
Digital Image Authentication and Analysis:
Unmasking Copy-move Forgery in Digital Images
through Combined DCT and GLCM Features with

Block Matching Technique
Prabhu Bevinamarad and Prakash H. Unki

Abstract—In the contemporary era, images hold an in-
creasingly valuable trove of information and have become
indispensable to current digital systems. Conversely, the acces-
sibility of cost-effective electronic devices and advanced image
editing tools has empowered many individuals to manipulate an
image’s meaningful content, fabricating counterfeit images to
deceive society and government entities. This paper introduces
a robust block-matching methodology that leverages composite
features crafted through the Discrete Cosine Transform (DCT)
and Gray-Level Co-occurrence Matrix (GLCM). The proposed
approach uses the Stationary Wavelet Transform (SWT) to
decompose an input image, effectively capturing intricate
frequency details across scales and positions. Subsequently,
the block-tiling procedure divides the approximation subband
into overlapping blocks. Each of these blocks undergoes the
extraction of DCT and GLCM image features, which are then
amalgamated to form composite image features. Finally, the
block-matching process is applied to find the suspected image
blocks to effectively classify the input image as authentic or
forged while concurrently identifying copy-move forgery regions
within the query image. The effectiveness of this method was
assessed on both image and pixel levels using the widely
accessible CoMoFoD standard dataset by considering image
samples of basic copy-move forgery and image forgery subjected
to diverse post-processing operations. Based on the evaluation
outcomes achieved at both image and pixel levels, the proposed
method produces results with a precision of 97.50%, a recall
of 92.26%, an F1-score of 95.12% and a precision of 93.40%,
a recall of 90.18% and an F1-score of 92.86% for image level
and the pixel level evaluation respectively.

Index Terms—Block matching, Copy-move forgery, Image
forensics, Image splicing, Stationary wavelet transform, and
Post-processing operations.

I. INTRODUCTION

NOWADAYS, multimedia information and digital gad-
gets have become ubiquitous and indispensable for in-

dividuals worldwide. The availability of well-equipped elec-
tronic devices in terms of hardware and software capabilities
facilitates the end-user to capture, reproduce, manipulate,
and transmit digital content such as text, images, audio, and
video within no time. According to the statistics, over 300
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million multimedia content is uploaded and circulated daily
over social media to propagate information worldwide. In
addition, many governments and private sector departments
have launched various e-service facilities that require mul-
timedia data as input to reduce the processing time and
replace the traditional systems with automated systems with
security measures[1]. However, many individuals in society
are using advanced multimedia editing tools to damage
the meaningful content of an image and practice unethical
activities[2] instead of taking advantage of various graceful
digital facilities provided by information technology and e-
platforms. The sophisticated multimedia editing software is
just like a two-edged sword. On the one hand, it encourages
people to beautify and add creative artifacts to the multimedia
content to express their innovative ideas. On the other hand,
it makes Forger create tampered images, audio, and video by
modifying its original content without much effort and leav-
ing any noticeable trace despite many tampering detection
techniques[3], [4].

In recent years, image exploitation has become more com-
mon. Digital images can be tampered with in various ways:
copy-move, splicing, and image retouching[5]. Nevertheless,
copy-move image forgery has become the most common,
widespread, and challenging. It implies copying some part
of the image region and pasting the cloned part in another
area on the source image to corrupt its original meaning.
Generally, the copy-move forged has no perceptive visual
traces on its surface to check its authenticity and requires an
intense searching technique to identify the correlated pixels.
The forgery practitioners often apply extra post-processing
steps (such as rotation, noise addition, blurring, etc.) to hide
image counterfeiting and make the detection hard. Besides,
the advances in image tampering techniques have made it
easier for the forger to create realistic fake images and
encourage others to misuse the tools.

Hence, a skillful image tampering detection technique is
needed to search and identify manipulated images transmit-
ted over the internet and other social platforms to prevent
them from being used for improper purposes even when
images are post-processed with significant post-operations
performed. Our proposed approach uses DCT, GLCM com-
bined image features, and a block matching technique to
localize the forgery regions for basic copy-move forgery and
forgery with post-processing operations incorporated. Our
work’s contribution can be summed up as follows:

• The proposed approach uses SWT for image decompo-
sition that helps capture the most similar and discrim-
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inative image characteristics and detect tampered areas
in regular and irregularly shaped objects.

• The composite features formed using DCT coefficients
and GLCM properties improved the forgery detection
region under various post-processing attacks such as
blurring, contrast augmentation, brightness change, and
color dithering.

• The proposed technique uses different threshold param-
eters to segregate similar feature vectors effectively.

• We conducted a comparative analysis to assess the
effectiveness of our proposed method considering plain
image forgery images and forgery images with various
post-processing operations.

The latter part of this paper proceeds as follows: Section II
discusses the related work connected to copy-move forgery
detection techniques. Section III explains the proposed ap-
proach with essential block and flow diagrams, Section IV
details the setup for the experiment and evaluation, and
Section V concludes the proposed method.

II. RELATED WORK

This section describes the efforts made by many re-
searchers to develop various techniques to address the hur-
dles related to copy-move forgery. Below, we summarize
techniques developed during the last decade to identify
and mark the copy-move forgery practice. The first block-
matching technique was developed by [6]; this paper em-
ployed a quantized DCT coefficient representation of each
image block pixel to identify copy-move forged region
present in an image. In[7], a technique based on Principal
Component Analysis(PCA) was developed to reduce the
image dimension and extract a feature to detect duplicate
regions present in an image efficiently. In [8], the author
has proposed a method based on blur moment invariants and
the Principal Component Transform(PCT) to extract image
features and detect duplicated regions. In the paper[9], the
author represented relevant image features by employing
Discrete Wavelet Transform(DWT), Singular Value Decom-
position(SVD) and lexicographical sorting technique to re-
duce the time taken to find duplicate image regions. In the
paper[10], the author exploited DCT and circular shapes
to represent image blocks to extract the features and find
duplicated regions present in an image. A similar technique
is implemented in [11] where the author considered fixed-
sized overlapping blocks and applied DCT and quantized
by the quantization matrix. Finally, the quantized matrix is
subdivided into non-overlapping blocks, and SVD features
are extracted to identify region duplication in an image.
In[12], the author presented a method to detect copy-move
forgery by using features extracted from SWT and SVD
to address the issue related to edges blurring and noise
addition to forged images. In the paper[13], the author
employs polar coordinate system representation to extract
representative features for individual blocks. The primary
part highlighted in this study is the block’s frequency, which
is determined through the Fourier transform. In[14], the
author introduced a forgery detection approach that relies
on both the DWT and the DCT for feature extraction and
reduction. In[15], the author employed SWT for feature
extraction, and SVD was used for feature reduction to detect

forgery regions. In [16], use Discrete Stationary Wavelet
Transform(DSWT) with Multi-Dimensional Scaling to iden-
tify recognizable instances of copy-move image tampering.
The paper[17] used the Intensity Coherence Vector(ICV)
feature extraction technique to detect free-form forgery im-
ages. The article[18] suggested Fractional Quaternion Cosine
Transforms(FrQCT) for copy move forgery detection for
color images. In[19], the DCT extracts features from each
block of Cellular Automata(CA) to construct feature vectors
based on the sign information of the DCT coefficients
to detect a forgery. The author in[20]combined DCT and
SVD for feature extraction and reduction, followed by Sup-
port Vector Machines(SVM) K-means clustering algorithm
for forgery detection. [21]proposed a method for JPEG-
compressed test images suspected of tampering by employing
the DCT. The paper [22] presents a way to combine Speeded
Up Robust Features(SURF) and Binary Robust Invariant
Scalable Keypoints(BRISK) descriptors for the detection of
Copy-move Forgery(CMF). The authors in [23] introduced
low-dimensional DCT and DWT-based features for forgery
detection. In[24] Scale Invariant Features Transform(SIFT)
keypoints and DCT are combined for forgery detection. In
[25], the authors employed DCT and CA to extract features
from the image blocks. In paper [26], the double matching
and region localizing processes are developed using Local
Intensity Order Pattern(LIOP) key points and Density-Based
Spatial Clustering of applications with noise for forgery
detection. In the paper[27], the authors employed DWT and
inverse-DWT for image forgery detection. In [28], the au-
thors used a Binary Discriminative Feature(BDF) descriptor
for feature extraction technique and a Color Histogram(CH)
to detect forgery images and regions. The authors in the
paper[29] utilized the Steerable Pyramid Transform(SPT) to
decompose the suspected image, and GLCM features were
extracted from each orientation to find the image forgeries.
The paper[30] utilizes the Polar Complex Exponential Trans-
form(PCET) to obtain the features from each overlapping
block, followed by the Gradient Direction Pattern(GDP)
histogram technique to reduce the dimension of extracted
features to find the image forgery. The review of the most
relevant existing forgery detection approaches is tabulated in
Table VI by highlighting the feature extraction technique and
significant remarks.

After reviewing various existing techniques, we have un-
derstood that the current approach employs diverse features
constituting an extensive feature set, resulting in tedious
matching and high computational complexity. Many passive
forgery detection methods are limited in detecting forgeries
in images without addressing various post-processing attacks,
i.e., these methods struggle to identify forgery regions where
forged images undergo substantial post-processing opera-
tions. Moreover, some of these methods could be more
resilient to introducing noise and exhibit unsatisfactory per-
formance. So, to tackle these issues, we propose a block-
matching technique that primarily emphasizes constructing
a composite feature vector by leveraging the DCT[6], [15]
and GLCM[29] features, preceded by pre-processing using
SWT. This innovative approach forms a robust image feature
set and efficiently identifies copy-move forgery regions.
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Fig. 1: Proposed Copy-move forgery detection approach

III. PROPOSED METHODOLOGY

The proposed approach utilizes an effective block-
matching technique for identifying copy-move forgeries in
digital images. It employs DCT[15] and GLCM[29] for fea-
ture extraction, creating composite feature vectors that serve
as crucial artifacts for detecting forgery regions. The system’s
operation is divided into five main phases: 1) Pre-processing,
2) Block titling, 3)Feature extraction and formation of feature
matrix, 4) Block matching, and 5) Forgery detection. A visual
representation of the entire forgery detection system, encom-
passing these phases, can be found in Fig. 1. Additionally,
Algorithm 1 provides a step-by-step pseudo code of the
proposed forgery detection approach.

A. Pre-processing

The pre-processing step involves two steps; firstly, the in-
put RGB query image is transformed into YCbCr color space
to enhance image data and suppress distortion to extract the
appropriate image features. Because the luminance channel
(Yi) is more sensitive to the human eye and carries detailed
spatial information than other color spaces. The mathematical
equations (1, 2, and 3) illustrate how to convert RGB to
YCbCr color space and extract the luminance channel (Yi)
of an RGB image.

Yi = 16 +

(
65.738R

256

)
+

(
129.057G

256

)
+

(
25.064B

256

)
(1)

Cbi = 128−
(
37.945R

256

)
−
(
74.494G

256

)
+

(
112.439B

256

)
(2)

Cri = 128 +

(
112.439R

256

)
−
(
94.154G

256

)
−
(
18.285B

256

)
(3)

In the second step of our process, we employ the stationary
wavelet transform to partition the input image into several
frequency bands. Unlike the DWT, where the input image
undergoes a halving of resolution at each level due to
decomposition using both low and high pass filter banks, the
SWT maintains the input image’s resolution undecimated at
each level, resulting in wavelet coefficients [31] that match
the input size. Consequently, this resolves the issue of
shift-invariance, meaning the coefficients remain unchanged
even if the signal is shifted. This approach yields remarkable
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Fig. 2: First-level image decomposition using stationary
wavelet transform (redrawing based on [15])

results, especially when forgery images undergo diverse post-
processing operations. Therefore, in our approach, we apply
the SWT to the luminance channel (Yi) and execute a first-
level decomposition, resulting in four frequency subbands:
approximation(Y 1

i+1(LL)), horizontal(Y 1
i+1(LH)),

vertical(Y 1
i+1(HL)), and diagonal(Y 1

i+1(HH)) and the
dimension of each subband remains identical to that of the
input image. The equations (4, 5, 6, and 7) illustrate the
jth level decomposition using SWT, and Fig. 2 depicts the
input image’s first-level SWT decomposition process and
corresponding subbands. The x and y axes represent the
spatial domain (Sd) and intensity values (Iv), respectively,
with low-pass (LPF) and high-pass (HPF) filter banks
applied during the decomposition process.

LLj+1(U, V ) =

+∞∑
x=−∞

+∞∑
y=−∞

ljxl
j
yLLj(U + x, V + y) (4)

LHj+1(U, V ) =
+∞∑

x=−∞

+∞∑
y=−∞

ljxh
j
yLLj(U + x, V + y) (5)

HLj+1(U, V ) =
+∞∑

x=−∞

+∞∑
y=−∞

hj
xl

j
yLLj(U + x, V + y) (6)

HHj+1(U, V ) =
+∞∑

x=−∞

+∞∑
y=−∞

hj
xh

j
yLLj(U +x, V +y) (7)

Where LLj+1, LHj+1, HLj+1, and HHj+1 represents four
frequency subbands of stationary wavelet transform decom-
position.

B. Block Tiling

Since the Y 1
i+1(LL) subband contains a smoother version

of the image and provides a global description along with
directional features, the Y 1

i+1(LL) subband is segregated
into several 8× 8 overlapping blocks by keeping step size=1
and repeating the block tiling process. Thus, the total blocks
(TOB) that are overlapping are defined in equation (8) as
follows,

TOB = (W −Bw + 1) ∗ (H −Bh + 1) (8)

Where the terms W and H define the number of rows and
columns of the Y 1

i+1(LL) subband, Bw and Bh define an
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overlapping block’s row and column size. The block Bi
represents an overlapping block during the process, where
i = 1, 2,. . . , TOB.

C. Feature Extraction and Formation of Composite Feature
Matrix

In this step, the composite features are formed by ex-
tracting DCT coefficients and GLCM features from each
overlapping block. It is known that the DCT features prove
to be highly efficient. Therefore, initially, we apply DCT on
each overlapping block Bi to extract DCT features and the
corresponding 2-D DCT coefficient matrix is calculated for
each overlapping image block Bi of size Bw × Bh is shown
in equation(9) as follows.

B(p, q) =
1

4
C(p)C(q)

7∑
w=0

7∑
h=0

Bi(w, h)×

cos

(
π
(2w + 1) ∗ p

16

)
× cos

(
π
(2h+ 1) ∗ q

16

)
,

0 ≤ p ≤ 7 and 0 ≤ q ≤ 7

where C(p) =

{
1√
2

p=0
2√
8

0 ≤ p ≤ 7
and

C(q) =

{
1√
2

q=0
2√
8

0 ≤ q ≤ 7

(9)

Through the 2D-DCT transformation, these overlapping
blocks are reshaped so that most of their energy becomes
concentrated in the initial low-frequency DCT coefficients.
Consequently, high-frequency components can only be elim-
inated by surrendering valuable image information. After
applying DCT, the zigzag scanning from the starting top
left corner, i.e., DC coefficient to other AC coefficients, is
performed to select the most informative frequency coeffi-
cients (first 06 coefficients out of 64 features) to construct
a part of the feature vector instead of considering every
coefficient of an overlapping image block[15]. Hence, the
DCT features of each overlapping block are defined as
fiDCT = [fi1 , fi2 , fi3 , fi4 , fi5 , fi6 ].

In copy-move forgery, the region copied and pasted at
a different location on the same image often has repeated
patterns. Therefore, we capture the spatial correlations be-
tween pixel values in an image using a texture analysis
method known as the GLCM. The GLCM considers the
associations between pixel values separated by a specific
distance and orientation, i.e., if two pixels with similar
values commonly occur close to one another, the GLCM will
record data on how pixels are arranged and organized inside
an image. Hence, the suggested method employs GLCM
to extract the texture features of each overlapping block
to capture spatial relationships between pixel values and
achieve improved results. The GLCM begins by computing
the co-occurrence matrix and subsequently derives multiple
features, including contrast, entropy, energy, homogeneity,
variance, and correlation. Among all these features, we have
considered only the principal statistical metrics that describe
the spatial relationships between pixels in an image, such as
contrast, correlation, and energy and computation of these
properties are defined in equations (10, 11 and 12) as follows,

fcont =
N−1∑
r,c=0

(r − c)2(Pi)rc (10)

fcorr =
N−1∑
r,c=0

(r − µr)(c− µc)Pi(r, c)

σ2
(11)

fene =
N−1∑
r,c=0

(Pirc)
2 (12)

The Pi signifies the GLCM matrix with elements r and c.
The N indicates the number of gray levels in the overlapping
blocks, and µr and µc specify the mean of elements of rth

row and cth column of GLCM matrix. Finally, σ2 indicate
variance respectively.

Hence, the final GLCM features are defined
as fiGLCM = [ficont , ficorr , fiene ]. Finally,
both DCT and GLCM extracted features are
combined to form a composite feature vector i.e.
CFVi = [fi1 , fi2 , fi3 , fi4 , fi5 , fi6 , ficont , ficorr , fiene ]
and placed row wise pattern to form a composite
feature matrix(CFM). Each row (fi) of CFM pertains
to the composite feature vector of each overlapping
block Bi where, fi1 − fi6 corresponds to DCT feature
and ficont , ficorr , and fiene signifies GLCM features
corresponds to contrast, correlation and energy respectively.
Fig. 3 illustrates a pictorial representation of feature
extraction and formation of a composite feature matrix.
Later, the CFM is sorted lexicographically to position the
feature vectors corresponding to similar blocks adjacent to
each other to avoid overlapping blocks that are considered
similar and reduce computational time during the feature-
matching process. We also record each overlapping block
Bith row and column number with composite feature vector
for further processing the sorted composite feature matrix.

D. Block Matching and Outlier Detection

In the case of copy-move type of image forgery, it is often
believed that the copied region is not placed at the exact
location, i.e., the blocks tampered with are non-intersecting
with the copied region. So, to efficiently classify and mark
the copy-pasted region, we have imposed Block Distance
(Bdth) and Block Similarity threshold (Bsth) constraints to
group similar overlapping blocks and filter out non-similar
blocks present in an image.

1) Block Distance Threshold: This criterion is applied to
filter out the neighboring blocks and to match the identical
block pairs located at different parts of the feature matrix
likely to have been tampered with in the image. The mini-
mum Block Distance(BD) is calculated between two blocks
using equation (13).

BD(Bi, Bj) =
√

(p− l)2 + (q −m)2 (13)

Where (p,q) and (l,m) represent coordinates of the top left
corner of image blocks Bi and Bj , BD(Bi, Bj) signifies
the computed block distance used to compare with block
distance threshold(Bdth) value for its consideration, i.e., if
BD(Bi, Bj) > Bdth is satisfied. We assume that the block
Bi and Bj are likely to have been tampered with and are
considered candidates forgery detection.
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Fig. 3: Composite feature extraction and formation of feature
matrix

2) Block Similarity Threshold: This criteria is adopted to
correctly check whether the feature vectors corresponding to
the block represent an image’s forgery region or not, and this
is achieved by comparing the block similarity threshold value
with the block similarity(BS) distance computed between
two composite feature vectors, i.e. if BS(Bi, Bj) < Bsth
then the Bith and the Bjth block features are successfully
matched. Respective block indices are copied into set X
to indicate the selected pair of blocks is likely to have
been forged. Otherwise, it is removed from the composite
feature matrix (CFM), indicating no match has been found.
The proposed block-matching technique has adopted the Eu-
clidean distance algorithm to estimate the similarity between
two feature vectors corresponding to image blocks.Let fi
and fj denote the ith and jth feature vectors corresponding
to block Bi and Bj. The Euclidean distance between these
feature vectors is performed using equation BS(Bi, Bj) =√∑L

k=1 [fi(k) − fj(k) ]2, where L is the length of the feature
vector. The block-matching process begins from the first row
and continues till the end of all feature vectors of a feature
matrix. The threshold values used during the block matching
are chosen empirically through experiments. Fig. 4 depicts
the process of block matching and outlier detection.

E. Forgery Detection

Despite the rigorous block-matching process, due to var-
ious post-processing operations, the set X may sometimes
contain falsely matched feature vectors that often affect
the detection result. Therefore, to remove falsely matched
block features and improve the detection result, we employed
the Frequency Threshold (FT) constraint to separate most
likely forged block pairs from outliers. The FT defines
the number of matching blocks having the same mutual
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Fig. 4: Flow diagram of feature matching and outlier detec-
tion process

positions. Thus, the FT is used to identify the image level
evaluation by verifying against several similar block counts
(SBC) and copy-pasted regions when a specified number of
identical block pairs with the same mutual block positions
are detected. Finally, to visualize the resultant image with
the detected forgery region, we have employed a binary
mapping technique where all matching pairs of blocks are
assigned as ones in the neighborhood of 8×8 pixels to display
the same image blocks as white. Further morphological
operations, such as opening and closing, are applied to
eliminate the isolated blocks. Table III tabulates the visual
detection results for plain and copy-move forgery with post-
processing operations.

IV. EXPERIMENTAL SETUP

The proposed methodology utilizes Intel(R) Core(TM) i5-
10500H CPU@2.50GHz speed, RAM of size 8.00 GB
system configuration, and the MATLAB version 2015a image
processing toolbox to implement the concept and simulate
the experiments.

A. Dataset Used

To evaluate the proposed system, we considered a copy-
move forgery image sample from the CoMoFoD dataset[32].
The CoMoFoD dataset primarily contains 200 images of size
512×512. Based on different geometrical transformations and
post-processing operations, the CoMoFoD dataset images are
divided into five classes such as translation, rotation, scaling,
distortion, and combination, and each image group consists
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TABLE I: DESCRIPTION OF EVALUATION DATASET

Attacks Parameters Levels Values
Forgery
image
count

Plain
Forgery(PF)

– – – 200

Image
Blurring(IB)

Value of sigma
l1 0.009

600l2 0.005
l3 0.0005

Brightness
Change(BC)

Brightness levels
(Lower bound,
Upper bound)

l1 [0.01, 0.95]
600l2 [0.01, 0.9]

l3 [0.01, 0.8]

Color
Reduction

(CR)

Intensity
levels per each
color channel

l1 32
600l2 64

l3 128

Contrast
Adjustment

(CA)

Contrast range
(Lower bound,
Upper bound)

l1 [0.01, 0.95]
600l2 [0.01, 0.9]

l3 [0.01, 0.8]

of six post-processed images, such as JPEG compression,
image blurring, noise addition, brightness change, color
reduction, and contrast adjustments. As a result, there are
10,400 image samples available, including ground truth and
original images, in the CoMoFoD dataset. Since this dataset
contains more forged images produced by post-processing
operations, it is more helpful in evaluating the robustness
of the algorithms against post-processing operations. Table
I summarizes the dataset images used to test the proposed
methodology.

B. Parameter Setup

To experiment with the proposed system, we have as-
sumed the following values for the parameter: Overlapping
block size (BwxBh) = 8× 8, No. of neighboring features
vectors to be compared = 5, Block distance threshold (Bdth)=
40,Block similarity threshold(Bsth)=0.00001, and Frequency
threshold(FT)=12.

C. Performance Metric

The proposed system is gauged at two levels. Firstly, at the
image level, we inspect whether the suspected input image
has tampered with copy-move forgery, and it does not require
any ground truth image during evaluation. Secondly, we
estimate how accurately we can identify the tampered pixels
of the copy-move forgery region. Thus, evaluation requires
both tampered and ground truth images. The following are
the three major benchmark parameters, namely Precision(P),
Recall(R), and F1-score(F1) are used to evaluate the forgery
detection techniques[33], [34] and are expressed in equations
(14), (15), and (16) as follows,

P =
True positives(tp)

True positives(tp) + False positives(fp)
(14)

R =
True positives(tp)

True positives(tp) + False negatives(fn)
(15)

F1− Score(F1) =
2 ∗ (PR)

(P +R)
(16)

TABLE II: STATISTICAL RESULTS OF PROPOSED
FORGERY DETECTION APPROACH

Attacks Levels
Evaluation metrics

P(%) R(%) F1(%)

PF - 94.10 93.82 93.96

IB
l1 85.21 89.10 89.87
l2 89.77 87.44 88.59
l3 86.66 83.44 89.67

BC
l1 93.23 95.06 94.14
l2 96.54 94.88 96.54
l3 95.88 96.39 95.13

CR
l1 94.77 94.34 97.81
l2 90.47 89.77 93.68
l3 93.58 92.33 92.95

CA
l1 94.65 93.80 94.22
l2 93.86 92.81 93.33
l3 90.66 89.77 92.10

Where tp, fp and fn are clearly described as follows,
1) tp (True positives): It quantifies the correct identifica-

tion of forged images forged for image-level evaluation
and forged pixels forged for pixel-level evaluation.

2) fp(False positives): It defines the misidentification of
the forged image as un-forged for image-level eval-
uation and forged pixels as un-forged for pixel-level
evaluation.

3) fn(False negatives): It indicates unidentified un-forged
images for image-level evaluation and the number of
unidentified un-forged pixels for pixel-level evaluation.

Hence, from the above definition, we can conclude that
the evaluation parameters are directly proportional to the
performance of any detection technique.

D. Evaluation of Results and Discussion

This section discusses the experimental approach and
records the results obtained for basic copy-move forgery
and forgery with different post-processing operations. In
the former, some parts of the image region are copied
and placed at a different location without applying post-
processing operations. Here, we have considered 80 images,
including 40 original and 40 forged (001 F to 040 F), to
evaluate the performance at the image level. Additionally,
we have taken the corresponding ground truth images for
assessing at the pixel level. As per the evaluation results, the
proposed technique can correctly detect 39 forgery images
forged out of 40 forgery images and 37 original images out
of 40 authentic images. However, the proposed approach
erroneously identified three original images as forged and one
as original, which was forged. Hence, the method produces
results with a precision of 97.50%, recall of 92.26%, an F1-
score of 95.12% and a precision of 93.40%, recall of 90.18%
and an F1-score of 92.86% for image level and the pixel level
evaluation respectively.

E. Performance Evaluation for Post-Processed Images

The assessment of copy-move forgery image performance
across various post-processing scenarios involves the analysis
of 40 forgery images that have undergone post-processing,
including image blurring, brightness change, color reduction,

IAENG International Journal of Computer Science

Volume 51, Issue 11, November 2024, Pages 1672-1685

 
______________________________________________________________________________________ 



and contrast adjustment operations. Specifically, each of
these 40 images is subjected to three post-processing levels,
resulting in 12 post-processed forgery variations for each
image. Consequently, the evaluation encompasses a com-
prehensive set of 480 forgery images that have undergone
diverse post-processing operations and their corresponding
ground truth images sourced from the CoMoFoD dataset.

1) Blurring Operation: To evaluate the robustness of
the proposed image-blurring post-processing operation, we
selected 40 images from the CoMoFoD dataset that under-
went post-processing with three distinct levels [0.009, 0.005,
0.0005], generating 120 altered images. Subsequently, we
utilized these images to validate the method’s performance
against image-blurring attacks. The outcomes of this assess-
ment, encompassing precision, recall, and F1-score metrics,
can be found in Table II. Furthermore, visual representations
of the results are provided in the third row of Table III.

2) Brightness Change Operation: To assess the robustness
against the brightness change post-processing operations for
forgery images, we chose 40 images from the CoMoFoD
dataset. These chosen images were post-processed using
three separate brightness levels such as [(0.01, 0.95), (0.01,
0.9), (0.01, 0.8)]. The range [0.01, 0.95] of brightness
change does not significantly affect the image’s visual effect,
whereas the brightness level [0.01, 0.8] yields a much
brighter image, resulting in 120 modified images. The eval-
uation results are presented in Table II, and the detection
results are in the fourth row of Table III.

3) Color Reduction and Contrast Adjustment: To evalu-
ate the robustness of the proposed technique against color
reduction, we analyzed 120 images from the CoMoFoD
dataset. These images underwent post-processing with var-
ious intensity levels per color channel, including 32, 64,
and 128. Additionally, we examined image samples that
underwent contrast adjustment post-processing with three
distinct contrast levels: [(0.01, 0.95), (0.01, 0.9), (0.01, 0.8)].
Among these, the contrast change range of [0.01, 0.95] had
minimal impact on the image’s visual appearance, while the
contrast level [0.01, 0.8] resulted in a significantly brighter
image. The detection results are presented in Table II, and a
visual representation of the outcomes can be found in Table
III, fifth and sixth rows for color reduction and contrast
adjustment post-processing operations, respectively.

F. Overall Performance Analysis

The primary aim of any copy-move forgery detection
technique is to determine whether the given input image is
forged and precisely mark the forgery regions. Therefore,
the obtained results are compared with existing approaches
to understand the capability and correctness of our proposed
method. Table VII contains a comparative study of detection
results with an existing system regarding precision, recall
and F1-score for plain copy move forgery and forgery
with different post-processing operations. Fig. 5 to Fig. 8
shows corresponding graphs. Based on the comparative study
tabulated in Table VII, the proposed method shows the results
are progressive compared to existing techniques. The results
of the proposed approach are also compared with well-
known current methods to validate the overall performance.
As per the obtained results tabulated in Table IV and the
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Fig. 5: Comparison of forgery detection results in terms of
(a) Precision, (b) Recall, and (c) F1-score with an existing
system for image blurring operation

corresponding graph shown in Fig. 11, the precision and
recall are marginally less compared with the techniques[37],
[19]. Still, the recall compared to Lin et al. 2019[38] method
differs more by about 9.82%. However, the F1-score is much
more significant compared to other methods. Hence, the
overall results demonstrate the state-of-the-art in detecting
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Fig. 6: Comparison of forgery detection results in terms of
(a) Precision, (b) Recall, and (c) F1-score with an existing
system for brightness change operation

forgery and forgery regions in digital images.

G. Analysis of the Impact of Block Size on Performance

To understand the most suitable overlapping block size
to get better detection performance. We have analyzed the
proposed methodology by changing the overlapping block
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Fig. 7: Comparison of forgery detection results in terms of
(a) Precision, (b) Recall, and (c) F1-score with an existing
system for contrast adjustment operation

size from 4× 4 to 16× 16, gradually increasing the block
size by 2× 2, and recording the effect of the increase in
block size on the performance metrics. As per the graph
in Fig. 9, the Precision generally improves as the block
size increases, suggesting that larger block sizes reduce the
number of false positives. Consequently, it increases the
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Fig. 8: Comparison of forgery detection results in terms of
(a) Precision, (b) Recall, and (c) F1-score with an existing
system for color reduction operation

accuracy performance of Precision for forgery detection.
Conversely, the smaller block size tends to have higher
Recall, indicating fewer false negatives due to increased
block similarities. However, as the block size increases,
Recall decreases significantly, and the F1-score is higher

TABLE III: VISUALIZATION OF DETECTION RESULTS
FOR PLAIN AND POST-PROCESSED FORGERY IM-
AGES

Forgery
attacks

Original image Forged image Ground truth Detected result

Plain
forgery

Image
blurring

Brightness
change

Color
reduction

Contrast
adjustment

TABLE IV: COMPARISON OF FORGERY DETECTION
TECHNIQUES WITH EXISTING APPROACHES

Existing
techniques

Feature name P(%) R(%) F1(%)

Pun et al.
2015[34]

SIFT 81.26 84.01 82.34

Emam et al.
2016[37]

PCET 93.50 81.00 88.10

Lin et al.
2019[38]

LIOP 67.60 100.00 80.70

Gani and Qadir
2020[19]

DCT-Cellular
Automata (CA)

83.00 90.30 86.50

Gani and Qadir
2021[39]

Thresholding
CA

90.00 87.00 87.80

Yang et al.
2021[40]

SIFT and Two-Stage
Filtering (TSF)

55.30 77.30 63.80

Raju and Nair
2022[28]

BDF + CH 90.60 86.70 88.40

Ours DCT + GLCM 93.40 90.18 92.86

at block sizes 6× 6 to 8× 8, where both Precision and
Recall are relatively high. A good balance exists between
false positives and false negatives. As the block size increases
beyond this range, the F1-score and Recall drop gradually,
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Fig. 9: Effect of overlapping block size on performance
metrics

reflecting the increased false negatives. Therefore, there is
always a tradeoff between block size and performance.

Hence, selecting an optimal block size is essential to
achieve better detection results and attain a balanced per-
formance. Therefore, our analysis has successfully navigated
this tradeoff to identify the optimal block size. As per the
experimental results illustrated in Fig. 9, the block sizes
between 6× 6 and 8× 8 seem ideal, and they balance mini-
mizing false positives and negatives and improved F1 score,
especially the 8× 8 block size. Therefore, our proposed
approach sets an overlapping block size 8× 8.

H. Computational Complexity

Usually, in any copy-move forgery detection technique,
identifying correlated pixels is a challenging task and often
needs an extensive feature-matching process. Our proposed
method uses stationary wavelet transformation as a part of
preprocessing and DCT followed by GLCM to extract image
features. The size of the feature dimension is reduced by con-
sidering only the first six highly potential DCT features and
combined with texture elements to represent feature vectors
to facilitate fast feature matching and reduce computational
overhead. We have noted the time the proposed system
took at two stages and compared it with other techniques
to analyze the computational burden. Table V tabulates the
time (in seconds) taken to process a single image of size
512× 512 for the feature extraction and matching process.
The time recorded in Table V and the graph depicted in Fig.
10 reveal variations in time consumption between different
feature extraction and matching techniques utilized in var-
ious existing techniques. Some of these techniques exhibit
shorter processing times for feature extraction, primarily
due to the dimensionality of the features. Conversely, they
require more execution time for feature matching. Notable
examples include Tralic[41], Mahmood[42], Wang[36], and
Wang[43]. This extended processing time can be attributed
to the rigorous computation of similarity, the calculation
of shift vectors between a block and its nearest neighbors,
and the segregation of suspected block features. Usually, the
number of nearest neighbors to be checked increases the

TABLE V: COMPARISON OF AVERAGE RUNNING
TIME (IN SECONDS) OBSERVED AT TWO STAGES
WITH EXISTING TECHNIQUES

Existing
techniques

Feature
extraction

Feature
matching

Total

D. Tralic et al. [41] 37 225 262

T. Mahmood et al.[42] 2.8 175 177.8

H. Wang and H. Wang [36] 5.6 150 155.6

Y. Wang et al. [43] 4.1 165 169.1

G. Gani and F. Qadir [39] 305 16 321

G. Gani and F. Qadir[25] 31.5 0.8 32.3

Ours 21.5 12.09 33.59

time required for feature matching. In contrast, Gani [39],
and Qudir[25] employ a more intensive feature extraction
process, resulting in longer extraction times but shorter
matching times. However, the proposed technique strikes
a balance by offering relatively less feature extraction and
matching time. However, the feature-matching process in the
proposed method takes slightly longer than in Qudir[25] due
to different threshold parameters. It’s important to highlight a
trade-off between the running time and the similarity thresh-
old value. Increasing the similarity threshold can enhance
the method’s robustness against post-processing manipula-
tions. However, this improvement comes at the expense
of improved matching and post-processing time. Because
many feature vectors meet the matching and filtering criteria,
even when they are located outside the copy-pasted regions.
Therefore, selecting an appropriate similarity threshold value
is crucial to minimize the resulting matched vectors.

V. CONCLUSION

The image copy-move forgery is a widely used tampering
method. Our proposed technique uses composite features
formed using DCT and GLCM image features. To reduce
the size of the feature dimension, we have considered only
the first six potential DCT coefficients and combined them
with GLCM features to facilitate fast feature matching and
reduce computational overhead. The experimental results
obtained in Section IV reveal that the proposed technique
yields better precision, recall, and F1-score for both ba-
sic copy move forgery and a forgery with various post-
processing operations and confirms significant improvement
over the different existing techniques. Nevertheless, image
forgery can be concealed by applying other post-processing
operations such as increasing or decreasing the size of the
forgery region, rotation, adding white Gaussian noise, and
JPEG compression and a blend thereof. In this case, detecting
forgery is much more complex and challenging. Along with
this, selecting the significant value of the threshold is crucial.
Therefore, there is a demand for more sophisticated algo-
rithms to address various issues related to the blend of post-
processing operations and a new approach to select dynamic
threshold values that are essential for accurately classifying
and detecting copy-move forgery images and regions.

IAENG International Journal of Computer Science

Volume 51, Issue 11, November 2024, Pages 1672-1685

 
______________________________________________________________________________________ 



TABLE VI: SUMMARIZATION OF EXISTING TECHNIQUES

Ref# Feature extraction Remarks

S. M. Fadl and N. A.
Semary [13]

Fast Fourier Trans-
form (FFT)

The exhaustive search and GPU parallel computing increase the
execution time and detection. The precision needs to be improved
for geometric and intensity modifications.

K. Hayat and T.
Qazi[14]

DWT and DCT Underperform in the presence of occlusion and images with
recurring patterns.

T. Mahmood et
al.[15]

SWT and DCT Significant scaling, rotation, inpainting, additive noise, contrast
adjustments, or combinations need to be addressed efficiently.

V. Thirunavukkarasu
et al.[16]

DSWT It does not detect the tampered region with some geometric
transformations.

Emre Gurbuz[17] ICV Unable to ascertain which of the matched copy-move region pairs
is the original and which is the duplicate. The parameter values are
selected based on an empirical study. Need to develop dynamic
parameter selection technique.

Beijing Chen et
al.[18]

FrQCT Not effectively addressing the forgery images with large scaling
and rotation.

G. Gani and F. Qadir
[19]

Sign of DCT coeffi-
cients

Improved methods need to be derived to address rotation and
scaling post-processing attacks.

G. S. Priyanka and K.
Singh[20]

DCT and SVD Difficult in the detection of small-sized forged regions. Appro-
priate clustering by the K-means and selecting optimal threshold
values pose significant challenges.

Dua, J. Singh, and H.
Parthasarathy[21]

DCT Experiences slightly higher rates of false detections, mainly when
there is a change in illumination and blurring. Extracting phase
congruency features from multiple orientations in the covariance
matrix poses a challenge.

M. Bilal et al. [22] DWT, SURF and
BRISK

Complex post-processing attacks include large scaling, smoothen-
ing, and brightness change need to be addressed.

S. P. Jaiprakash et
al.[23]

DCT and DWT Hard in detecting images with varying resolutions, blurring at-
tacks, and multiple forgery regions.

Gul Tahaoglu[24] DCT The method must address other post-processing attacks, such
as brightness change, color reduction, and contrast adjustment,
applied to the entire forgery image.

Gulnawaz Gani and
Fasel Qadir[25]

DCT and CA Geometric transformations and other arbitrary manipulation types
need to be addressed, and feature extraction time needs to be
reduced.

Q. Lyu et al.[26] LIOP keypoints Precision decreases due to the extended triangles and increased
number of keypoint pairs resulting from the double-matching
process.

T. Qazi, et al.[27] DWT and Inverse
DWT

The method fails to detect when the patch is not taken from the
host image and has high JPEG compression.

P. M. Raju and M. S.
Nair[28]

BDF and CH This method can detect copy-move forgery regions, but still, an
improvement is needed for the accuracy and detection of other
types of forgery images.

S. B. G. T. Babu and
C. S. Rao [29]

SPT and GLCM This approach cannot discriminate between authentic and
computer-generated images.

S. B. G. T. Babu and
C. S. Rao [30]

PCET and Gradient
Direction Pattern
(GDP)

This approach does not address the image blurring, color re-
duction, and brightness change post-processing attacks. Also, the
method for threshold value calculation needs to be improved.
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Fig. 11: Comparison of detection results with existing techniques
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TABLE VII: COMPARISON OF STATISTICAL RESULTS WITH EXISTING FORGERY DETECTION TECHNIQUES

Attacks Levels
Ours

BDF+Color
Histogram(CH)[28]

Tetrolet
Transform[35]

DCT+Perceptual
Hashing(PH)[36]

Adaptive
Oversegmentation(AOS)[34]

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

PF - 94.10 93.82 93.96 90.55 86.74 88.35 99.20 92.16 95.64 90.02 90.10 90.06 81.26 84.01 82.34

IB
l1 88.21 84.25 89.87 85.82 79.20 77.04 94.52 84.65 77.85 85.70 79.90 82.70 76.48 70.93 67.11
l2 89.77 81.10 85.22 80.69 64.41 66.65 94.30 78.29 68.42 78.00 72.04 74.90 77.86 61.25 63.84
l3 92.41 83.44 89.67 78.26 79.25 56.38 89.91 71.05 61.18 64.90 58.22 61.38 67.11 58.99 42.13

BC
l1 93.23 95.06 94.14 88.17 84.74 86.89 98.17 93.35 91.06 83.57 81.40 82.47 79.47 73.06 75.34
l2 96.54 94.88 96.54 86.74 83.97 84.94 98.17 89.68 85.55 78.36 79.20 78.78 75.97 71.29 73.34
l3 95.88 96.39 95.13 85.95 83.37 84.52 91.97 83.26 79.82 70.71 67.52 69.08 76.32 71.42 73.02

CR
l1 94.77 94.34 97.81 85.56 83.62 82.24 97.38 93.57 92.86 - - - 70.05 73.69 73.20
l2 96.49 89.77 93.68 84.68 85.43 83.30 97.38 93.57 89.76 - - - 72.00 72.71 77.14
l3 93.58 92.33 94.67 87.92 85.06 85.60 100.00 96.67 90.48 - - - 75.14 70.42 78.64

CA
l1 94.65 87.67 91.03 84.54 84.40 82.19 99.29 94.33 90.31 89.00 89.26 89.13 77.29 74.29 78.32
l2 93.86 92.81 93.33 85.22 83.75 82.09 97.64 88.65 84.87 81.30 83.43 82.35 73.37 74.13 75.42
l3 90.66 86.50 92.10 87.14 82.81 82.97 91.96 82.98 79.67 73.53 82.72 77.85 75.80 71.21 74.55

Algorithm 1: Pseudo code of the proposed forgery detection approach
Data: Image as an input.
Result: i. Identify whether the input image is forged or authentic.
ii. Mark and display the forgery region present in the forgery image.

1 Read the image Imgi where i=1,2,3,. . . ..N.
2 Pre-process the input image and apply SWT to utilize the approximation (Y 1

i+1(LL)) subband.
3 Imgg ← rgb2gray(Imgi);
4 ImgLL = SWT (Imgg);
5 Divide (ImgLL) subband into overlapping blocks using block tiling process.
6 TOB ← (W −Bw + 1) ∗ (H −Bh + 1);
7 Extract DCT and GLCM features from each overlapping block Bi and construct a composite feature matrix(CFM).
8 while i ̸= len(TOB) do
9 fDCT

i ← [fi1 , fi2 , fi3 , fi4 , fi5 , fi6 ];
10 fGLCM

i ← [ficont , ficorr , fiene ];
11 CFVi ← fDCT

i + fGLCM
i ;

12 CFM [rowi] = [CFVi];
13 end
14 Lexicographically sort the composite feature vectors from CFM.
15 CFMsorted ← lexico sort(CFM);
16 Perform block matching to segregate similar feature blocks and drop the outliers.
17 for i← 1 to len(CFMsorted)− 10 do
18 for j ← 1 to 10 do
19 if BD(CFMsorted(i, 10 : 11), CFMsorted(i+ j, 10 : 11)) ≥ Bdth then
20 if SB(CFMsorted(i, 1 : 9), CFMsorted(i+ j, 1 : 9)) ≤ Bsth then
21 X i ← CFVi, CFVj , (p, q)and(l,m);
22 end
23 end
24 end
25 end
26 Detect the forgery image and mark the forgery region using suspected blocks count (SBC)
27 if SBC ≥ FT then
28 i.Declare the input image is forged;
29 ii. Perform binary mapping to mark the forgery region and visualize the result;
30 else
31 Declare the input image is not forged(Authentic);
32 end
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