
 

 

 Abstract—Recent advances on the technology of Unmanned 
Aerial Vehicles (UAV) have greatly increased the complexity of 
application scenarios, emphasizing the relevance of current 
study on UAV obstacle avoidance. The cooperative obstacle 
avoidance and trajectory planning issues that UAVs come up 
with when navigating through environments full of obstacles 
are discussed in this paper. A set of modeling schemes for 
optimal path planning based on benchmarks, i.e. the shortest 
path, shortest flying time, and least energy consumption is 
generated. While integrating the traditional static global 
planning A* algorithm with sparse optimization and improve 
the Dynamic Window Approach (DWA), an A*-Bi-objective 
DWA (A*-BDWA) algorithm was proposed, which generates 
global paths using the sparsified A* algorithm, then performs 
optimization on local paths for UAVs with various attributes 
and complex environments by summing scores of weighting 
headings, obstacle distance, and sightline as an evaluation 
function. The propose scheme offers optimal path trajectory 
simulations and time measurements for two UAVs, resulting in 
better models for possibly extreme cases. Simulations indicate 
that the proposed scheme ensures safe, collision-free pathways 
and dynamic obstacle avoidance during dual UAV operations. 
Besides, changing weights of score has little effect on UAV 
flying time, demonstrating the stability and effectiveness of our 
approach. With various repetitive and difficult simulation 
conditions upon testing, the proposed scheme displays a high 
completion rate of 88.3% and the shortest flight time, proving 
stability and efficiency for significant practical implications. 
Index Terms—A*-BDWA fusion, DWA, dynamic obstacle 
avoidance, evaluation function, sparse optimization, UAV 
 

I. INTRODUCTION 
he cluster systems of unmanned aerial vehicles (UAV) 
provide various benefits over single UAV operations, 

including redundancy, resilience, and scalability. Hence, a 
wide range of applications has been enabled, which consists 
of cooperative search, reconnaissance, surveillance, target 
tracking, electronic countermeasures, as well as the assaults 
of clustering [1-6]. Global scholars have conducted active 
research with practical implementations on this topic, which 
improves the safe, efficient, and energy-efficient operation of 
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UAVs in complicated situations [7-10], while the technical 
limitations on a variety of research fields are both 
stimulating and challenging. 

Currently, the majority of research advances focuses on 
trajectory planning in single UAV, single target, and static 
obstacle scenarios. However, these studies exposed several 
shortcomings such as limited application situations, failure to 
consider the characteristics of natural motion on UAVs, and 
minimal flying autonomy. Previous schemes such as A-star 
[11, 12], Genetic method [13] and Dijkstra [14], were 
adopted on directly producing trajectory paths which match 
the selected criteria of goals, however, the shortage of 
capacity on these approaches for real-time adaptation to 
dynamic changes in the procedure of UAV, stands for a 
dominant weakness, calling for solution. 

In recent study, a small portion of research scholars have 
examined how these dynamic impediments affect trajectory 
planning, often making use of artificial potential fields and 
local path planning methods such as DWA [15, 16]. These 
algorithms show exceptionally good performance in local 
path optimization since they dynamically optimize paths to 
help participants avoid obstacles in real-time. However, such 
kind of path planning might not always produce the globally 
optimal path; on the contrary, it might also result in local 
optimum traps on rare occasions.  

Cooperative study on algorithms of global path planning 
and local route optimization may overcome the prior defects 
and solve the potential problems of UAV trajectory planning. 
However, due to their unique properties, integrating these 
algorithms turns out to be difficult. Some researchers have 
combined these different types of algorithms for real-time 
path planning in order to get around these restrictions. For 
example, it is possible to enable real-time dynamic obstacle 
avoidance by combining the A-algorithm and the Dynamic 
Window Algorithm (DWA) to increase motion trajectory 
smoothness [17-21]. For instance, the A*-BDWA algorithm, 
intent to solve the problems of obstacle avoidance trajectory 
planning upon cooperating multiple UAVs. After obtaining a 
global route through sparsely optimizing the A* algorithm, 
this approach applies modified DWA algorithm to search for 
locally optimal trajectories between nodes by concerning 
both static and dynamic obstacle avoidance, while its final 
trajectories may guarantee efficiency, economy, and safety. 

In our study, an A*-BDWA fusion based approach is 
proposed to improve the capabilities of obstacle avoidance 
for dual UAVs by overcoming the constraints of local 
optimality in the DWA algorithm, and thereby providing 
potential solution to real-time dynamic obstacle avoidance, 
which results into significant savings on computational costs. 
Simulation results prove the effectiveness of our integrated 
algorithm in meeting its aims on appropriate planning for 
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cooperative obstacle avoidance. 
The keynote contributions in our study are summarized in 

the following manifolds: 
i) A dynamic scheme which integrate the A* algorithm 

and a bi-objective dynamic window approach (BDWA) was 
proposed on collaborative obstacle avoidance path planning 
by UAVs. This approach offers an effective solution to the 
problem of dynamic obstacle avoidance in complex scenes 
by merging global path planning with optimized local paths. 

ii) Sparse optimization on A* algorithm: An improved A* 
scheme with sparse optimization was derived by reducing 
redundant nodes through sparse optimization, and thereby 
improving the efficiency of global path planning, especially 
when handling path redundancy issues in complex scenes. 
This scheme exhibits high stability and wide applicability in 
complex dynamic scenes. It may still retain high efficiency 
and safety especially in situations where the speed and path 
planning of the drone display considerable variations. 

iii) A dual-target dynamic window scheme was proposed 
to improve the evaluation function of BDWA, enabling the 
safety and effectiveness of two UAVs to complete their 
relevant tasks. Simulations demonstrate the validity of this 
algorithm in condition of various velocities and random 
obstacles, proving its stability and adaptability in complex 
scenes, and achieving a high task completion rate upon tests. 
Integrating the merits of global planning and local dynamic 
obstacle avoidance, the global optimality of UAV path and 
respond to alternating scenes in real time are both ensured, 
improving the efficiency upon executing the related tasks. 

The rest of this paper are structured as follows. Section II 
shows the assumptions of complex environments and a brief 
description on UAV performance. The A* algorithm and its 
sparse optimization are presented in Section III, while the 
BWDA scheme is proposed in Section IV. Simulation trials 
and performance analysis are displayed in Section V. The 
last Section VI summarizes our conclusions and prospects. 

 

II. ASSUMPTIONS AND PERFORMANCE OF UAV OPERATING 
ENVIRONMENTS 

A. Environment Assumptions 
UAVs play a vital role in natural disaster rescue. They are 

helpful to monitoring crisis circumstances [22], offering 
communications among photographs, transporting materials 
[23], and allowing potential rescuers to carry out activities 
swiftly and effectively while minimizing casualties and 
losses caused by the disaster. In our study, forest fires are 
employed as an environmental context. 

It is assumed that a forest fire takes place in a specified 
location, necessitating a timely reaction from appropriate 
individuals. A risky area is defined on the foundations of 
both terrain and wind direction, while rescue activities begin 
from one side [24], as seen in Fig. 1. 

The most severe region of the fire is in the center of the 
area, marked by thick smoke, scattered burning objects [25], 
and weak signals [26], making it possible for rescuers to 
become disoriented or disconnected. UAVs are adopted for 
signal amplification and fire detection. Due to the UAVs' 
short durability, bi-objective UAVs must operate alternately 

to enable ongoing rescue operations. 
This scenario can be simplified to a classical and concise 

scene model of a single obstacle in a two-dimensional target 
plane, as depicted in Fig. 2. The subsequent definitions are 
presented as follows: 

 
Fig. 1. 3D Scene model of fire detection by UAVs 
 

 
Fig. 2. A simplified scene model from complex environment 
 

1) Target area and obstacles: 
 Define the target region as a square with a diagonal 

length of  meters, representing the danger zone. 
 Identify the region most impacted by the wildfire by 

drawing an obstacle circle with a radius of  and a 
center of . 

2) Bi-objective UAV stations: 
 Define UAV station  as point , which stands for 

the base station, and UAV station  as point , 
which represents the terminal station. 

 UAV stations  and  are located on either side 
of the obstacle circle radius , both of which are on 
the extension of the radius. Note that Points , , 
and the center  are collinear. Euclidean distances 
from  to  and  to  are denoted as  
and , respectively. 

3) Establish the Cartesian coordinate system: 
 A two-dimensional Cartesian coordinate system was 

created, with the point  serving as the origin and 
the surrounding square sides serving as the x- and 
y-axes. 
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 The initial rectangular coordinates of points , , 

and  are denoted as , , and 

, respectively. 
4) Consider the safety of UAV: 
 To ensure adequate turning area for the UAV, 20% of 

its width was supplemented around the obstacle circle 
[27]. 

B. Performance description 
In actual situations, the planning of UAV’s trajectory will 

be affected by performance of its own and environmental 
factors. The elements of the UAV are illustrated as follows: 

i) In initial positioning, UAVs  and  are located in 
stations  and , respectively, both of which must fly to 
station  and station  along a specific path. Meanwhile, 
the UAV at station  is prioritized to arrive, while both of 
them move at a steady rate  and depart simultaneously. 

ii) The turning radius of each UAV is minimized to , 
while their angles on initial direction of UAVs  and  
are denoted as  and , respectively, meanwhile, denote 

 as the angular velocity of UAVs. 
iii) Assume that there is no possibility for UAVs meeting 

with each other (in other words, the line between two UAVs 
must always intersect with an obstacle) to prevent signal 
interference, which affects path planning. Besides, each 
UAV departing from the base station are in a full state, and 
those returning from the terminal are in a weak state. 

 

III. SPARSE OPTIMIZATION OF A* ALGORITHM 

A. A* Algorithm 
As a conventional scheme on heuristic searching, the A* 

algorithm is based on the fundamental design of its heuristic 
function, which is expressed by [11], [12] 

  (1) 
where  symbolizes the actual cost from the departure 

point to the current node, and  stands for the predicted 

cost from the current node to the destination node.  
A heuristic function was adopted by A* algorithm to 

calculate the estimated cost from the goal point to the present 
location, and then decides the direction of path search with 
respect to this projected cost, boosting the validity and 
efficiency of this method. 

Notably, variations in the number of UAVs may cause 
overlapping trajectories, resulting in potential collisions. To 
address this issue, we first forecast the routes of UAV , 
and then consider it as an obstacle affecting route planning 
of UAV . As a result, those paths of the two UAVs are 
restricted to the opposite sides of the line connecting points 

 and , allowing for easier calculations upon operating. 

B. Sparse Optimization on the A* Algorithm 
The A* algorithm is effective at finding optimal paths on a 

raster grid, while the resulting paths frequently include a 
great number of redundant points. In order to enhance the 
computational efficiency of this model, it is essential to filter 
these global pathways while just finding and retaining the 
selected critical nodes instead [28]. This approach may 
ensure efficient optimization of the whole path. 

In our approach, the strategy for traversing every three 
consecutive points is offered. If the line connecting the first 
and last locations does not intersect with any obstacles, the 
middle point can be regarded as redundant. Taking a circular 
obstacle as an example, the specific steps are presented on 
sparse optimization as follows. Let the set of path nodes be 

, where  denotes the initial node 
and  stands for the final node. The angles formed by the 
vectors of neighboring nodes are calculated starting from 

 and  in order. Typically, there are two cases of 
removing redundant points, which are depicted in Fig. 3. 

i) If the angle is 0, the three nodes are co-linear, and the 
middle node is redundant, which should be eliminated. 

ii) If the angle is not 0, the three nodes are not co-linear. In 
this case, connect the two nodes adjacent to the middle 
node and determine whether the distance from the 
obstacle circle is greater than the safety distance. 

 

Fig. 3. Two cases of eliminating redundant points 

 

IAENG International Journal of Computer Science

Volume 51, Issue 11, November 2024, Pages 1793-1803

 
______________________________________________________________________________________ 



 

 

The decision rule for redundant points is as follows: let 
 be the center for circle of an obstacle, while  

and  can be marked as its two nodes. 
 If there is one or more obtuse angles between 

 and , then the middle node is 
regarded as redundant, which can be removed. 

 Otherwise, check if the distance from  to  and 

 is less than the predetermined safety distance. If the 
outcome is less, the point cannot be removed. 

Similarly, another method for node screening is applied, 
which is denoted as . After applying 
the same operation, as depicted in Fig. 4, the number of 
nodes in the global paths of UAVs  and  is obviously 
reduced, improving speed and accuracy of path planning. 

 

 
Fig. 4. Path after sparse optimization 
 

In Fig. 4, the blue dashed line represents the original path 
generated by the A* algorithm, while the red solid line 
represents the actual path after sparse optimization. The 
sparse optimization scheme successfully addresses the issue 
of redundancy on path points, particularly excelling with 
irregular obstacles such as equilateral triangles and squares 
compared to circular ones. The improved path retains only a 
few key nodes, which considerably improves the efficiency 
of A* algorithm. This strategy not only minimizes redundant 
nodes in the path, but also ensures both the correctness and 
feasibility of path design, resulting into comprehensive 
improvement on computational efficiency and performance. 

 

IV. THE BDWA ALGORITHM 
In parallel comparison to solving the issue of redundancy 

of global path point, the Dynamic Window Approach (DWA) 
algorithm is implemented to shape the model by integrating 
the sampling method and evaluation function [29]. Since the 
DWA algorithm works for single-target settings, adaptations 
must be done for its compatibility on dual UAV [30]. In this 
section, an improved scheme entitled as the Bi-objective 
Dynamic Window Approach (BDWA) is derived, which 
provides a stronger alternative comparing to DWA. 

A. Traditional DWA algorithm 
The main steps of conventional DWA are as follows: 

Step 1) Sampling 
UAVs  and  depart from different locations at the 

same time, with a minimum turning radius constraint of 30 
meters due to their dynamic restrictions. Since both UAVs 
have the same linear velocity, the interval for altering their 
angular velocity (which are also known as the angular 
velocity sampling space or angular velocity window) may be 
calculated using . It is possible to traverse each 
trajectory that UAV had anticipated over a pre-defined time 
interval by incrementally sampling its angular velocity. 

Step 2) Prediction on directions 
For the target environment situation, this study assumes that 
the time interval between each forward movement of UAV is 

. To ensure that the UAV’s obstacle avoidance trajectory 
is forward-looking and acceptable, suppose that the 
prediction point is located  time intervals ahead, each 

point may involve projecting  steps forward. However, 

UAV only moves one step in each actual time interval , 
and hence, the flight is completed inside that interval.  
Step 3) Selecting optimal path via the evaluation function. 

The evaluation function for the predicted path is given by: 
  (2) 

where:  
 Eval represents the total path score. 
  denotes the heading score of the prediction point. 

  stands for the distance score between the obstacle 
and the point for prediction. 

  and  symbols for the corresponding weight 
parameters, respectively.  

 The prediction point is referred as the point located at 
 time intervals ahead, not the point where the UAV 

will take the next step. 
The path with the highest total score is selected as the 

more optimal path for UAVs a and b to take a step forward. 
The procedure for selecting optimal path for each UAV is 

summarized as below:  
i) Calculate the prediction point heading score H. 
Define the robot heading angle  as the angle formed by 

heading of the expected point and the positive direction of 
the x-axis. Define the target angle  as the angle formed by 
the line connecting the destination and prediction points, as 
well as the positive direction of the x-axis. 

Let the deviation angle  be the absolute value of the 

difference between  and , which is denoted as 
  (3) 

The heading score  reflects the difference between 

 and the deviation angle , which yields 
  (4) 

According to (4), the smaller  it is, the larger  will 
be acquired in practical tests. 
ii) Calculate the predicted distance from obstacle score D. 

Firstly, traverse and remove any anticipated spots that sit 
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inside the obstacle circle. Then, the Euclidean distance is 
computed between each of the remaining predicted points 
and the edge of the obstacle. Finally, the minimum value of 
these distances is taken as the obstacle distance score D. 

iii) Set the corresponding weight parameters of H and D, 
and calculate the evaluation function of total scores. 

Step 4) Update the subsequent states for each UAV. 
Every step forward of the UAV on the optimal path 

involves updating its current actual position, movement 
direction, and other relevant states via continuous sampling, 
prediction, and path optimization. 

Step 5) Form a complete path for terminal UAV. 
Repeat the Steps 1)-4) until UAV reaches the destination, 

and finally form a terminal trajectory path planning for each 
of the two UAVs. 

B. BDWA algorithm 
The main advantage of BDWA algorithm is its ability to 

offer an effective solution to the problem of avoiding signal 
interference between bi-objective UAVs, i.e., the precaution 
of collision. In contrast to traditional DWA-based schemes, 
BDWA incorporates a sightline score when performing the 
evaluation function, which renders more accurate outcomes. 
The fundamental principle of analyzing an obstacle distance 
score is illustrated in Fig. 5. 

 
Fig. 5. Obstacle distance score analysis 
 

The crucial steps of BDWA are presented as follows: 
Step 1) Determine the obstacles that intersect the line of 
sight of the two UAVs:  
Firstly, the predicted positions A and B of the two UAVs 

are connected to generate the line segment of AB, and then 
identify the obstacles intersecting this segment, which are 
represented by the gray obstacles in Fig. 5. 

Step 2) Calculate the minimum distance between AB and 
the boundary of each intersecting obstacle: 
Identify two lines parallel to AB which only have one 

intersection with the gray obstacle. Compute the distances 
between these two lines and the AB segment, and take the 
minimum value as the final result. The three gray obstacles 
depicted in Fig. 5 are successively formulated by 

  (5) 

  (6) 

  (7) 
Step 3) Calculate the sightline distance. 
Consider the minimum distance from AB to the boundary 

of each intersecting obstacle, then the maximum of these 
values is taken as the vision distance, which is expressed by 

  (8) 
Step 4) Avoid the impact of excessively large sightline 
distance on the evaluation function. 
While longer sightline distances suggest lower risk on 

task-specific goals, the effectiveness of evaluation function 
may be impaired. Hence, a maximum limit of 100 was set up, 
which only include the final sightline score computation if 
lower than this threshold. Calculations are formulated by: 

  (9) 
Accumulating the product of values on H, D, S and their 

respective weight parameters yields the evaluation function 
of the proposed BDWA algorithm, which is expressed by 

  (10) 
 

V.  A*-BDWA DYNAMIC WINDOW ALGORITHM 
The inherent capacity of global optimal planning on the 

A* algorithm makes up the tendency of BDWA falling into 
local optimization. Meanwhile, BDWA algorithm addresses 
the challenges of real-time dynamic obstacles originated 
from the A* algorithm. Hence, effective fusion on these two 
algorithms results in a trajectory-planning method with high 
reference value, where the flowchart is illustrated in Fig. 6. 

 
Fig. 6. Flowchart of fusing A* and DWA 
 

 
Fig. 7. Effect of large forward simulation time on the path. 

A. Solutions to the Two Extreme Problems 
In order to prevent UAV path planning from falling into 

two extreme cases, our discussions are presented as follows: 
1) Range of the excessively estimated trajectory. If the 

range of estimated trajectory on UAVs is too wide to follow, 
a local optimum known as turning around in place” may be 
encountered, which is depicted in Fig. 7. 
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2) Range of inadequate Predicted Trajectory: When the 
predicted range of UAV is insufficient, it lacks capability on 
establishing an appropriate prediction path, which violates 
the restriction that the two UAVs are not allowed to meet. 
Such kind of situation is shown in Fig. 8. 
 

 
Fig. 8. Effect of too small forward simulation time on the path 
 

With respect to the two case studies, it is discovered that 
changes in speed influence the maximum angular velocity, 
resulting in a bigger angle of clustering on the anticipated 
path line. Besides, higher speeds may bring about longer 
anticipated trajectories over the same time interval. Hence, it 
is crucial to establish a realistic forward simulation time. 

To handle the two severe difficulties as mentioned above, 
modeling the forward prediction time p yields 

 

 

(7) 

where Parentheses [ ] denotes the estimated time, which is 
rounded to an integer of seconds. 

Most notably, the essential target nodes for the iteration 
times of BDWA are filtered using sparse optimization based 
on the A* algorithm, which drastically eliminates redundant 
points and inflection points of no necessity, saving wasted 
travel. The proposed scheme generates a set of feasible paths, 
picks up the best instructions with respect to criteria of 
performance evaluation, and thereafter improving path 
planning for UAV. While dynamically adapting instructions 
to changing conditions on scenes and updating the states of 
UAVs in real-time while moving, the optimal global path 
planning are asymptotically achieved in this set of scenarios. 

 

VI. EXPERIMENTS AND PERFORMANCE 
To test the feasibility and validity of the proposed model, 

our experimental study is performed in three set of scenarios: 
i) Tests of sampling on velocities of UAV ranging from [10, 
30], and the simulations on trajectory and flight time of two 
UAVs under distances of times by 1000m; ii) Performance 
evaluation of UAV with the increment of obstacles while the 
location and size of object are random, with the involvement 
of analysis on the complexity, for instance, various speed of 
UAV in condition of alternating the distance between base 
station A and obstacles are simulated; iii) Comparison of the 
A*-BWDA fusion scheme and single DWA algorithm, in 
addition to stability analysis of A*-BWDA under scenes of 
complex environments, where the execution time of three  

algorithms (A*-BWDA, in contrast to A*-BWDA with no 
sparse optimization and single BWDA) are computed via 
line charts and violin plots to visualize the average value and 
distributions. 

A. Prerequisites of Our Experimental Study 
1) Environment Preparation 
The experiments are conducted using software platform of 

MATLAB R2020a and later versions on a laptop with 
Windows 10 operation system (Intel Core i7-1165G7, 2.80 
GHz CPU, and 32 GB RAM). A square with a diagonal 
length  of  is established. The obstacle circle  
has a radius  of , a distance  of  to 
base station A, and a distance  of  to the 
rescuer. The rectangular coordinates of , , and are 

, , and , respectively. 
2) Initial state preparation of UAVs 
Set the speed of both UAVs to be uniform at , 

with a minimum turning radius . As a result, the 

angular velocity  ranges from . The weight 
of the heading score is 0.37, the weight of the distance to 
obstacle score is 0.6, and the sightline score weighs 0.8. 

To select a reasonable initial heading angle for the UAV, 
the lengths of UAV trajectory are compared under various 
initial direction angles. The results are tabulated in Table I. 

TABLE I 
THE OPTIMAL TRAJECTORIES OF THE TWO UAVS WITH DIFFERENT INITIAL 

HEADING DIRECTIONS ARE  

Angle(° )  Angle( °) 
 
time spent  time spent 

0 －180 519 693 
18 －162 495 663 
36 －144 492 672 
54 －126 492 675 
72 －108 490.5 642 
90 －90 489 688.5 

 
It can be found that the initial angle of UAV a falls within 

the interval , while the initial angle of UAV b 
falls within the interval . The sum of the 
operating time by both UAVs, which is shorter compared to 
other angles, conforms to the conditions of optimal path 
planning. As a result, our study may have the assumption that 
the initial travel direction of UAV a is , i.e., the 
angle with the positive direction of the x-axis is 45°, and 
similarly, the initial path direction of UAV b is . 

B. Experiments of Obstacle Avoidance by the proposed 
A*-BWDA Fusion Algorithm 

1) Experimental results of rate variations on UAV a 
The constant rate of UAV a is controlled to change within 

the range of [10, 30] m/s, with selected sample values of 10 
m/s, 20 m/s, and 30 m/s upon testing. Most notably, all other 
parameters remain the same as our prior study, with the goal 
of ensuring the priority of arrival for UAV a. Simulations on 
parameters of machine flights and trajectory are illustrated in 
Table II and Fig. 9, respectively. 

 
TABLE II 

TIME OF DIFFERENT A-MACHINE SPEEDS CORRESPONDING TO A, B FLIGHTS 
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Machine flight 
speed (m/s) 

Machine flight 
time (s) 

Machine flight 
time (s) 

10 472 640 
20 472 558 
30 474 476 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 9. Trajectory of flighting for UAV a with variable speeds 
In Fig. 9, the thick red solid line and the thin solid line 

represents the trajectories of UAVs a and b, respectively. It 
is clear that as the speed of the fully charged UAV increases, 
the waiting time for the low-battery UAV substantially 
decreases, which can be entirely disappeared in some cases. 
This improves efficiency of overall rescue and saves crucial 

time. Furthermore, the data demonstrates that regardless of 
changes in the speed of UAV, A*-BDWA model performs 
proper and consistent simulations on the flight paths of both 
UAVs. This not only demonstrates the validity of proposed 
scheme under diverse speed conditions, but also displays its 
applicability and dependability in a variety of scenarios, 
prospecting its significant potential and applications in real- 
world rescue operations. 

2) Experimental results of different distances between 
base station A and obstacle O 
The purpose of adjusting the distance between obstacle O 

and base station A to 1000m, 2000m, and 3000m, while still 
maintaining other parameters is for UAV a to reach its target. 
Simulation results are illustrated in Fig. 10, and the time of 
flighting are summarized in Table III. 

TABLE III 
FLIGHT TIME OF TWO UAVS WITH DIFFERENT DISTANCES 

length (m) UAV a’s flight time 
(s) 

UAV b’s flight time 
(s) 

1000 235 234 
2000 349 325 
3000 422 535 
4000 521 733 

 

 
(a) 

 

 
(b) 
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(c) 

Fig. 10. Diagrams of different trajectory for bi-objective UAVs and 
two base stations 

Seen from Fig. 10, the position of Base Station A has a 
considerable impact on rescue efficiency. The closer Base 
Station A is to the catastrophe region, the sooner the fully 
charged UAV may arrive at the rescue site, while UAV with 
lower battery may avoid lengthy time on waiting. However, 
in real-world settings, practical concerns such as the impact 
from disaster on neighboring signals must also be taken into 
account. Hence, combining the location of the base station 
with the speed of low-battery UAVs considerably improves 
the efficiency of rescue. Furthermore, applying A*-BDWA 
not only efficiently calculates the pathways of UAVs, but 
also prioritizes UAV a, resulting into much faster time of 
response under a variety of scenarios. Combining this model 
with practical operation restrictions offers crucial options on 
optimizing rescue plans and thereafter improving efficiency. 

C. Evaluation and Comparison 
In this subsection, an extended experiment was adopted 

for comprehensively evaluating performance of A*-BDWA, 
measuring its robustness, scalability, and adaptability. 

1) Increasing Environmental Complexity 
The simulations described above were carried out in an 

environment with only one obstacle. To further evaluate the 
method and illustrate its practicality, the complexity of 
environment was strengthened. We added the number of 
obstacles in the original location while changing their shape 
and size. Additionally, obstacles were randomly distributed 
throughout the target regions, while some of which are 
capable of performing regular movement. The results are 
displayed in two subplots at Fig. 11. 

As illustrated in Fig. 11(a), five obstacles of various forms 
were generated at random inside the defined region, as well 
as two random pathways on simulating dynamic obstacles. 
The two UAVs successfully avoided obstacles and 
completed their flight tasks effectively and safely while 
being controlled by the A*-BDWA algorithm. 

Fig. 11(b) presents flight times of the two UAVs obtained 
using this approach in 100 random situations. The success 
rate of this task-specific execution is 88.3 %. Among the 
accomplished tasks, the average duration of flight for UAV a 
is 570 seconds, and for UAV b is 662 seconds. 

In our trials, we discovered considerable differences in the 
flying times of the UAVs between different runs. Due to 

alternations on environmental variables such as the random 
location and shape of obstacles, these changes may have a 
substantial impact on the procedure of pathfinding. 

2) Comparison with the Original A*-BDWA Algorithm 
To demonstrate the superiority of the integrated algorithm 

over the original single algorithm, a comparison between the 
two is essential. The difference of algorithms was assessed 
from two perspectives: the path results of the old and new 
algorithms in a simple environment, while the stability and 
success of the A*-BDWA fusion in complicated scenes. 

 
(a) 

 

 
(b) 

Fig. 11. Simulation in a Complex Environment 
 

The performance analysis was divided into two parts, one 
is for pathing results of algorithms in simple scene, the other 
shows stability analysis of fusion scheme in complex scenes. 

a)  Comparing Path Results of Old and New Algorithms in 
a Simple Scene 

Fundamental setting is established as follows. Three fixed 
obstacles are initially set up, while the navigation routes of 
UAVs are planned using both single DWA and the proposed 
A*-BDWA fusion algorithm for comparison. The simulation 
results are illustrated in four diagrams in Fig. 12. 

As depicted in Fig. 12(a) and Fig. 12(b), the flight path 
calculated by the standalone DWA algorithm contains some 
redundancies since the UAV only changes direction when it 
approaches obstacles. In this case, two UAVs have flight 
durations of 638 seconds and 597 seconds, respectively. 
However, applying the A*-BDWA fusion approach yields 
reduced time duration of flighting on UAVs to 592 seconds 
and 581 seconds, respectively, which indicates evidence on 
increased efficiency and lower energy consumption. 
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(d) 

Fig. 12. Comparison between the proposed A*-BWDA fusion and 
the standalone DWA algorithm. 

Furthermore, the standalone DWA algorithm occasionally 

fails to achieve signal isolation and safe flight for the two 
UAVs, which are exhibited in Fig. 12(c) and Fig. 12(d). 
Without the global planning support of the A* algorithm, 
pathways planned by the standalone DWA algorithm, may 
cause the UAVs flying to the same side of an obstacle, 
resulting into potential encounters or even collisions, posing 
major safety issues. In contrast, the proposed A*-BDWA 
fusion scheme offers reliable calculations on trajectories for 
the two UAVs, assuring accuracy and safety of flying. 

b)  Stability Evaluation of Fusion Algorithms in Complex 
Scenes. 

For better analysis on the stability of A*-BWDA fusion 
approach due to the fact that simple and identical situations 
are insufficient for assessment, more complex scenes with a 
range of unforeseen barriers were set up, keeping the level of 
complexity constant, while the experiments were repeated by 
several times to test the actual time of execution. 

In this case, complexity means that the quantity of 
obstacles in the environment is constant, while both of their 
types and sizes randomly fluctuate within a particular range, 
and positions of these obstacles are randomly distributed in a 
small scope of area upon restriction. To assess the success 
rate of the fusion method, a large number of repetitive trials 
was tested, recording the time of each flight and the chance 
of success, as shown in Fig. 13. 

Fig. 13(a) depicts the flight times of the three algorithms 
(A*-BDWA, A*-BDWA with no-sparse optimization, and 
single BDWA) in difficult scenarios. It can be shown that the 
UAV controlled by the A*-BDWA algorithm takes less 
execution time to accomplish the navigation task in most 
circumstances, while still maintaining high stability, which is 
not by chance. The BDWA algorithm, on the other hand, has 
the longest and most sparsely distributed flight time, with the 
average flight length of the two UAVs under its control 
being 871 seconds and 938 seconds, respectively, which is 5 
minutes more than the flight time of the other two methods. 
This suggests that the A*-BDWA algorithm is more efficient 
in path planning and better suited to handle complex and 
dynamic scenes in real-world environments. 

Fig. 13(b) depicts the runtime violin charts of the three 
algorithms for comparison. Each algorithm has two runtimes: 
UAV a and UAV b. This subplot shows that the A*-BDWA 
method has a highly concentrated distribution of runtimes, 
implying that it is more stable than other algorithms in the 
same setting of complexity. The single BDWA algorithm, on 
the other hand, has the widest distribution of runtimes, 
implying the least reliability for practical application. 

 
(a) 
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Fig. 13. Line graphs and violin-box plots on the flight times of two UAVs 
under three algorithms 

TABLE IV 
NUMBER OF SUCCESSFUL RUNS AND SUCCESS RATE OF THE THREE 

ALGORITHMS 
 Number of successes success rate 

A*-BDWA 106/120 88.3% 
A*-BDWA 
(no-sparse) 78/120 65.0% 

BDWA 52/120 43.3% 
 
  Table IV displays the success rate in accordance with the 
number of successful runs of the three algorithms upon our 
test. It is indicated that A*-BDWA has the maximum number 
of completed task executions, with a success rate of 88.3%. 
The success rates for A*-BDWA (no-sparse) and BDWA are 
65.0% and 43.3%, respectively, which are much lower than 
those for A*-BDWA. As a result, the A*-BDWA algorithm 
is better suited to various real-time scenes, which is prone to 
complete the tasks more safely and effectively. 

In sum, the conventional DWA method lacks adaptability 
for dealing with settings in which numerous UAVs are 
operating simultaneously. The proposed A*-BWDA fusion 
scheme provides an alternative approach for less operating 
time, safety ensurance and improved efficiency, for better 
performance of UAVs. Upon handling multi-UAV trajectory 
planning tasks in more complex environments, A*-BDWA 
algorithm shows advantages in contrast to A*-BDWA and 
BDWA, exhibiting higher efficiency, safety, and stability. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, an optimal trajectory planning method for 

bi-objective UAVs under two-dimensional environment is 
investigated. Combining the standard A* algorithm with the 
dynamic window approach (DWA), an A*-BDWA algorithm 
is derived to address the defects of traditional A* algorithm, 
which include a large number of redundant keynote points 
and inefficient process upon searching. The proposed 
A*-BWDA fusion scheme is oriented for dynamic obstacle 
avoidance trajectory planning for bi-objective UAVs, which 
address the task-specific limitation of single-target on DWA 
algorithm. Experimental study presents the improvement of 
execution time, efficiency and safety, with evidence on the 
ideal obstacle avoidance trajectory in condition of variations 
on simulated environment, proving its efficiency and wider 
applicability for multi-objective path planning using UAVs. 

In future work, we plan to update the evaluation function 
of BDWA algorithm by introducing a regulating factor so as 
to increase the robustness of our approach. We also intend to 
design a few ablation tests to check the stability of proposed 
A*-BDWA scheme in a variety of practical scenes. Besides, 
alternative methods on heuristic searching and deep learning 
-based schemes are potential matches on fusion, which are 
also within the scope of our subsequent investigation. 
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