted and optimized. Secondly, queuing
theory helps in designing algorithms and policies for resource
allocation and task scheduling. It aids in determining the
optimal number of resources to allocate and the scheduling
policies to minimize waiting times and maximize resource
utilization. Additionally, it helps in designing effective load
balancing mechanisms in cloud environments. By distribut-
ing incoming requests among different servers based on
their current loads, it ensures that the system resources are
utilized efficiently, reducing wait times and improving overall
performance.

Cloud data centers comprise multiple physical servers,
each hosting numerous virtual machines due to the princi-
ple of virtualization. Various types of jobs (web requests,
database operations, storage, networking, etc.) are received
by a specific physical server within the data center. Subse-
quently, a load balancer allocates these jobs to the virtual

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1604-1611

 
______________________________________________________________________________________ 



machines. Given the diverse nature of arriving jobs, each
with distinct types, the challenge lies in efficiently serving
these jobs while ensuring fairness. Fairness, in this context,
involves preventing low-priority jobs from being neglected.
This objective is attainable through a service discipline
known as generalized processor sharing (GPS). Under this
service discipline, the server handles all jobs simultaneously,
with the service shared among jobs in proportion to their pri-
ority. Consequently, high-priority jobs receive a greater share
of the service compared to lower-priority ones. GPS can be
used in many scenarious in the context of cloud computing.
For instance, it finds relevance in modeling cloud hosting
services where a provider offers web hosting to a varied
clientele. Each client’s websites are assigned weights based
on hosting plans, subscription levels, or service requirements.
Employing the GPS queue model allows the provider to
prioritize high-paying clients or those with premium service
agreements, allocating more significant processing resources
to their websites. Simultaneously, clients with standard or
basic plans receive a proportionally fair allocation, ensuring
equitable resource sharing across the cloud infrastructure.

The remainder of the paper is organized as follows. Section
II gives a brief overview of existing work in the literature.
Section III provides an introduction to the GPS queuing
system model within the framework of virtual machines.
Section IV outlines the establishment of the heavy traffic
approximation. Subsequently, Section V derives the perfor-
mance metrics, and numerical results are presented in the
same section.

II. RELATED WORK

In the landscape of cloud computing research, a diverse
array of approaches has been investigated to tackle chal-
lenges and optimize different facets of system performance.
In the pursuit of profit maximization, Cao et al. [1] utilize
a single-server M/M/m queueing model, while Mei et al.
[2] introduce a Double-Quality-Guaranteed (DQG) renting
scheme employing an M/M/m+D queuing model. Numerous
studies focus on performance evaluation, with Mas et al.
[3] presenting a fog-computing modeling framework based
on queuing theory, and Khazaei et al. [4] introducing an
M/G/m/m+r queuing system model for assessing cloud server
farm efficiency. Other works, such as those by Xia et al. [5],
Chang et al. [6], Bai et al. [7], Liu et al. [8], Cheng et al.
[9], and Guo et al. [10], delve into the intricacies of perfor-
mance evaluation through queuing models, considering fac-
tors like migration-enabled clouds, active virtual machines,
data center heterogeneity, and energy-saving algorithms. In
the domain of system optimization, studies by Vilaplana et
al. [11], Ali et al. [12], and El et al. [13] contribute novel
insights using queuing theory to design cloud computing
architectures, model horizontal elasticity, and efficiently scale
fog computing systems for IoT devices, respectively. This
comprehensive body of related work not only explores profit-
driven motives but also emphasizes the significance of per-
formance evaluation and system optimization across various
cloud computing scenarios.

Most of these papers restrict themselves to the FCFS (First
Come First Served) service discipline, employing exponen-
tial distributions for inter-arrival and service times. Only a
limited number of papers in the existing literature incorporate

a more general approach to interarrival and service times. In
the majority of cases, these studies tend to confine themselves
to considering only one of these parameters with a general
distribution, typically focusing on service times. Notably,
to our knowledge, no prior study has endeavored to model
Virtual machines task scheduling using the Generalized Pro-
cessor Sharing model.

III. SYSTEM MODEL

Figure 1 illustrates a GPS system within a cloud environ-
ment. Incoming jobs are categorized into distinct classes, and
the server attends to the head of each flow according to the
GPS scheduling discipline. Upon classification, requests are
assigned to their respective categories, each associated with
a weight factor that determines its priority level. Requests
then enter their corresponding queues. The server processes
requests from the front of each queue concurrently, allocating
service capacity proportionally to the weight factors. This
mechanism ensures fairness while prioritizing higher-priority
classes. Figure 2 depicts our GPS queuing model. When
all classes have non-empty queues, the total service rate
is distributed according to the weight factors ωk. If any
queues are empty, the surplus service rate is reallocated
proportionally among the remaining classes. Our queuing
model consists of K classes of jobs, each arriving with a
rate αk. Assuming a server service capacity of 1/m, the
service rate for each class is given by:

ωk

m
∑K

l=1 ωl

.

Let uk = (uk(i), i ≥ 1) represent the sequence of interarrival
times for each class k, where uk(i) denotes the time between
the (i−1)th and ith job arrivals. Similarly, let v = (v(i), i ≥
1) be the sequence of service times, with v(i) representing
the service time of the ith job. We assume that {uk}Kk=1

and v are mutually independent sequences of independent
and identically distributed (i.i.d.) random variables. For each
class k, the sequence uk has a mean of 1/αk and a variance
of ak. The service time sequence v has a mean of m and a
variance of b. We focus on the heavy traffic regime where
the traffic intensity ρ is close to 1:

ρ := m
K∑

k=1

αk ≃ 1.

Let W (t) denote the workload at time t, defined as the sum of
the remaining service times for all jobs present in the system
at that time. Additionally, let Zk(t) represent the number of
class k jobs in the system at time t.

IV. HEAVY TRAFFIC APPROXIMATION

Obtaining closed-form steady-state expressions for perfor-
mance metrics in queuing systems with generally distributed
interarrival and service times poses a significant challenge.
To address this, we employ the heavy traffic approxima-
tion, also known as diffusion approximation, which provides
accurate estimates, particularly when the traffic intensity
approaches one [14]. This method analyzes a sequence of
queuing networks indexed by positive real numbers r ∈ R∗

+.
The key step involves scaling these networks by accelerating
time by a factor of r2 and dividing space by a factor of r.

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1604-1611

 
______________________________________________________________________________________ 



ClassifierArriving jobs

Jobs categorized into
different classes

Virtual server

Fig. 1: Cloud system model.

Class K

Class 1

Class 2 Server

Fig. 2: GPS queuing model.

This scaling, denoted by a hat over the process, allows us to
examine the limiting behavior as r approaches infinity. The
resulting limit process is a reflected Brownian motion, which
offers a significant advantage: it can be fully characterized
using only the means and variances of the interarrival and
service times at each queue. This property simplifies imple-
mentation and enables tractable performance analysis.

A. Convergence of the diffusion scaled processes

We consider a sequence of multiclass GPS queues indexed
by r ∈ (0,∞). To represent the diffusion-scaled versions of
the relevant parameters and processes, we introduce a su-
perscript r. The diffusion-scaled queue length and workload
processes are then given by:

Ẑr
k(t) =

Zr
k(r

2t)

r
, Ŵ r(t) =

W r(r2t)

r
.

To establish the diffusion approximation, we first introduce
the following convergence assumptions for each class k as r
approaches infinity:

αr
k −→ αk, ark −→ ak, (1)

mr
k −→ mk, brk −→ bk. (2)

Furthermore, we assume the heavy traffic condition, which
states that there exists a constant γ < 0 such that:

r(ρr − 1) → γ. (3)

Let c2s = b/m2 denote the squared coefficient of variation of
the service distribution. For each class k, we define c2a,k =

α2
kak as the squared coefficient of variation of the arrival

distribution.

Theorem 4.1: Under the assumptions of heavy traffic (1)-
(3), the following diffusion-scaled processes converge in
distribution:

Ŵ r(t) ⇒ W ∗(t), (4)

Ẑr
k(t) ⇒ Z∗

k(t) := ∆kW
∗(t), (5)

where for each class k:

∆k =
αk/ωk

m
∑K

l=1 αl/ωl

,

and W ∗ is a reflected Brownian motion with drift γ and
variance Σ given by:

Σ = m2

(
K∑

k=1

(c2s + c2a,k)αk

)
. (6)

V. PERFORMANCE EVALUATION.

A. Performance metrics

In this section, we leverage the result of Theorem 4.1 to
derive some important performance metrics, including the
average workload time, the average number of jobs, the
average response time.

1) Average workload and average number of jobs: Since
the traffic intensity is less than one, the queueing system
reaches a steady-state distribution. In other words, the pro-
cesses describing the system become stationary over time.

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1604-1611

 
______________________________________________________________________________________ 



Specifically, by (4)-(5), we have:

Ŵ r(∞) ⇒ W ∗(∞),

Ẑr
k(∞) ⇒ Z∗

k(∞) := ∆kW
∗(∞).

By the definition of convergence in distribution, this implies:

E[Ŵ r(∞)] → E[W ∗(∞)]

and
E[Ẑr

k(∞)] → E[Z∗
k(∞)] = ∆kE[W ∗(∞)].

From the definition of the diffusion workload process:

E[W r(∞)] ≃ rE[W ∗(∞)] for large r.

Given that the workload limit process W ∗(∞) is a reflected
Brownian motion, we have:

P (W ∗(∞) > x) = exp

(
2γ

Σ
x

)
,

which leads to:

E[W ∗(∞)] = − Σ

2γ
.

Using the heavy traffic condition (3), we can approximate
−γ/r by (1− ρr)/ρr. Therefore:

E[W r(∞)] ≃ Σ

2

ρr

1− ρr
. (7)

Furthermore, from the previous section, we know that for
each class k:

Ẑr
k(t) ≃ ∆kŴ

r(t) for large r,

which gives us:

E[Zr
k(∞)] ≃ ∆k,E[W r(∞)].

Substituting (7) and the definition of ∆k into the above
equation yields:

E[Zr
k(∞)] ≃ Σ

2

ρr

1− ρr
αk/ωk

m
∑

l αl/ωl
. (8)

Finally, dropping the index r from (7) and (8), we obtain the
following approximations for each class k:

E[W ] ≃ Σ

2

ρ

1− ρ
and E[Zk] ≃

Σ

2

ρ

1− ρ

αk/ωk

m
∑

l αl/ωl
.

2) Average response time: Let ZT represent the total
number of jobs in the system. The average number of jobs
can be expressed as:

E[ZT ] =
K∑

k=1

E[Zk] ≃
Σ

2

ρ

1− ρ

1

m
.

Consequently, the average response time within the system
is given by:

E[R] =
E[ZT ]∑K
k=1 αk

.

It is important to note that both the average number of
jobs and the average response time remain independent of
the weight vector ω. This observation is consistent with the
fact that these metrics assess the overall performance of the
system and are not tailored to any specific class of jobs.

TABLE I: Performance measures for the case of exponential
inter-arrivals and service times.

ω1 ω2 ω3 E(W ) E(Z1) E(Z2) E(Z3)

0.333 0.250 0.417 3.767 6.040 5.369 6.443
0.500 0.333 0.167 3.767 2.975 2.975 11.902
0.143 0.571 0.286 3.767 9.738 1.623 6.492

B. Numerical Results

In this section, we examine the operational dynamics of
a virtual machine equipped with a single-core CPU within a
data center. Jobs are initially directed to a specific physical
machine and subsequently routed to a designated virtual
machine by the load balancer. Our primary focus centers on
the task scheduling at the virtual machine level. We presume
the existence of a classifier that categorizes jobs into distinct
classes. For the purpose of performance evaluation, we have
established three categories, each associated with a respective
weight factor. In our scenario, the first category experiences
an influx of 1.5 jobs per millisecond, equivalent to a rate
of 1500 jobs per second. For simplicity, we consider the
millisecond (ms) as the unit of time. The arrival rates are
denoted as α1 = 1.5, α2 = 1, and α3 = 2 for the three
categories. The sequence of service times exhibits a mean
of 4.74 milliseconds (ms), in other words the service rate
is m = 0.211 jobs per millisecond (ms). It is important to
note that these service times are inherently random and are
computed by dividing the length of the jobs (measured in
millions of instructions, MI) by the processing capacity of the
virtual machine CPU (expressed in millions of instructions
per second, MIPS). In this performance, we assume that all
classes have the same coefficient of variation c2a for for the
inter-arrival times. Additionally, in this context, the traffic
intensity ρ represent the VM utilization.

In Tables I and II, we present performance measures
for different combinations of weights. Specifically, Table I
illustrates this for exponential inter-arrival and service times,
while Table II considers general inter-arrival and service
times with varying coefficients of variation. We observe that
in both tables, the average workload remains unchanged
when we alter the weights. It is important to note that in Table
II, the performance metrics remain consistent regardless of
the distribution, as long as the coefficients of variation are the
same. For example, two M/G/1 GPS systems, one with a log-
normal distribution and the other with an Erlang distribution,
will exhibit the same performance metrics if their coefficients
of variation are identical.

As shown in Figures 3 and 4, the average workload and
response time increase as VM utilization rises. Additionally,
as the coefficients of variation increase, these metrics also
become higher, which is evident from the figures. This is
beacuse a high coefficient of variation for interarrival times
means arrivals are really unpredictable, with some coming
in quick succession and others after long gaps, leading to
busy and quiet periods in the queue. For service times, it
means some tasks are served quickly while others take much
longer, making wait times unpredictable and staffing harder
to manage, which can create bottlenecks.

In Figure 5, although class 3 has the highest weight (indi-

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1604-1611

 
______________________________________________________________________________________ 



TABLE II: Performance measures for different coefficients of variation.

ω1 ω2 ω3 E(W ) E(Z1) E(Z2) E(Z3)

0.333 0.250 0.417 1.883 3.020 2.685 3.222
c2a = 1/2 c2s = 1/2 0.500 0.333 0.167 1.883 1.488 1.488 5.951

0.143 0.571 0.286 1.883 4.869 0.811 3.246

0.333 0.250 0.417 1.413 2.265 2.013 2.416
c2a = 1/2 c2s = 1/4 0.500 0.333 0.167 1.413 1.116 1.116 4.463

0.143 0.571 0.286 1.413 3.652 0.609 2.434

0.333 0.250 0.417 0.897 1.438 1.278 1.534
c2a = 1/3 c2s = 1/7 0.500 0.333 0.167 0.897 0.708 0.708 2.834

0.143 0.571 0.286 0.897 2.319 0.386 1.546

0.333 0.250 0.417 0.848 1.359 1.208 1.450
c2a = 1/5 c2s = 1/4 0.500 0.333 0.167 0.848 0.669 0.669 2.678

0.143 0.571 0.286 0.848 2.191 0.365 1.461

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96
VM utilization

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e 

wo
rk

lo
ad

 (m
s)

c2
a =1; c2

s =1

c2
a =3/4; c2

s =1/2

c2
a =1/3; c2

s =1/7

c2
a =1; c2

s =1
c2
a =3/4; c2

s =1/2
c2
a =1/3; c2

s =1/7

Fig. 3: The average workload as a function of VM utilization for different coefficients of variation.

cating it has the most service capacity among the classes), it
also has the highest number of jobs. This occurs because its
arrival rate is higher compared to the other classes. Note that
the service rate is the same for all classes. If we assume the
arrival rate is the same across all classes, then the class with
the lowest weight (class 2) will have the highest number of
jobs (and the highest response time), while class 3 will have
the fewest jobs and the lowest response time. Class 1 falls
in between the two.

In Figure 6, we compare GPS (Generalized Processor
Sharing) and HLPPS (Head of the Line Proportional Proces-
sor Sharing). In HLPPS, service is allocated equally among
the tasks at the head of each queue, regardless of their class.
We observe that the average number of tasks varies between
the two service disciplines based on the weight ω. The
HLPPS represents the scenario where the weights are equal,
specifically ω1 = ω2 = ω3 = 1/3. Consequently, for class
1, the average number of tasks is quite similar. However, for

class 2, which has a weight of 1/4, less than 1/3, the average
number of tasks is higher under the GPS service discipline
because it receives less service allocation. For class 3, the
opposite occurs, with a lower average number of tasks under
GPS service due to its higher weight. HLPPS can be viewed
as a special case of GPS with weights wk = 1/K, where K
is the number of classes.

VI. CONCLUSION

Our paper evaluates the task scheduling performance of
virtual machines within the GPS service discipline. Despite
focusing on a single virtual machine, our analysis extends
to include a general distribution for both interarrival and
service times, enriching the realism of our system dynamics
representation. The performance metrics of the proposed
queue system are systematically derived using a Heavy
Traffic Approximation approach, offering valuable insights
into its behavior under challenging conditions. Our study’s

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1604-1611

 
______________________________________________________________________________________ 



0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96
VM utilization

0

1

2

3

4

Av
er
ag
e 
Re
sp
on
se
 ti
m
e 
(m

s) c2a =1; c2s =1

c2a =3/4; c2s =1/2

c2a =1/3; c2s =1/7

c2a =1; c2s =1
c2a =3/4; c2s =1/2
c2a =1/3; c2s =1/7

Fig. 4: The average response time as a function of VM utilization for different coefficients of variation.

focus on a single virtual machine, rather than the entire cloud
system, is driven by the complexities of deriving closed-form
performance results. This limitation leads us to examine the
scenario of one VM with one core, while practical physical
servers accommodate multiple VMs with multiple cores. In
contrast, some literature explores more intricate systems but
often resorts to simplifications, utilizing exponential distri-
butions for interarrivals and service times and employing
fixed probabilities for load balancing, sidestepping alternative
strategies deemed intractable. Given these conditions, we can
broaden our performance evaluation to include multiple VMs
under the Generalized Processor Sharing service discipline.

APPENDIX A
PROOF OF THEOREM 4.1

To establish our result, we leverage the framework pre-
sented in [15]. In that study, under heavy traffic conditions,
the authors derived a heavy traffic approximation for various
queuing disciplines, including the Generalized Processor
Sharing (GPS) system referred to as GHLPPS in their paper.
They consider a more general scenario where jobs can pro-
vide feedback, allowing them to reenter the queue and change
their class. We define the vector ∆ = (∆1, . . . ,∆k) ∈ R+

as follows:

∆k =
λk/ωk

m
∑K

l=1 λl/ωl

for each class k.

In Theorem 3.2, they establish the heavy traffic limit for the
processes Ŵ r and Ẑr and demonstrate the convergence of
these processes in distribution:

(Ŵ r, Ẑr) ⇒ (W ∗, Z∗ = ∆W ∗) as r → ∞,

where W ∗ is a Reflected Brownian motion with drift RΣ
and variance R2Σ. The constant R is defined in (3.2)-(3.3)

in [15]; however, since there is no feedback, the matrix P is
zero, resulting in R = 1.

As a remark, our queue model corresponds to the single
station case, i.e., J = 1. Since there is no feedback, the
matrix Q = I and the matrix H is zero. The vector global
arrival rate λ equals the the vector α. The matrix C equals
the vector e = (1, 1, . . . , 1) ∈ RK

+ . The variance Γ is given
by (3.8) and (3.12) in [15]. Considering the no feedback case,
and the fact that bk = b for all classes k, and the matrix M
is equal to mI , the variance becomes:

Σ = e
(
b diag(α1, . . . , αK)+m2 diag(α3a1, . . . , α

3
KaK)

)
e′.

Here e′ denote the transpose of e. The variance equals

Σ = b

K∑
k=1

αk +m2
K∑

k=1

α3
kak.

Using the fact that c2s = b/m2 and c2a,k = α2
kak for each k,

we obtain

Σ = m2

(
K∑

k=1

(c2s + c2a,k)αk

)
,

which is exactly the variance in (6).

REFERENCES

[1] J. Cao, K. Hwang, K. Li, and A. Y. Zomaya, “Optimal multiserver
configuration for profit maximization in cloud computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 6,
pp. 1087–1096, 2012.

[2] J. Mei, K. Li, A. Ouyang, and K. Li, “A profit maximization scheme
with guaranteed quality of service in cloud computing,” IEEE Trans-
actions on Computers, vol. 64, no. 11, pp. 3064–3078, 2015.

[3] L. Mas, J. Vilaplana, J. Mateo, and F. Solsona, “A queuing theory
model for fog computing,” The Journal of Supercomputing, vol. 78,
no. 8, pp. 11138–11155, 2022.

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1604-1611

 
______________________________________________________________________________________ 



0.7 0.75 0.8 0.85 0.95
VM utilization

0

1

2

3

4

5

6

Av
er

ag
e 

nu
m

be
r o

f t
as

ks

ω1 =1/3, ω2 =1/4, ω3 =5/12

Class 1
Class 2

Class 3

Class 1 Class 2 Class3

Fig. 5: The average number of tasks with exponential inter-arrival and service times.

class 1 class 2 class 3
0

1

2

3

4

5

6

7

8

Av
er

ag
e 

nu
m

be
r o

f t
as

ks

ω1 =1/3, ω2 =1/4, ω3 =5/12

GPS HLPPS

Fig. 6: Comparison of the average number of tasks between GPS and HLPPS with exponential inter-arrival and service
times, and a VM utilization of 0.95.

[4] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of
cloud computing centers using M/G/m/m+ r queuing systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 5,
pp. 936–943, 2011.

[5] Y. Xia, M. Zhou, X. Luo, S. Pang, and Q. Zhu, “Stochastic mod-
eling and performance analysis of migration-enabled and error-prone
clouds,” IEEE Transactions on Industrial Informatics, vol. 11, no. 2,
pp. 495–504, 2015.

[6] X. Chang, B. Wang, J. K. Muppala, and J. Liu, “Modeling active
virtual machines on IaaS clouds using an M/G/m/m+ k queue,” IEEE
Transactions on Services Computing, vol. 9, no. 3, pp. 408–420, 2014.

[7] W.-H. Bai, J.-Q. Xi, J.-X. Zhu, S.-W. Huang, et al., “Performance
analysis of heterogeneous data centers in cloud computing using a
complex queuing model,” Mathematical Problems in Engineering,
vol. 2015, 2015.

[8] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjective

optimization for computation offloading in fog computing,” IEEE
Internet of Things Journal, vol. 5, no. 1, pp. 283–294, 2017.

[9] C. Cheng, J. Li, and Y. Wang, “An energy-saving task scheduling
strategy based on vacation queuing theory in cloud computing,”
Tsinghua Science and Technology, vol. 20, no. 1, pp. 28–39, 2015.

[10] L. Guo, T. Yan, S. Zhao, C. Jiang, et al., “Dynamic performance
optimization for cloud computing using M/M/m queueing system,”
Journal of Applied Mathematics, vol. 2014, 2014.

[11] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella, and J. Rius,
“A queuing theory model for cloud computing,” The Journal of
Supercomputing, vol. 69, pp. 492–507, 2014.

[12] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid
elasticity controller for cloud infrastructures,” in 2012 IEEE Network
Operations and Management Symposium, pp. 204–212, IEEE, 2012.

[13] S. El Kafhali and K. Salah, “Efficient and dynamic scaling of fog nodes
for IoT devices,” The Journal of Supercomputing, vol. 73, pp. 5261–

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1604-1611

 
______________________________________________________________________________________ 



5284, 2017.
[14] M. Miyazawa, “Diffusion approximation for stationary analysis of

queues and their networks: a review,” Journal of the Operations
Research Society of Japan, vol. 58, no. 1, pp. 104–148, 2015.

[15] M. Bramson and J. G. Dai, “Heavy traffic limits for some queueing
networks,” Annals of Applied Probability, pp. 49–90, 2001.

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1604-1611

 
______________________________________________________________________________________ 




