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Abstract—Graph Theory would not be what it is
today without graph colouring. Graph colouring is
the major part of discrete mathematics which is ma-
jorly used in network analysis. Radio colouring and
L(2,1) colouring are cardinal topics in graph theory
that associate many real life situation.The dominant
role of graph colouring is to partition the independent
components which in turn is applied in practical solu-
tion of networks. The interference reduction problem
is modeled as a graph coloring problem which is the
principal keynote of study. There are several well-
known colouring parameters in graph theory. Here
we deal with the following colouring parameters, ra-
dio number and span.The colouring parameters cor-
relates the constrains of networks. In this article the
span of sunlet, bistar, pencil graph families and radio
number of Mycielski of cycle, bistar graphs are exam-
ined. Also, the comparison of span and radio number
of some graph families are examined.

Keywords: Distance two colouring, Radio colouring,

Sunlet graph, Bistar graph, Pencil graph, Mycielskian

graph.

1 INTRODUCTION

As bigger and more advanced wireless networks are con-
tinuously deployed, the issue of mitigating interference
in wireless networks is becoming more and more signif-
icant. An important drawback of wire-less networks is
the interference of signals. Preventing nearby and related
nodes connected by radio signals from receiving and send-
ing signals which interfere or blend together is the goal
of reducing interference. Thus, in a wireless network,
interference arises when one or more nodes receive con-
flicting broadcasts over the same radio frequency. This
hinders the receiver’s capacity to interpret incoming sig-
nals. Using the graph coloring problem to lessen interfer-
ence in wireless networks is a more feasible solution than
embedding a system or spending a lot of money on ra-
dio transmitter technology. Because it turns out to be a
highly challenging topic, simpler network topologies have
been studied in order to reduce interference in random
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networks. There are several ways to lessen interference,
including channel assignment, power control, and tem-
perature regulation. Reducing interference in a network
can be achieved by carefully allocating communication
channels to individual nodes. It’s crucial to remember
that there is a limited supply of radio frequencies, there-
fore it makes sense to look closely into the issue of de-
creasing the number of channels allotted to a particular
network. Channel overlap may be required in some sit-
uations where a network’s allotted number of channels
is insufficient to connect every node. I have chosen to
focus on radio colouring and distance two colouring for
my research because they both originate from the idea
of interference reduction problems. The constraints for
the radio and distance two coloring of graphs were exam-
ined in this work. The Frequency Assignment Problem
served as inspiration for both the radio and distance two
coloring concepts.

As radio colouring and distance two colouring are based
on the concept of interference reduction problem these
topics has been chosen for my research work. This
work analyzed the bounds for the radio and distance two
colouring of graphs. The radio colouring and distance
two colouring is inspired from the Frequency Assignment
Problem.

2 BACKGROUND

Let G = (V,E) be a simple, connected and undirected
graph. The L(2, 1)- colouring problem proposed by
Griggs and Roberts is a variation of the frequency as-
signment problem introduced by Hale. Griggs and Yeh
showed that the L(2, 1)-problem is NP-complete for gen-
eral graphs. A Distance two (L(2, 1)) Colouring of a
graph is a function c from the vertex set V (G) to the set
of all non negative integers such that |c(u)− c(v)| ≥ 2
if d(u, v) = 1 and |c(u)− c(v)| ≥ 1 if d(u, v) = 2, where
d(u, v) denotes the distance between u and v in G. The
L(2, 1)-colouring number or span number λ(G) of G is the
smallest number k such that G has an L(2, 1)-colouring
with max{c(v) : v ϵ V (G)} = k.
A radio colouring of a graph is defined as colouring the
vertices of G with positive integers such that the distance
two vertices are assigned different colours and adjacent
vertices are coloured with difference at least two. A ra-
dio colouring that uses k-colours is a k-radio colouring.
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The minimum number of colours used is the radio chro-
matic number or radio number rn(G) of G.

Difference between Radio Colouring and D(2, 1) Colour-
ing: The distance two colouring uses non-negative inte-
gers for colouring and radio colouring uses positive inte-
gers for colouring. The span is the minimum value among
the largest colour assigned to vertices of the graph and
the radio number is the minimum number of colours used.

R.Kalfakakou et al. [2] defined the Radio Colouring of
graphs and radio chromatic number of graph in 2003.

Yeh [1991] and then Griggs and Yeh [1992] first consid-
ered L(2,1) Colouring. Griggs showed that λ(T ) = ∆+1
or ∆+2 and also the span of path, cycle and upper bound
for connected graphs and conjectured that λ(G) ≤ △2

for any simple graph with maximum degree at least 2 [1].
Griggs and Yeh showed that the L(2, 1)-problem is NP-
complete for general graphs.

David. W. Mauro et al. contributed the results of the
complete graph, generalized Petersen graph and trees [3-
5]. Peter Bella et al. proposed the result for planar
graph [6]. Sakai. D explored the results of chordal graphs
[7]. S. K. Vaidya et al. discussed the results of graph op-
erations on cycle and total graph of the path, cycle and
star graph, n-ary k-regular cactus [8–10].

Zhendong Shao, in his thesis, studied the bounds of total
graph of star free graph, Mycielski of the complete graph
and improved the upper bounds of standard products of
graphs [11]. Pingli. Lv et al. discussed the bounds of the
cartesian sum of graphs [12].

Zhendong Shao et al. discussed the bounds of Kneser
graphs and squares of Kneser graphs [13]. Christopher
Schwarz, Denise Sakai Troxell, studied the bound for the
cartesian product of cycles [14]. Pranava K. Jha et al.
explored the results of direct product of paths and cy-
cles [14].

3 PRELIMINARIES

Definition 3.1. A k-colouring of a graph is an assign-
ment of colours(positive integers) to the nodes of G using
k colours. A proper colouring is assigning colours to the
vertices of G, such that every two adjacent vertices are as-
signed different colours. The minimum number of colours
used in proper colouring is said to be chromatic number
of graph and is denoted by χ(G).

Definition 3.2. A radio colouring of a graph is de-
fined as colouring the vertices of G with positive integers
such that the distance two vertices are assigned different
colours and adjacent vertices are coloured with difference
at least two. A radio colouring that uses k-colours is a
k-radio colouring. The minimum number of colours used
is the radio chromatic number or radio number rn(G) of

G.

Definition 3.3. An L(2,1) colouring of a graph G is
an assignment of colours(non-negative integers) to the
vertices of G such that

(i) colours assigned to adjacent vertices differ by at least
two,

(ii) colours assigned to vertices at distance two must dif-
fer, and

(iii) no restriction is placed on colours assigned to vertices
at distance three or more.

Definition 3.4. For a graph G, the Mycielskian of G is
the graph µ(G) with vertex set consisting of the disjoint
union V ∪ V ′ ∪ {u}, where V ′ = {x′ : x ∈ V } and edge
set E ∪ {x′y : xy} ∪ {x′u : x′′}. We call x′ the twin of x
in µ(G) and vice versa and u, the root of µ(G).

Definition 3.5. The n-sunlet graph on 2n vertices is
obtained by attaching n pendant edges to the cycle Cn

and is denoted by Sn.

Definition 3.6. The line graph of a graph G, denoted
by L(G), is a graph whose vertices are the edges of G and
if u,v ∈E(G) then uv ∈E(L(G)) if u and v share a vertex
in G.

Definition 3.7. Let G be a graph with vertex set V(G)
and edge set E(G). The middle graph of G denoted by
M(G) is defined as follows. The vertex set of M(G) is
V(G)∪E(G). Two vertices x,y of M(G) are adjacent in
M(G) in case one of the following holds: (i) x,y are in
E(G) and x,y are adjacent in G, and (ii) x is in V(G), y
is in E(G), and x,y are incident in G.

Definition 3.8. Let G be a graph with vertex set V(G)
and edge set E(G). The total graph of G denoted by T(G)
is defined in the following way. The vertex set of T(G)
is V(G)∪E(G) . Two vertices x,y of T(G) are adjacent
in T(G) in case one of the following holds: (i) x,y are in
V(G) and x is adjacent to y in G, (ii) x,y are in E(G) and
x,y are adjacent in G, and (iii)x is in V(G), y is in E(G),
and x,y are incident in G.

Definition 3.9. The graph acquired by joining the cen-
tre vertices of two copies of K1,n is called bistar graph
Bn,n.

Definition 3.10. The square graph of a simple con-
nected graph G is defined by consisering the similar ver-
tex set as of V(G) and edge set is obtained by joining two
vertices if they are at a distance 1 or 2 away from each
other in G and is represented by G2.

Definition 3.11. Let G′ and G′′ be two copies of con-
nected graph G. The shadow graph D2(G) is obtained
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by joining each vertex v′ in G′ to the neighbours of the
corresponding vertex v′′ in G′′.

Definition 3.12. Splitting graph of G is constructed by
including a new vertex equivalent to each vertex of G
with the property that the adjacent vertices of vertex in
G is the same to the adjacent vertices of newly added
vertices and is indicated by S′(G).

Definition 3.13. Let G = (V(G),E(G)) be a graph with
V = S1 ∪ S2 ∪ S3 ∪ · · ·Si ∪ T where each Si is a set of
vertices having at least two vertices of the same degree
and T = V \(∪ Si). The degree splitting graph of G
denoted by DS(G) is obtained from G by adding vertices
w1,w2,w3, . . .,wt and joining to each vertex of Si for 1 ≤
i ≤ t.

Definition 3.14. The comb(CBk) is a graph obtained
by joining a single pendant edge to each vertex of a path
Pk.

Definition 3.15. A caterpillar graph G is a tree
having a central path Pt on t vertices, namely
{v1, v2, v3, ..., vi, ..., vt}, where the leaf vertices
{u1, u2, u3, ..., umi}, mi ≥ 1 are attached to every
vertex vi for 1 ≤ i ≤ t of the central path Pt.

Definition 3.16. Let n be a positive integer with n ≥ 2.
A pencil graph with 2n+2 vertices, denoted by Pcn, is a
graph with vertex set and edge set as follows. V(Pcn)
= {ui,vi|i ∈ [0,n]}, and E(Pcn) = {uiui+1,vivi+1|i ∈ [1,n-
1]}∪{uivi|i ∈ [0,n]}∪{u1u0,v1u0,unv0,vnv0}.

Definition 3.17. A uniform caterpillar is a caterpil-
lar with each vertex is either of degree 1 or of degree m
where m = ∆(G). We denote a uniform caterpillar with
n vertices on the spine by Catn,m−1.

Definition 3.18. A broom is a tree obtained from a
path by adding pendant edges at exactly one of the end-
vertices of the path.

4 L(2,1) COLOURING OF SUN-
LET AND ITS PARAMETRIZED
GRAPHS

In this section the distance two colouring of sunlet fami-
lies of graphs are explored.

Lemma 4.1. For any graph G, the lower bound for λ(G)
is ∆+ 1 and λ(G) ≤ ∆2 +∆− 2. Also, if G is a graph of
order n, then λ(G) ≤ n+ χ(G)− 2[1].

Theorem 4.1. The span of line graph of sunlet graph
is λ(L(Sk)) = 7, where k ≥ 3.

Proof: Let V (L(Sk)) = E(Sk) = {ui :1 ≤ i ≤ k}∪{vi :
1 ≤ i ≤ k}andE(L(Sk)) = {uivi,vivi+1,ui+1vi/1 ≤ i ≤

k}. In this graph uk+1 = u1 and vk+1 = v1.
In line graph of sunlet graph a maximum degree vertex
is adjacent to two maximum degree vertices. There-
fore by distance conditions ∆ + 3 is required. Hence
λ(L(Sk)) ≥ 7.

The following colouring shows that λ(L(Sk)) ≤ 7.

Case(i). When k ≡ 2 (mod 3)

The colouring pattern is as follows

c(ui) =


7 i ≡ 1(mod 3), i ̸= k− 1

5 i ≡ 2 (mod 3); i ̸= k 1 ≤ i ≤ k− 2

6 i ≡ 0 (mod 3)

c(uk) = 1, c(uk−1) = 0

c(vi) =


0 i ≡ 1(mod 3), i ̸= k− 1

2 i ≡ 2 (mod 3); i ̸= k 1 ≤ i ≤ k− 2

4 i ≡ 0 (mod 3)

c(vk) = 3, c(vk−1)

Case(ii). When k≡ 0 (mod 3)

The colouring pattern is as follows

c(ui) =


7 i ≡ 1 (mod 3)

5 i ≡ 2 (mod 3)

6 i ≡ 0 (mod 3)

c(vi) =


0 i ≡ 1 (mod 3)

2 i ≡ 2 (mod 3) 1 ≤ i ≤ k

4 i ≡ 0 (mod 3)

Case(iii). When k≡ 1 (mod 3)
The colouring pattern is as follows

c(ui) =


6 i ≡ 0(mod 3), i ̸= k− 1

5 i ≡ 2 (mod 3); 2 ≤ i ≤ k− 2

7 i = k− 1, i ≡ 1 (mod 3) i ̸= k

c(u1) = 3, c(uk) = 1

c(vi) =


0 i ≡ 1(mod 3), i ̸= k

2 i ≡ 2 (mod 3) 1 ≤ i ≤ k− 1

4 i ≡ 0 (mod 3)
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c(vk) = 6

Therefore λ(L(Sk)) = 7.
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Figure 1: L(2, 1) colouring of line graph of sunlet graph
on 6 vertices.

Theorem 4.2. If λ(M(Sk)) is the span of middle
graph of sunlet graph, then for k ≥ 10 the span is

λ(M(Sk)) =

{
10 k ≡ 2, 4 (mod 5) and
9 otherwise.

Proof: Let V (G) = V (M(Sk))= {vi : 1 ≤ i ≤ 2k,
ui,u

′
i : 1 ≤ i ≤ k}. In this graph a maximum de-

gree vertex is adjacent to two maximum degree vertices.
Therefore by lemma 4.1. ∆ + 3 is required. Hence
λ(M(Sk)) ≥ 9.

The following colouring shows that λ(M(Sk)) ≤ 9.
Case(i).
Subcase(i.1). k ≡ 4 (mod 5)
The vertices of vi are coloured using the set {0, 2, 4, 6, 8}
consecutively for i = 1 to 2k − 3 and c(v2k−2) = 2,
c(v2k−1) = 5, c(v2k) = 3 respectively.
The vertices u′

i are coloured using the set {7, 1, 5, 9, 3}
consecutively for i = 1 to k − 2 and c(u′

k−1) = 10,
c(u′

k) = 9.
The vertices of ui are coloured 3 if c(u′

j) is 1 and c(ui) = 1,
for all other vertices of ui.

Subcase(i.2). k ≡ 2 (mod 5)
The vertices of vi are coloured using the set {0, 2, 4, 6, 8}
consecutively for i = 1 to 2k − 4 and c(v2k−3) = 1,
c(v2k−2) = 3, c(v2k−1) = 5, c(v2k) = 7 respectively.
The vertices u′

i are coloured using the set {1, 5, 9, 3, 7}
consecutively for i = 2 to k−5 and c(u′

k) = c(u′
k−2) = 10,

c(u′
k−1) = (u′

1) = 9.
The vertices of ui are coloured 1 if c(u′

i) is 3 and
c(uk−3) = c(uk−2) = 0 and other vertices are coloured
as 1.

Case(ii). Subcase (ii.1). k ≡ 0 (mod 5)
The vertices vi are coloured using the set {0, 2, 4, 6, 8}
consecutively.
The vertices u′

i are coloured using the set {7, 1, 5, 9, 3}
consecutively.
The vertices of ui are coloured 3 if c(u′

i) is 1 and the other
vertices of ui are coloured as 1.

Subcase (ii.2). k ≡ 3 (mod 5)
The vertices vi are coloured using the set {0, 2, 4, 6, 8}
consecutively except i = 2k and c(v2k) = 3.
The vertices u′

i are coloured using the set {7, 1, 5, 9, 3}
consecutively and c(u′

k−2) = 7, c(u′
k−1) = 1, c(u′

k) = 5.
The vertices of ui are coloured 3 if c(u′

i) is 1 and the other
vertices of ui are coloured as 1.

Subcase(ii.3). k ≡ 1 (mod 5)
The vertices of vi are coloured using the set {0, 2, 4, 6, 8}
consecutively for i = 1 to 2k − 2 and c(v2k−1) = 3,
c(v2k) = 5.
The vertices u′

i are coloured using the set {7, 1, 5, 9, 3}
consecutively for i = 1 to k − 2 and c(u′

k−1) = 1,
c(u′

k) = 9.
The vertices of ui are coloured 3 if c(u′

i) is 1 and
c(uk−1) = 4, c(ui) = 1 for all other vertices of ui.

Theorem 4.3. If k ≥ 7, then the span of total graph
of sunlet graph is

λ(T(Sk)) =

{
9 k ≡ 0 (mod 5)and
10 otherwise.

Proof: Let V (G) = V (T (Sk))= {vi : 1 ≤ i ≤ 2k,
ui,u

′
i : 1 ≤ i ≤ k.}

In this graph a maximum degree vertex is adjacent to
two maximum degree vertices. Therefore by lemma 4.1.
∆ + 3 is required. Hence λ(T(Sk)) ≥ 9. The following
colouring shows that λ(T(Sk)) ≤ 9.

Case(i). k ≡ 0 (mod 5)
The vertices of vi are coloured using the set {0, 2, 4, 6, 8}
consecutively.
The vertices u′

i are coloured using the set {1, 5, 9, 3, 7}
consecutively.
The vertices of ui are coloured using the set {5, 3, 3, 1, 1}
consecutively.

Case(ii).
Subcase(ii.1). k ≡ 1 (mod 5)
The vertices of vi are coloured using the set {0, 2, 4, 6, 8}
consecutively for 1 ≤ i ≤ 2k − 2 and c(v2k−1) = 3,
c(v2k) = 5.
The vertices u′

i are coloured using the set {7, 1, 5, 9, 3}
consecutively for 1 ≤ i ≤ k − 2 and c(u′

k−1) = 1,
c(u′

k) = 9.
The vertices of ui are coloured using the set {3, 3, 1, 1, 5}
consecutively for 2 ≤ i ≤ k − 2 and c(uk−1) = 10,
c(uk) = 1, c(u1) = 9.
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Subcase(ii.2). k ≡ 3 (mod 5)
The vertices of vi are coloured using the set {0, 2, 4, 6, 8}
consecutively for 2 ≤ i ≤ 2k and c(v1) = 10.
The vertices u′

i are coloured using the set {5, 9, 3, 7, 1}
consecutively for 1 ≤ i ≤ k − 1 and c(u′

k) = 1.
The vertices of ui are coloured using the set {3, 1, 1, 5, 3}
consecutively for 2 ≤ i ≤ k and c(u1) = 3.

Subcase(ii.3). k ≡ 4 (mod 5)
The vertices of vi are coloured using the set {0, 2, 4, 6, 8}
consecutively for 1 ≤ i ≤ 2k − 3 and c(v2k−2) = 1,
c(v2k−1) = 5, c(v2k) = 7.
The vertices u′

i are coloured using the set {1, 5, 9, 3, 7}
consecutively for 2 ≤ i ≤ k − 3 and c(u′

k) = 9, c(u′
1) =

c(u′
k−2) = 10, c(u′

k−1) = 3.
The vertices of ui are coloured using the set {5, 3, 3, 1, 1}
consecutively for 1 ≤ i ≤ k − 3 and c(uk−2) = 0,
c(uk−1) = 9, c(uk) = 3.

Subcase(ii.4). k ≡ 2 (mod 5)
The vertices of vi are coloured using the set {0, 2, 4, 6, 8}
consecutively for 1 ≤ i ≤ 2k − 4 and c(v2k−3) = 1,
c(v2k−2) = 3, c(v2k−1) = 5, c(v2k) = 7.
The vertices u′

i are coloured using the set {1, 5, 9, 3, 7}
consecutively for 2 ≤ i ≤ k − 3 and c(u′

k) = c(u′
k−2) =

10, c(u′
1) = c(u′

k−1) = 9.
The vertices of ui are coloured using the set {5, 3, 3, 1, 1}
consecutively for 1 ≤ i ≤ k − 3 and c(uk−2) = c(uk−1) =
0, c(uk) = 1.

Theorem 4.4. The span of subdivision graph of sunlet
graph λ(S(Sk)) = 4 for k ≥ 3.

Proof: The subdivision graph of Sk is defined as a graph
on 4k vertices. Let V (S(Sk)) = {ui, vi, ai, bi/1 ≤ i ≤ k}
and E(S(Sk))={aivi, bivi, biui, aivi+1 / 1 ≤ i ≤ k}.
Here vk+1 = v1. By lemma 4.1., λ(S(Sk)) ≥ 4.
The vertices of S(Sk) is coloured as follows.

Case (i)When k ≡ 0 (mod 3)

c(vi) =

 0 if i ≡ 1 (mod 3)
4 if i ≡ 2 (mod 3)
2 if i ≡ 0 (mod 3)

c(ui) =

 1 if i ≡ 1 (mod 3)
3 if i ≡ 2 (mod 3)
0 if i ≡ 0 (mod 3)

c(ai) =

 2 if i ≡ 1 (mod 3)
0 if i ≡ 2 (mod 3)
4 if i ≡ 0 (mod 3)

c(bi) =

 3 if i ≡ 1 (mod 3)
1 if i ≡ 2 (mod 3)
5 if i ≡ 0 (mod 3)

Case (ii)When k ≡ 1 (mod 3)

c(vi) =


0 if i ≡ 1 (mod 3), i ̸= k
4 if i ≡ 2 (mod 3)
2 if i ≡ 0 (mod 3)
1 if i = k

c(ui) =

 1 if i ≡ 1 (mod 3), i ̸= k
3 if i ≡ 2 (mod 3)
0 if i ≡ 0 (mod 3), i ̸= k

c(ai) =


2 if i ≡ 1 (mod 3), i ̸= k
0 if i ≡ 2 (mod 3)
4 if i ≡ 0 (mod 3)
3 if i = k

c(bi) =


1 if i ≡ 2 (mod 3)
5 if i ≡ 0 (mod 3), i ̸= 1, i = k
3 if i ≡ 1 (mod 3), i ̸= k
4 if i = 1

Case (iii)When k ≡ 2 (mod 3)

c(vi) =

 0 if i ≡ 1 (mod 3), i = k
4 if i ≡ 2 (mod 3), i ̸= k
2 if i ≡ 0 (mod 3)

c(ui) =


1 if i ≡ 1 (mod 3), i ̸= k − 1
3 if i ≡ 2 (mod 3), i ̸= k
0 if i ≡ 0 (mod 3), i = k
4 if i = k − 1

c(ai) =


2 if i ≡ 1 (mod 3), i ̸= k − 1
0 if i ≡ 2 (mod 3), i ̸= k
4 if i ≡ 0 (mod 3), i = k
3 if i = k − 1

c(bi) =


3 if i ≡ 1 (mod 3), i ̸= k − 1
1 if i ≡ 2 (mod 3), i ̸= k
5 if i ≡ 0 (mod 3), i = k
2 if i = k − 1

Hence the above colouring pattern shows that
λ(S(SK)) ≤ 4. Hence λ(S(SK)) = 4. This concludes the
proof.
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5 L(2,1) COLOURING OF BISTAR
FAMILIES OF GRAPH

In this section the distance two colouring of bistar
families of graphs are attained.

Theorem 5.1. If k ≥ 1, then the span of bistar graph
λ(Bk,k) = ∆+ 1.

Proof: Let V (Bk,k)= {u,v,ui,vi: 1 ≤ i ≤ k} and
E(Bk,k)= {uv,uui,vvi: 1 ≤ i ≤ k}. By Lemma 4.1.
λ(Bk,k) ≥ ∆+1. The colouring of the graph is explained
below.
Let u and v be the vertices with maximum degree. Since
the maximum degree vertices are adjacent, they are as-
signed 2 distinct colours, namely 0, k + 2 to u,v re-
spectively. This shows that λ(Bk,k) ≤ ∆ + 1. Hence,
λ(Bk,k) = ∆+ 1.
The pendant vertices adjacent to u are coloured as
c(ui) = i + 1 and the pendant vertices adjacent to v are
coloured as c(vi) = i.

2 3 4 5 6 1 2 3 4 5

0 7

Figure 2: L(2, 1) colouring of Bistar graph B5,5.

Theorem 5.2. For k ≥ 1, the span of square graph of
bistar graph is λ(B2

k,k) = ∆ + 2.

Proof: Let V (B2
k,k)= {u,v,ui,vi: 1 ≤ i ≤ k} and

E(B2
k,k)= {uv,uui,vvi,vui,uvi: 1 ≤ i ≤ k}. In this graph

all the vertices are either adjacent or at distance two from
each other vertices and hence ∆+2 colours are required.
Here is the colouring pattern for span of B2

k,k. c(u) = 2,
c(v) = 0, c(ui) = 2k− 1+ i, c(vi) = k− 1+ i : 1 ≤ i ≤ k.

Theorem 5.3. The span of shadow graph of bistar
graph λ(D2(Bk,k)) = ∆+ 3, where k ≥ 1.

Proof: Let V (D2(Bk,k)={u,v,ui,vi,u
′,v′,u′

i,v
′
i} and

E(D2(Bk,k)) = {uv, u′v′, uv′, vu′, uui, vvi, u
′u′

i, uiu
′,

uu′
i, viv

′, vv′i}. In this graph, the vertices u, v, u′, v′ are of
maximum degree and each maximum degree vertex is ad-
jacent to two maximum degree vertices like u is adjacent
to v and v′, v is adjacent to u and u′ and so on.

Hence on colouring, ∆ + 2 colours are required to colour
{u, ui, u

′
i, v, v

′} as they are adjacent.
Since u′ is either adjacent or at distance two from the
coloured vertices, it requires a different colour. Therefore

∆ + 3 colours are required.
The colouring of the vertices are done in the following
manner:
c(u) = 2k + 1, c(u′) = 2k + 2, c(v) = 2k + 4, c(v′) =
2k + 5, c(ui) = i − 1, c(ui

′) = k + i − 1, c(vi) = i − 1,
c(vi

′) = k + i− 1.

4 5 6 7

0 1 2 3

10

9

4 5 6 7

0 1 2 3

13

12

Figure 3: L(2, 1) colouring of Shadow graph of Bistar
graph D2(B4,4).

Theorem 5.4. For k ≥ 2 the span of splitting graph of
bistar graph λ(S′(Bk,k)) = ∆ + 2.

Proof: Let V (S′(Bk,k))={u,ui,v,vi,u
′,u′

i,v
′,v′i } and

E(S′(Bk,k)) = {uv, uu′
i, vvi, u

′ui, viv
′, vv′i, uv

′
i}.

By lemma 4.1. λ(S′(Bk,k)) ≥ ∆+ 1.

In this graph, there are 2 vertices of maximum degree,
2k pendant vertices, 2k degree two vertices and 2 degree
k vertices. Since, the two maximum degree vertices are
adjacent ∆ + 2 colours are required for colouring and so
λ(S′(Bk,k)) ̸= ∆ + 1. Therefore, λ(S′(Bk,k)) ≥ ∆ + 2.
The two degree k vertices are assigned the colour zero,
the pendant vertices are assigned colours from 0 to k− 1
and maximum degree vertices are coloured as k + 1 and
k + 3 respectively. The degree two vertices, adjacent
to vertex coloured k + 1 are assigned colours distinctly
from k + 4 to 2k + 3 and degree two vertices adjacent
to vertex coloured k + 3 are assigned colours distinctly
from k + 5 to 2k + 3 and k respectively.
c(u) = k + 1, c(v) = k + 3, c(u′) = c(v′) = 0
c(u′

i) = c(v′i) = i− 1, c(ui) = k + 3 + i: 1 ≤ i ≤ k

c(vi) =

{
k+ 4 + i 1 ≤ i ≤ k− 1, and

k i= k.

This colouring pattern shows that λ(S′(Bk,k)) ≤ ∆ + 2.
This concludes the proof.

Theorem 5.5. For k ≥ 3, the span of degree splitting
graph of bistar graph λ(DS(Bk,k)) = ∆+ 3.
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Proof: Let V (DS(Bk,k)) = (wi, u, v, ui, vi,) and
E(DS(Bk,k)) = {uv, uw2, vw2, w1ui, w1vi, uui, vvi}. In
this graph, w1 is the maximum degree vertex and is adja-
cent to ui, vi. Therefore to colour w1, ui, vi ∆+1 colours
are required, since we use non-negative integers. Also,
the vertices u and v are adjacent to each other and are
either adjacent or at distance two from the coloured ver-
tices. Therefore each must be assigned distinct colours
other than the above used ∆ + 1 colours. Therefore
λ(DS(Bk,k)) ≥ ∆+ 3.

The colouring is given by: c(w1) = 1, c(w2) = 2k + 3
c(v) = 2, c(ui) = 2 + i, c(u) = 0, c(vi) = k + 2 + i
: 1 ≤ i ≤ k. The above colouring pattern shows that
λ(DS(Bk,k)) ≤ ∆+ 3. Hence λ(DS(Bk,k)) = ∆+ 3.

3 4 5 6 7 8 9 10 11 12

0 2

1

13

Figure 4: L(2, 1) colouring of Degree Splitting graph of
Bistar graph DS(B5,5).

Theorem 5.6. For k ≥ 4, the span of comb graph
λ(CBk) = 5.

Proof: The comb graph is acquired by attaching
a pendant edge to each vertex of the path. Let
V (CBk)=(u1,u2,. . . ,uk,v1,v2,. . . ,vk) where ei=uivi for
1 ≤ i ≤ k and ek+i=uiui+1 for 1 ≤ i ≤ k − 1.
Here, the vertices of path {u1, u2, ..., uk} are coloured as
(0, 2, 4, 0, 2, 4, ..., 0, 2, 4). Since by the definition of L(2, 1)
colouring, adjacent vertices should have colour difference
at least 2, the vertex adjacent to vertex coloured 2
cannot be coloured as 0, 1, 2, 3, 4. Therefore colour 5
must be assigned to v2. Hence λ(CBk) ≥ 5.

c(vi) =

 3 if i = 1, i ≡ 1 (mod 3)
5 if i = 2, i ≡ 2 (mod 3)
1 if i ≡ 0 (mod 3)

c(ui) =

 0 if i = 1, i ≡ 1 (mod 3)
2 if i = 2, i ≡ 2 (mod 3)
4 if i ≡ 0 (mod 3)

The above colouring shows that λ(CBk) ≤ 5.
Hence λ(CBk) = 5.

3 5 1 3 5 1

0 2 4 0 2 4

Figure 5: L(2, 1) colouring of Comb graph CB6.

Theorem 5.7. The span of complete graph is λ(Kn) =
2∆, where n ≥ 2.

Proof: In Complete graph, every 2 vertices are adjacent.
As per the concept of L(2, 1), adjacent vertices should
have colour difference at least 2. Therefore adjacent
colours cannot be assigned and different even numbers
should be used as colours. This implies that 2∆ colours
are required.

Let a vertex of V (Kn) be assigned the colour 0. Let
it be v1 and the consecutive vertices are labelled as
v2,v3,v4,. . . ,vn. Since each vertex in Kn is adjacent to
every other vertices v2 cannot be coloured with c(v1) and
c(v1)+1 as per definition. So, v2 is assigned the colour 2
and every other vertices are assigned with distinct even
number as colours as they are adjacent to each other and
totally 2n+2 = 2∆ colours are essential to colour the ver-
tices of Kn and are coloured in the subsequent manner.
c(vi)=c(vi−1)+2 for 2 ≤ i ≤ n− 1.

Theorem 5.8. The span of STn is 7, where n ≥ 3.

6 RADIO COLOURING OF SOME
GRAPHS

In this section the radio colouring of some graphs is dis-
cussed.

Observation 6.1. If G is a graph G(not totally dis-
connected) with maximum degree ∆(G), then rn(G) ≥
1+∆(G). In particular if G is an r-regular graph for some
integer r ≥ 2, then rn(G) ≥ 1 + r.

Proof: Let G be a graph that is not totally discon-
nected. Let v be a vertex with maximum degere and
v1, v2, · · · , v∆ be the vertices adjacent to v. As the ver-
tices adjacent to v are at distance two from each other
they should be assigned distinct colours as per the defini-
tion of radio colouring and therefore ∆ colours are used,
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and the vertex v is assigned a colour that is not already
used as it a proper colouring. Therefore totally ∆ + 1
colours are required for colouring. This shows that G
requires at least ∆ + 1 colours for radio colouring.

Theorem 6.1. The radio chromatic number of Mycielski
of bistar graph is ∆ + 3 = 2n+ 5 where n ≥ 3.

Proof: Mycielski of bistar graph contains three
vertices(u, v, w) of maximum degree, 4n vertices
(ui, vi, u

′
i, v

′
i : 1 ≤ i ≤ n) vertices of two degree and

two vertices(u′, v′) of degree n+ 2. The three maximum
degree vertices are adjacent to the vertices of degree n+2
and are at distance two from each other.

Since radio colouring is a proper colouring and by dis-
tance two condition atleast ∆ colours are required.
Therefore rn(µ(Bn, n)) ≥ ∆ ≥ 2n + 2 and since the
maximum degree vertices are at distance two from each
other, three more colours are required for radio colour-
ing. Therefore totally 2n + 5 colours are required. The
following shows the radio colouring of Mycielski of bistar
graph.

c(w) = 1, c(u) = 2n+ 6, c(v) = 2n+ 8,

c(u′) = n+ 3, c(v′) = n+ 4

c(u′
i) = c(vi) = i+ n, c(v′i) = c(ui) = i+ n+ 4

Theorem 6.2. The radio chromatic number of regular
caterpillar graph is ∆ + 1, where n ≥ 3.

Proof: Let v1, v2, ..., vn be the vertices of the path and
vi1, vi2, ..., vin be the vertices incident with v1, v2, ..., vn.
In caterpillar graph all the vertices of the path are of same
degree(n− 1) and it is maximum. According to observa-
tion 6.1 rn(Catn,m−1) ≥ ∆ + 1. The following colour-
ing format shows that rn(Catn,m−1) ≤ ∆ + 1. Hence
rn(Catn,m−1) = ∆+ 1.

c(vi1) = c(vi2) = ... = c(vin) = i

c(vi) =

 m+ 1 if i = 1, i ≡ 1 (mod 3)
m+ 3 if i = 2, i ≡ 2 (mod 3)
m+ 5 if i ≡ 0 (mod 3)

Theorem 6.3. The radio chromatic number of broom
graph Tn,n is ∆ + 1, where n ≥ 3.

Proof: Assume that T is not a path and so ∆(T ) = ∆ ≥
3. Suppose that Tn,n is obtained from the path P =
(v1, v2, ..., vn) by adding n pendant edges uivn(1 ≤ i ≤)
at the end-vertex vn. By Observation 6.1, rn(Tn,n) ≥
∆ + 1. The pendant vertices ui are coloured using 1 to
n colours as they are adjacent to the each other. The

vertices vn and vn−1 are coloured by n + 2 and n + 4
respectively.Then the vertices of the path are coloured
by 1, 3, 5 consecutively. This colouring format shows that
rn(Tn,n) ≤ ∆+ 1. Hence Tn,n is ∆ + 1.

Theorem 6.4. The radio chromatic number of n-level
sibling tree STr is ∆ + 1, where r ≥ 3.

Proof: For any integer r, the complete binary tree Tr of
height r is the basic structure of a sibling tree that is
obtained by adding edges between the left and right chil-
dren of the same parent. The sibling vertices are labelled
as follows: The root vertex has label-1 and the children
of vertices x are labelled as 2x and 2x+1. It implies that
the root vertex is at level 0. The r-level sibling tree is
denoted as STr, which has (2r+1–1) vertices and 3(2r−1)
edges.

Sibling tree is a type of tree and by observation 6.1, and
colouring pattern the radio chromatic number is ∆ + 1.
The following example shows the colouring pattern of sib-
ling tree.

1

3 5

7 9 7 9

1 5 1 5 1 3 1 3

Figure 6: Radio colouring of ST3

Theorem 6.5. The radio chromatic number Mycielski
of path is is ∆ + 1, where n ≥ 3.

Theorem 6.6. The radio chromatic number Mycielski
of cycle is is ∆ + 1, where n ≥ 3.

7 COMPARISION OF CHROMATIC
PARAMETERS

Based on the results obtained from my research work
the inequalities are derived in this section. Radio colour-
ing and distance two(L(2,1)) colouring are applied in fre-
quency assignment problem, and this comparison shows
that radio number is more applicable compared with the
span of the graph. The number of vertices of all graphs
under consideration are greater than or equal to three.

Observation 7.1. If Sk is a sunlet graph of order
k ≥ 3, then rn(Sk) < λ(Sk).

Observation 7.2. If L(Sk) is a line graph of sunlet
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graph of order k ≥ 3, then rn(L(Sk)) < λ(L(Sk)).

Observation 7.3. If M(Sk) is a middle graph of sunlet
graph of order k ≥ 5, then rn(M(Sk)) < λ(M(Sk)).

Observation 7.4. If T (Sk) is a total graph of sunlet
graph of order k ≥ 7, then rn(T (Sk)) ≤ λ(T (Sk)).

Observation 7.5. If S(Sk) is a subdivision graph of
sunlet graph of order k ≥ 3, then rn(S(Sk) = λ(S(Sk)).

Observation 7.6. If Bk,k is a bistar graph of order k,
then rn(Bk,k) = λ(Bk,k).

Observation 7.7. If B2
k,k is a square graph of bistar

graph of order k ≥ 3, then rn(B2
k,k) < λ(B2

k,k).

Observation 7.8. If D2(Bk,k) is a shadow
graph of bistar graph of order k ≥ 3, then
rn(D2(Bk,k)) < λ(D2(Bk,k)).

Observation 7.9. If S′(Bk,k) is a split-
ting graph of bistar graph of order k ≥ 4, then
rn(S′(Bk,k)) < λ(S′(Bk,k)).

Observation 7.10. If DS(Bk,k) is a degree split-
ting graph of bistar graph of order k ≥ 3, then
rn(DS(Bk,k)) = λ(DS(Bk,k)).

Observation 7.11. If Pck is a pencil graph of order
k ≥ 7, then rn(Pck) < λ(Pck).

Observation 7.12. If L(Pck) is a line graph of pencil
graph of order k ≥ 6, then rn(L(Pck)) ≤ λ(L(Pck)).

Chromatic parameters interpreted above are according
to their order, size and maximum degree of graph. It is
observed that for the graphs discussed above the radio
number is less than or equal to span which provides a
better bound for frequency assignment problem.

8 CONCLUSION

Several issues related to the design of radio networks, as
well as other problems in telecommunications, may be
formulated as graph colouring problems. If this problem
is modeled by graphs, transmitters correspond to vertices,
distances to edges and assigning frequency slots corre-
sponds to colouring the vertices so that adjacent vertices

and vertices at distance two have different colours. In a
similar way we may deal with the task of assigning chan-
nels to the radio base stations. Particular instances of
these problems are very often NP-complete optimization
problems and finding an optimal solution is a computa-
tionally hard task. In this article we analyze the span
number of sunlet, bistar and pencil graph families and
compare the span and radio number of some graphs.
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