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Abstract—Metaverse-based virtual worlds can provide users
with an immersive digital experience by utilizing extended
reality, IoT, 6G communication, and computing technology.
Unlike the multiverse, in which users can access one virtual
environment-based activity at a time, metaverse applications
allow users to engage in different virtual environment-based
activities simultaneously. Previous research did not look at
three-fold collaboration, time-criticality, economy, energy, and
network function virtualization (NFV)-aware resource manage-
ment for multiverse, metaverse, and non-metaverse applications
concurrently. To conquer these issues, this article proposes
a three-fold collaboration (usage of host, neighbor user, and
service provider-owned resources), time-criticality, NFV, energy,
economy, and service delivery delay-aware resource manage-
ment scheme for multiverse, metaverse, and non-metaverse
application execution over 6G networks, taking into account
heterogeneous physical and digital workers, NFV, communica-
tion resources, application arrival, and deadline. Experimental
results show that the proposed liberty scheme outperforms
existing methods by at least 22.67% economic cost, 31.28%
energy expenditure cost, 44.11% service provider profit, and
8.83% task completion ratio gain.

Index Terms—Metaverse, Resource Management, Multi-
verse, 6G, Application and Worker Scheduling, Mobile-edge
Computing (MEC), Network Function Virtualization (NFV),
Blockchain.

I. INTRODUCTION

THE metaverse has emerged as a leading contender to
replace today’s Internet. Rather than using traditional

internet facilities (enabled by Web 2.0 technologies), such
as navigating webpages with a laptop or smartphone, in-
dividuals can communicate in the metaverse through their
avatar in 3D virtual environments, as well as work, learn,
or spend quality time in a virtual setting. Users in the
metaverse can enjoy an immersive virtual experience pow-
ered by various tactile and haptic feedback sensors using a
variety of virtual visualization technologies such as virtual
reality (VR), extended reality (XR), mixed reality (MR), and
augmented reality (AR) [1]. Currently, many multibillion-
dollar corporations are eager to invest in exciting metaverse-
based applications (such as immersive gaming and non-
fungible token transfer-based virtual trading applications).
Facebook recently rebranded as Meta and plans to invest 10
billion USD in its Metaverse divisions [2]. Microsoft invested
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USD 70 billion to acquire activision blizzard, a metaverse-
based video game company [3]. Metaverse applications,
which offer immersive digital experiences through Avatar and
XR devices, have grown rapidly in recent years. The con-
sumer technology association estimates that AR/VR-based
healthcare applications, such as VR-based disease diagnosis,
will generate 7 billion US dollar by 2026 [4]. According
to a market report [5], AR/VR-based metaverse applications
in education (e.g., video conferencing, remote learning via
avatar) can grow up to 18% annually compared to current
income over the next five years. To connect users’ IoT
(Internet of things) devices (e.g., Hololens, XR devices) to
the virtual world created by the metaverse, seamless network
connectivity with massive user support, very high reliability,
mobile edge computing (MEC) based cloud computing, and
very low latency communication is required [6], [7].

The term “metaverse” is formed by combining the words
“universe” (one world) and the prefix “meta” (beyond). The
term metaverse (beyond one world) refers to an imagined,
man-made setting (virtual world) that is interconnected with
the real physical world, which was first suggested by neal
stephenson in his 1992 science fiction book, snow crash [8].
The works in [9], [10], [11], and [12] elaborated that the term
“metaverse” refers to a sophisticated virtual environment that
combines digital and physical world elements by coordina-
tion and use of 5G/6G network technologies, web technolo-
gies, cloud technologies, blockchain (e.g., cryptocurrency ex-
change, non-fungible token (NFT) based trading, metaverse
coin exchange platform like sandbox, decentraland), digital
twin (e.g., healthcare simulation work), artificial intelligence
(for intelligent and sophisticated metaverse platform), IoT,
and extended reality (XR) technologies.

The multiverse is another popular term used to describe
the metaverse. There are some differences between the
multiverse and the metaverse. The multiverse (e.g., multi-
ple eco-systems of different universes or metaverses/virtual
platforms) offers access to virtual environment-based appli-
cations via XR technologies, where users can engage in dif-
ferent activities, such as enjoying music, walking, and video
game playing [13], [14]. However, their ability to complete
only one task at a time distinguishes them fundamentally.
Every project or work in the metaverse (i.e., shared virtual
world, all activities within the same ecosystem), including
games, trading, tours, and museums, may be housed on a
single platform (e.g., one planet).

In other words, in the metaverse (where applications or
tasks are linked to a single universe or platform), a user can

IAENG International Journal of Computer Science

Volume 51, Issue 11, November 2024, Pages 1804-1844

 
______________________________________________________________________________________ 



enter both a game and an art-selling market. In a multiverse,
the host user can play the video game but cannot also
access an NFT-based trading platform for virtual art sales.
To summarize, a multiverse is a collection of distinct virtual
realities that you can switch between to accomplish various
tasks [15].

The metaverse is expected to significantly impact every
aspect of human life (e.g., from entertainment to business to
education to transportation) through its promising applica-
tions such as virtual workplaces, holographic telepresence-
based remote video conferencing, digital twin-based simu-
lations, virtual trading via non-fungible token transfer and
blockchain-based security, immersive gaming, virtual tours
or concert experiences, virtual museum tours, and 360-
degree However, to provide users with real-time quality of
service (QoS), metaverse applications must meet specific
requirements, such as ultra-low latency, high resource de-
mands, coordination of physical and virtual world resources,
application compatibility, security enhancements, and privacy
enhancements [16], [17].

Currently, central cloud-based solutions are used for some
metaverse-based application execution tasks such as avatar
creation and emulation, rendering graphics, adding static data
to video, 3D animation, and creating new environments,
among others. Such centralized cloud-based implementa-
tions are undesirable for a variety of reasons, including
poor visualization quality, increased collisions, very long
queuing delays, and extremely high cloud access wide-
area network communication latency. To improve the exist-
ing central cloud-based server processing issues, a separate
region-based cloud computing or edge cloud server (mobile-
edge cloud computing, or MEC) would be advantageous
for avatar-based metaverse application execution due to its
low computational and communication latency [18]. Using
XR technology, the metaverse can create an immersive
virtual environment that interacts with both physical and
virtual worlds. The metaverse allows users to work, talk,
communicate, and interact with other users and the real
world through avatars. Metaverse-based application process-
ing (e.g., creating avatars, simulated or virtual environments)
requires significant computational and storage resources [19],
[20]. User devices (e.g., smart phones, robots) may not
be able to process computation and data-intensive (latency-
restricted work) metaverse services alone due to insufficient
computation and storage resources [21].

To overcome the resource limitation issue of user devices,
the computation offloading technique can be used, which
allows the user device to offload the full or partial metaverse
task workload to the MEC server for processing [20], [21].
The research community faces a challenge in allocating
MEC and communication resources, selecting a suitable
MEC server, and meeting the QoS requirements of multiple
metaverse users [21].

Currently, there are several articles on joint computation
task offloading, server placement, and routing issue problem
solving for MEC-based networks [22], [23], [24], [25].
However, the majority of the literature articles focus on single
computation task offloading issues, single MEC servers, and
single types of resource allocation rather than addressing
task offloading and resource allocation issues for multiple
meatverse-based task offloading problems. Numerous literary

works have examined the research challenges and potential
technology selection issues for metaverse application im-
plementation [26], [27], [28], [29]. In [27] and [30], the
authors discussed the recent developments, enablers, and
architectures to realize wireless technology-based metaverse
application execution. In [28], the authors provided a detailed
summary of several artificial intelligence (AI) approaches
along with other suitable technologies like computer vision,
blockchain, MEC, and natural language processing (NLP).

Previous studies [29], [30], and [31] addressed the issue
of physical and digital worker interactions in the metaverse.
However, their work is restricted to physical worker/avatar
modeling or avatar creation methods, rather than resource
allocation and appropriate physical and digital worker selec-
tion for metaverse and multiverse-based application. In [32],
researchers used federated learning and blockchain to execute
data-sharing-based metaverse applications, ensuring user data
security and privacy. Thus, proper coordination between
computation networks and data-intensive networks, as well
as proper resource management during application work
processing, are required for emerging metaverse applications.
In [33], the authors explored blockchain’s potential for meta-
verse applications, including secure data acquisition, storage,
interoperability, and privacy. In [34], researchers investigated
how blockchain, AI, and edge computing can collaborate
to enable seamless access to metaverse applications. The
article [35] presents a detailed metaverse taxonomy. The
authors categorize metaverse technologies based on different
hardware, software, applications, user interaction types, and
implementation processes after examining three use cases
(for example, the ready player one event, the roblox gaming
platform). In [19], the authors discussed different steps
associated with metaverse application development, such as
physical world and virtual world integration, digital twin
creation for both humans and IoT devices, initial applica-
tion input or content creation, interoperability, MEC-based
content processing, and visualization. The authors of [36]
conducted a survey on metaverse fundamentals, security
challenges, and privacy solutions. The article in [37] dis-
cussed several promising technologies for developing green
metaverse applications that save energy. They discussed 6G
communication and computation technologies, IoT, digital
twin (DT), AI, MEC, blockchain, and various reality-based
technologies for metaverse. In [38], researchers investigated
various metaverse issues, including digital content genera-
tion, decentralization, interoperability issues, computation,
and storage issues. They also presented a four-layer MEC-
enabled network architecture for metaverse.

However, the aforementioned study did not investigate
economic and energy cost-conscious resource management
and worker selection for various metaverse application exe-
cutions. Articles in [39] and [40] suggest that 6G technology
and edge AI (artificial intelligence technology) can effec-
tively connect virtual and physical worlds in the metaverse.
Many metaverse applications can benefit from 6G technolo-
gies, which include very low latency, massive connectivity,
energy efficiency, and seamless and ubiquitous connectivity.

Currently, 6G communication and computation technolo-
gies (e.g., terahertz wave, optical-wireless link connectivity,
MEC, machine and deep learning, blockchain, AI, digital
twin, XR technologies) are regarded as enabling technologies
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for different metaverse applications. They can support data
rates greater than 1 Tbps, network reliability and availability
up to 99.99999%, mobility support near 1000 Kmph, high
connection density over 100 devices/km2, edge processing
delays lower than 10 ns, and end-to-end delay lower than
.1 ms [40] and [41]. The development of 6G applications
is expected to focus on new requirements such as massive,
ultra-reliable, and low-latency communication (mULC) for
human-machine coworking, ubiquitous mobile broadband
(uMBB), digital twin-based virtual healthcare services, au-
tonomous driving applications, and ultra-reliable and low-
latency broadband (ULBC) services. According to [42] and
[43], 6G application requirements can be met by integrating
and coordinating various 6G technologies, such as THz
and mmwave spectrum usage, machine and deep learning
technology, edge AI technology, blockchain, MEC, and RIS
(reconfigurable interference).

According to [43], network slicing is an important issue
for 6G metaverse apps. The authors of [9] discussed the
feasibility of implementing the metaverse on mobile edge
networks, including blockchain operations, computing tasks,
communication facilities, and networking. According to [44]
and [45], a network slice can be allocated for 6G application
execution (e.g., metaverse-based virtual gaming, industrial
manufacturing) by taking both physical and digital device
resources, as well as communication, storage, and virtual net-
work resources. Another critical issue is the order of virtual
network processing (VNF), server selection for 6G metaverse
application execution, and proper resource slicing. Tradition-
ally, network functions (such as firewalls and load balancers)
were implemented on dedicated hardware appliances known
as middleboxes. The cost of designing and manufacturing
hardware middleboxes (i.e., dedicated hardware for network
service provisioning, such as firewalls, intrusion detection,
load balancing, and digital packet inspection) makes their
implementation expensive. Furthermore, the manual config-
uration and management of these middleboxes raises service
provider costs [46]. To address these issues, network function
virtualization (NFV) technology is a popular solution as
it allows software instances to run in a virtual environ-
ment, replacing hardware-based implementations [47]. NFV
delivers the required service via a set of virtual network
functions (VNFs). Virtualization technology enables these
virtual network functions (VNFs) to run on standard servers.
Service Function Chaining (SFC) is an organized collection
of VNFs that manage traffic for a specific application (i.e.,
an ordered set of VNF execution) [48]. NFV provides a more
effective and flexible framework for managing and operating
network services, allowing for more scalable and elastic
resource allocation, resulting in a significant reduction in
overall costs. To reduce end-to-end delay in SFC-based VNF
execution over the NFV-enabled network, proper placement
and selection of the VNF server is necessary, considering the
delay-sensitive nature of the applications [49]. It should be
noted that violations of SLAs (service level agreements, such
as deadline satisfaction) during VNF execution may reduce
the service provider’s overall profit. As a result, proper VNF
packet routing, orderly VNF execution, and efficient server
selection for VNF processing are required.

There are some research articles about VNF execution. In
[50], a VNF routing and placement problem using integer

linear programming (ILP) was developed to reduce opera-
tional costs. They also used heuristics to solve the ILP-based
optimization problem. The article in [51] proposed a traffic
load-aware VNF server selection scheme that can maximize
link load and reduce the specific VNF server dependency
problem. The study in [52] used a VNF placement scheme
based on Markov approximation to reduce operational and
traffic costs. In [53], a heuristic solution was provided to
a min-cost flow problem for VNF placement. The authors
of [54] proposed a hungarian-based resource allocation tech-
nique for blockchain-enabled systems that reduces energy
usage and costs. According to [55], the main challenge for
SFC-based VNF execution is to select a suitable VNF server
and allocate computation and communication resources for
task execution.Another critical issue is to reduce the end-to-
end delay for SFC-based VNF processing task execution.
The work in [56] focused on minimizing server access
waiting delays for VNF processing, rather than minimizing
transmission, waiting, and computation delays concurrently.
The articles in [57] and [58] studied the problem of mini-
mizing transmission delay during SFC-based multiple VNF
processing task execution.

The article in [59] discussed research issues and chal-
lenges in SFC-based VNF execution, such as VNF server
management, VNF execution order selection, routing policy,
and resource management, among others. The article in
[58] proposed a BFS-based SFC deployment optimization
policy. They also presented results comparing the proposed
scheme to the existing scheme (for example, greedy versus
simulated annealing-based SFC deployment). The article
in [60] provided a systematic review of the use of NFV
in data center networks. The authors of [61] created a
constrained combinatorial optimization scheme with a deep
reinforcement learning-based solution to minimize the cost
of VNF reconfiguration. In [62], the authors proposed a
resource ability-based VNF scheduling model with FCFS
(first come, first served). The authors of [63] proposed an
ILP-based optimization model for application-aware VNF
mapping in heterogeneous NFV environments. According to
[64], NFV-enabled metaverse application execution requires
a service level agreement-aware resource allocation policy
that considers various latencies, including computing latency
(digital and physical worker task execution latency, as well
as network function processing latency), communication la-
tencies, and waiting latencies. In [65], researchers proposed
a two-stage optimization problem for selecting resources and
services in a virtual network. In [66], the authors discussed
the necessity and integration of blockchain, edge computing,
and software-defined network technology to achieve wireless
network virtualization. The article in [67] examined load-
balancing-based VNF server selection in wireless networks.
Previous research [65], [66], [67] focused on a single type of
resource allocation (e.g., VNF resource) rather than multiple
types (e.g., computing, storage, communication resource).
Furthermore, their analysis did not include an examination of
different metaverse application types, worker selection, phys-
ical and digital world integration, or SFC-based VNF provi-
sioning for metaverse application execution. The work in [68]
emphasizes the on-demand resource orchestration scheme for
metaverse application execution, taking into account different
types of resource assignment (e.g., physical/virtual node-
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based computation and communication resource selection).
In [69], the authors formulated an optimization problem
based on mixed integer liner programming for joint VNF
placement and traffic routing issues while maintaining high
user acceptance rate for 6G heterogeneous network-based
applications. In [70], a traffic prediction algorithm based
on q-learning is proposed to embed VNFs in fiber-wireless
networks with resource efficiency.

According to the previous literary work discussion, previ-
ous studies did not provide an appropriate resource manage-
ment scheme for the execution of various multiverse, meta-
verse, and non-metaverse applications over 6G-enabled MEC
networks. They did not investigate any resource selection
and application coordination schemes that took three-way
collaboration into account, as well as the use of host user-
owned resources, neighbor user-owned resources, and service
provider-owned resources for various multiverse, metaverse,
and non-metaverse application implementations. The existing
literary works did not present any economy, energy, and time-
criticality-aware worker node assignment scheme for dif-
ferent multiverse and non-metaverse-based 6G applications
by taking into account not only physical worker resources
(e.g., user device, XR device, cobot, smart phone, vehicle)
but also digital worker resources (e.g., MEC server, caching
server, federated learning or FL server, digital twin server,
and blockchain work processing server) but also both VNF
resources and communication link resources. Without an
appropriate resource scheduling and worker selection system,
6G-based multiverse, metaverse, and non-metaverse-based
application execution services may face significant delays
in application service delivery, increased energy expenditure
and economic cost for host users, lower throughput, a lower
successful task completion ratio, and lower service provider
profit.

The existing works did not answer the important re-
search question of how to schedule multiple multiverse,
metaverse, and non-metaverse-based 6G applications for
users while accounting for various available MEC server
and caching server resources, host user-owned, neighbor-
owned, and service provider-owned resources, VNF server
resources, communication resources, energy and economic
budget, application deadline or time criticality requirements,
and over 6G-enabled edge networks. Previous work did not
explore how to coordinate physical, virtual network process-
ing worker, and digital worker-based multiverse, metaverse,
and non-metaverse service delivery over 6G-enabled MEC
networks with blockchain, caching, XR services, federated
learning, VNF processing, digital twin, and federated learn-
ing (FL)-aware activities. The previous research projects
failed to provide a suitable 6G network model for economy,
energy, time criticality, NFV-aware multiverse, metaverse,
and non-metaverse application work completion. Crucially,
previous research projects did not provide any performance
study results for the execution of heterogeneous multiverse,
metaverse, and non-metaverse applications using host users,
collaborative neighbor users, and service provider-owned
resources (e.g., MEC server, cache server, NFV processing
server, blockchain node, FL processing node, user device,
XR device, and digital twin server). Most importantly, pre-
vious literature failed to provide an appropriate numerical
model for analyzing the performance of multiple multiverse,

metaverse, and non-metaverse-based 6G edge computing
networks by considering various factors such as mean ap-
plication service delivery delay, economic cost, energy ex-
penditure, successful task completion ratio, throughput ratio,
service provider total profit, user total benefit ratio or welfare,
unused energy, network lifetime, and user. Nonetheless, sev-
eral delay items, such as elementary network formation phase
delay, information collection and resource mapping phase
delay, the physical worker-based workload processing delay,
the digital worker-based computation workload processing
delay (e.g., MEC server, blockchain, FL server processing
delay), communication delay, the virtual network function
processing delay, and the resource access waiting delay
were not factored into the previous works mean applica-
tion service delivery delay calculation for 6G application
execution (e.g., multiverse, metaverse, and non-metaverse).
Furthermore, the previous research lacked a comprehensive
performance analysis result visualization and comparison
with existing schemes for calculating users’ energy expen-
diture costs, economic costs, throughput, task completion
ratio, profit value for service providers, network lifetime,user
survivability ratio, and total benefit ratio for users.

In order to overcome the current limitations, this arti-
cle brings a three-fold collaboration among resources, net-
work function virtualization, users economic cost, energy
expenditure cost, time-criticality-aware resource manage-
ment, worker alocation, work coordination, and applica-
tion scheduling policy for multiverse, metaverse, and non-
metaverse-based application execution over 6G edge com-
puting networks by taking different types of application
and resource availability into account. In the following, the
primary contributions of this article are hinted below:

• This paper proposes a resource management policy
that allocates the best physical worker, digital worker,
and NFV processing server, as well as the best
communication resource allocation, to various multi-
verse, metaverse, and non-metaverse-based 6G appli-
cation services. It does this by accounting for vari-
ous factors such as heterogeneous multiverse, meta-
verse, and non-metaverse application requests, different
deadlines, heterogeneous resource and worker availabil-
ity, blockchain, digital twin, federated learning, MEC
server-based computing and caching operations, phys-
ical and digital device-based work processing, collab-
oration, and utilization of threefold resources (includ-
ing host user, neighbor-owned resources, and service
provider-owned resources), and different economic costs
for different services.

• This paper provides a multi-application resource
scheduling and physical/digital worker coordination
scheme by taking different VNF processing-enabled
multiverse, metaverse, and non-metaverse applications
into account. The metaverse application request in-
cludes XR-based immersive gaming, avatar-based vir-
tual tours of museums, avatar-based virtual clothing
experiences, XR-based remote healthcare, socializa-
tion through avatar interaction, hologram-based remote
presence for video conferencing, federated learning-
based surveillance applications, NFT (non-fungible to-
ken) and blockchain-enabled visual art selling, and
digital twin-based robot selection for manufacturing
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jobs. The non-metaverse application includes a human-
digital worker-cobot-video sensor-based industrial au-
tomation job, autonomous driving application, tra-
ditional broadband-based data exchange application,
video file caching application, brain sensor-digital
worker-wheelchair interaction-based biological applica-
tion porcessing, and charging station-to-electric vehicle
energy transfer application. The multiverse application
request includes combined avatar socialization and NFT-
based trading work, as well as combined virtual museum
tours and virtual clothing experience work via XR and
haptic devices.

• This article presents a novel network service model
for 6G, MEC,and NFV-enabled metaverse, multiverse,
and non-metaverse application execution that includes
host users, neighbor users, and service provider-owned
digital servers (e.g., MEC servers, remote cloud servers,
caching servers, blockchain nodes, VNF servers, dig-
ital twin servers, federated learning servers), phys-
ical devices (e.g., XR devices, robots, cobots, ve-
hicles, sensors, smart phones, holographic screens,
wheelchairs), user access, transport, and core networks,
6G technology-based fiber and wireless communication
devices (cellular base stations and WiFi access points),
and data transfer services.

• This paper describes a numerical analysis model that
provides the mathematics behind the calculation of mul-
tiple performance metrics, including mean application
service delivery delay, economic cost, energy expendi-
ture, successful task completion ratio, throughput ratio,
service provider total profit, user total benefit ratio or
welfare, unused user energy, network lifetime value,
and user survivability ratio. In contrast to previous
research, the mean application service delivery delay
includes several delay items such as the elementary
network formation phase delay, information collection
and resource mapping phase delay, physical worker-
based workload processing delay, digital worker-based
computation workload processing delay, communication
delay, virtual network function processing delay, and
resource access waiting time delay.

• This article depicts the simulation results of the pro-
posed liberty scheme with economy, time-criticality,
three-fold collboration among resources (with host user,
neighbor, and service provider ownership-based re-
source usage), shortest job first scheduling, and NFV-
aware resource management policy. The performance
of the proposed liberty scheme is compared with ex-
isting scheme one (with no user energy saving policy,
double collaboration with user and service provider re-
source usage, earliest application arrival-based resource
scheduling), and existing scheme two (single collabora-
tion with only service provider resource usage, random
scheduling-based resources, and no user energy saving
policy) in terms of mean application service delivery
delay, economic cost, energy expenditure, successful
task completion ratio, throughput ratio, service provider
total profit, user total benefit ratio or welfare, network
lifetime value, and user survivability ratio.

The strengths and weaknesses of previous literature are
presented in Section II. Section III describes the proposed

network diagram, the liberty algorithm for resource man-
agement, and the operating method for running multiverse,
metaverse, and non-metaverse-based applications. Section IV
describes the mathematical model for the suggested liberty
system, which includes multiple performance analysis met-
rics. Section V displays the suggested liberty scheme’s per-
formance analysis results and findings. Section VI provides
a summary of the suggested liberty scheme outcomes.

II. RELATED WORKS

This section reviews some existing research on 6G, meta-
verse, MEC, and NFV technology. In [71], the authors
conducted a survey on 6G technologies, applications, require-
ments, and future research challenges associated with 6G ap-
plication execution. They specifically covered a variety of 6G
applications, such as XR (extended reality)-based gaming or
virtual tour applications, digital twin-based simulation appli-
cations, NFT-based art selling applications, and blockchain-
based healthcare applications. The article in [72] surveyed
the metaverse pipeline ecosystem, including its computing
and networking structure, interaction layer, and digitization
layer. They also talked about different technologies and
the challenges associated with metaverse applications. The
authors in [73] used metaverse and digital twin technol-
ogy for smart manufacturing applications. The authors also
mentioned key technological and development pillars for
the metaverse, including blockchain, the internet of things
(IoT), extended reality (XR), brain-computer interfaces, 3D
reconstruction, and edge computing.

The authors in [74] emphasized the necessity of 6G
technologies (terahertz or THz bands, blockchain, digital
twin, open radio access networks) for proper service de-
livery, satisfying requirements, and efficient interaction in
the metaverse. The article in [75] discussed energy-saving
issues and challenges of implementing green metaverse net-
working. The authors of [76] discussed the role of next-
generation wireless networks, collaborative robots (cobots),
cyber-physical social systems, artificial intelligence, smart
resource orchestration, softwarized networks, cloudification,
and blockchain technologies in industry 5.0-based 6G appli-
cation execution. The authors in [77] discussed several IoT-
based metaverse applications that use the coordination of im-
mersive cyber and physical worlds in different fields such as
education, entertainment, healthcare, and smart cities. They
talked about some notable metaverse applications, including
virtual gaming, avatar-based socialization, concert viewing,
blockchain-based virtual trading with NFT tokens, XR-based
healthcare or surgery assistance, XR-based 3D apartment
viewing, remote telepresence, and XR-based museum tours.

The article in [78] elaborated on the computation, caching,
communication, and data-intensive network infrastructure,
and the necessary requirements for MEC, SFC (service
function chaining), and XR device-aided 6G metaverse app
execution. In [79], the authors explored various principles,
technologies, major components, attributes, scenarios, and
applications for metaverse applications. They also inves-
tigated various communication, networking, security, and
privacy issues related to distributed metaverse architecture.
The article in [80] discussed the importance of some tech-
nologies such as network slicing (NS), next generation
communication technologies (e.g., THz), XR technologies
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Fig. 1. Proposed 6G edge computing network for multiverse, metaverse, and non-metaverse application execution

(e.g., AR, VR, MR), IoT, robotics, blockchain, and multi-
access edge computing (MEC) technologies for realizing
some emerging metaverse applications. The work in [81]
discussed security, energy, economy, and privacy threat issues
for metaverse applications. The authors also presented a
distributed metaverse network architecture using the inter-
action and coordination of human worlds, cyberworlds, and
physical worlds. The article in [82] presented the meta-
verse’s integration with edge intelligence for the execution
of various 6G applications. The authors also investigated
and highlighted three 6G edge intelligence-based Metaverse
solutions, as well as the research challenges they faced. In
[21], a joint optimization problem was developed to reduce
energy consumption and delay during metaverse application
execution. This included metaverse task splitting, partial
computation offloading, and caching. To find the best of-
floading solution, the authors employed a double-deep Q-
network. According to the authors of [83], the machine
learning-based prediction system can be used for various
metaverse applications, including avatar modeling, wireless
network air interfaces, and resource scheduling. In [1], a
hybrid fog-cloud collaboration-based network architecture
was proposed to meet latency requirements for various meta-
verse applications. The authors also discussed the various
network components for physical, virtual, and social space
in the metaverse. In [84], the authors discussed economic
system framework challenges, incentive mechanisms, future
targets, the monetary system, security protocols, cross-chain
technologies and protocols, basic considerations, and funda-
mentals for current and future metaverse applications. The
article in [85] presented six evolutionary characteristics of
the metaverse, taking into account users’ perspectives such as
economic system, civilization, immersion, low latency, real-
time synchronization, and identity. The authors in [86] pro-

vided a detailed survey on 6G networks (e.g., terrestrial, non-
terrestrial, space networks) along with different requirements
(e.g., massive ultra-reliability, ultra-low latency, ubiquitous
mobile broadband) associated with 6G applications and en-
abling technologies (e.g., blockchain, terahertz, MEC, digital
twin, metaverse XR technologies) for 6G application execu-
tion. In [87], the authors provided a comprehensive review
regarding IoT-enabled 6G applications such as autonomous
driving, brain-computer interaction, holographic communi-
cation, blockchain and digital twin-based smart healthcare,
XR-based education or training, and industrial manufacturing
applications, among others. The authors classified applica-
tions based on their requirements, including further FeMBB,
ELPC, eURLLC, umMTC, and LDHMC. In [88], the au-
thors proposed a privacy-aware machine learning scheme for
avatar-based NFT trading in the metaverse. The article in
[89] suggests combining blockchain and 6G technologies to
meet AR/VR application requirements. The works in [90]
illustrated some unique challenges associated with the 6G-
enabled metaverse, such as resource orchestration, service
requirements satisfaction, collaboration and synchronization,
and proper network and communication infrastructure for
dynamic multi-user XR services, among others. In [91],
the authors proposed a blockchain-based federated learn-
ing framework to improve the security and transparency
of model learning in the metaverse. The authors in [92],
[93], [94], [95], and [96] examined the suitability of dif-
ferent 5G and 6G technologies for different IoT application
executions, including blockchain, mURLLC, MEC-enabled
edge intelligence, reflecting interference surfaces (RISs),
space-air-ground-underwater communications (SAGIN), and
terahertz communication technology (THz). The authors of
[93] discussed the potential of blockchain technologies (e.g.,
audit of network resources, securing information exchange,
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improving user trust) for different human-centric, machine-
centric, and data-centric 6G applications and some research
issues associated with blockchain, such as the selection
of suitable blockchain types, key exchange protocols, and
consensus algorithms for different 6G applications.

According to [97], MEC-based computation offloading is
a promising technique for meeting the latency and energy
requirements of various AR/VR-based metaverse applica-
tions. In [98], the authors developed a mixed integer non-
linear programming (MINLP)-based optimization problem
for virtualizing nework functions in the metaverse to reduce
resource costs and optimize resource allocation. The authors
of [99] discussed the main communication and networking
challenges associated with immersive edge-enabled meta-
verse application execution, as well as some solutions. In
[100], a metaverse architecture using mobile edge computing,
digital twin, and blockchain technologies was proposed for
real-time interaction between virtual and physical worlds.
The authors also identified some challenges for metaverse-
based application execution, such as proper offloading and
caching, local machine learning model training, edge re-
source optimization policies, and incentive mechanisms for
metaverse stakeholders. The works in [101] highlight the
challenges and necessity of privacy-preserving techniques
in metaverse applications. The article in [102] presented
a survey regarding network slicing management techniques
for industrial IoT applications, including various 5G and
B5G applications (e.g., transportation, factory automation).
[103] used a Q-learning algorithm to predict virtual net-
work traffic load in fiber-wireless networks. Next, this paper
will review the literature on VNF execution in the NFV-
enabled network. According to [104], NFV technology has
the potential to replace traditional hardware-based network
function execution (e.g., load balancers, firewalls, network
address translations or NATs, digital packet inspection or
DPIs, and intrusion detection system or IDS) with software
installations in a virtualized setup. In the NFV, a series of
virtual network functions, or VNF (the execution of service
function chaining), can run on generic servers to implement
the desired service using virtualization technology. In [104],
the authors created a non-linear optimization problem for
a delay-sensitive VNF scheduling problem and solved it
using a heuristic approach. To reduce energy consumption
and resource costs in blockchain-enabled NFV networks, the
authors in [105] proposed a hungarian-based server allocation
for VNF processing. Some works in this domain focused
on the energy efficiency and bandwidth usage minimization
issue [106], [107], [108], [109].

According to [110], vehicular networks require softwariza-
tion and virtualization of network functions enabled by
machine learning. In [111], the authors outlined a survey
that includes the challenges and research issues associated
with SFC (chain of network service function execution)
in 5G and B5G networks, such as suitable server selec-
tion for VNF execution, path selection and routing, service
function placement, QoS satisfaction, security and privacy
issues, among others. In [112], the authors used a mixed-
integer linear programming-based optimization problem and
a heuristic algorithm to solve the VNF placement problem in
an NFV-cloud-enabled network. To reduce energy consump-
tion in software defined networking (SDN) and NFV-enabled

networks, the authors in [113] utilized an NSGA-based
evolutionary algorithm for the VNF deployment problem.
In [114], the authors proposed using NFV technology to
address content retrieval, cache placement, and selection
issues, allowing for the coexistence of information centric
networking (ICN) and internet protocol (IP) services. To
reduce latency and resource usage, the authors of [115] used
a breadth-first search-based SFC deployment algorithm for
NFV-enabled services.

In [116], the authors used a genetic algorithm for server
selection to address the issue of service function chaining
placement in NFV-enabled video surveillance applications.
The article in [117] provided a systematic overview of NFV
data centers, covering research issues, potential technolo-
gies, architectures, and performance analysis tools, among
others. In [118], the authors proposed a deep reinforcement
learning-based solution for VNF placement in the O-RAN
system to reduce computational costs and communication
overheads. In [119], the authors emphasized the importance
of an AI-based network slicing solution for 6G networks,
including service demand prediction, VNF placement, re-
source orchestration, and VNF server selection. In [120], the
authors presented a converged network architecture model for
resource slicing in SDN and NFV-enabled optical-wireless
networks. In [121], the authors used the first-come-first-
served (FCFS) algorithm for multicast request admission in
NFV-enabled mobile edge cloud networks to meet delay
tolerance and cost-saving requirements. To overcome the
overload problem of VNF deployment, the authors in [122]
suggested using an automatic migration scheme for VNFs
in cloud networks. The authors of [123] created a resource-
aware physical node selection and FCFS-based joint SFC
embedding and scheduling mechanism for NFV-enabled 6G
networks. The article in [124] created an application-aware
VNF deployment and SFC embedding policy for hybrid
NFV-enabled networks. The work in [125] discussed a SLA
and energy-aware VNF execution policy in NFV-enabled 5G
networks. In [126], the authors formulated a reliability-based
VNF placement optimization problem using integer linear
programming for SFC execution in NFV-enabled mobile-
edge computing networks. In [127], a survey was conducted
to identify anomalies in NFV services and methods for
detecting them. In [128], an optimization problem was
developed to optimize network energy savings for joint
user association, routing traffic, and VNF job placement
across 6G heterogeneous networks. In [129], the authors
presented a service chain re-routing scheme to achieve load
balancing for NFV work execution by formulating an integer
linear programming (ILP)-based optimization problem. The
articles in [130] and [131] formulated an integer non-linear
programming-based problem and presented a heuristic-based
algorithm for SFC (ordered execution of VNF) planning
over Space-Air-Ground Integrated (SAGIN) networks. Some
works in the literature have focused on IoT technology,
offloading, cloud computing, and communication medium
issues for 5G and 6G applications [132], [133], [134], [135],
[136], [137], [138], [139], [140], [141], [142].

The articles in [143] and [144] investigated the virtual
network function (VNF) server deployment problem using
genetic algorithms and Q-learning methods, respectively.

The existing literary article discussion reveals that they did
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not investigate any resource management scheme for both
VNF server, physical worker, and digital worker selection
while taking into account multiple multiverse applications,
metaverse applications, and non-metaverse apps. They also
did not look into the three-way collaboration and use of
user-owned, neighbor-owned, and service provider-owned
resources. Unlike previous articles, this paper presents an
economy cost, energy cost, time criticality of applications,
three-fold collaboration (use of user-owned, neighbor-owned,
and service provider-owned resources), and network function
virtualization-aware resource management scheme for mul-
tiverse, metaverse, and non-metaverse application execution
over 6G edge computing networks.

III. PROPOSED LIBERTY-BASED RESOURCE
MANAGEMENT SCHEME FOR MULTIVERSE APPLICATION

EXECUTION OVER 6G NETWORKS

A. Overview of the Proposed Network and Considerations

Figure 1 depicts the proposed 6G-based network model
for multiverse, metaverse, and non-metaverse application
execution using the liberty scheme. The systematic network
model is divided into four sub-parts. In the first sub-part
(access network), user devices connect to the network via
a cellular base station and a WLAN (Wireless local area
network) access point-based wireless communication link.
The access networks’ user devices include XR devices (users
with extended reality devices, hololens, VR goggles, and
haptic devices), cobots (collaborative robots), electric vehi-
cles, humans in wheelchairs, video camera devices, humans
with brain sensors, holographic projectors, computers, smart
phones, and IoT devices, among others.

The second part of this network is an edge computing
system. The second sub-part describes the edge computing
system, which includes the virtual network function process-
ing server (VNF server), edge computing servers or MEC
servers, cache servers, digital twins, blockchain nodes, and
federated learning servers deployed near the celluar base sta-
tion. The task manager is positioned at the cell base station.
The task manager can collect user multiverse, metaverse, and
non-metaverse application requests and assign appropriate
physical and digital worker and communication resources to
each application processing.

The edge computing system has three types of re-
sources: user-owned resources, collaborative neighbor-owned
resources, and service provider-owned resources (such as
MEC servers, caching servers, and VNF processing servers).
The task manager selects the best suitable work nodes and
resources for user application request processing based on the
proposed resource scheduling scheme, evaluating resources
owned by users, neighbors, and service providers. The net-
work edge computing digitalworker nodes and servers are
linked to the task manager or cellular base station via a
dedicated optical fiber connection. The task managers at the
cellular base stations can communicate with one another via
a dedicated optical fiber communication link.

The third part of the network is the core network, which
connects multiple routers via a fiber-based communication
link. The task manager device at the cellular BS is linked
to the core network using a dedicated fiber connection. In
the fourth sub-part, the remote or central computing server is

Algorithm 1 Proposed Liberty Algorithm
1: for task manager device at cellular base station do
2: conveys elementary beacon to user devices, receives

user registrations, application registrations, and net-
work connectivity requests from users, transfers man-
ager responses to user regarding registration and con-
nectivity requests.

3: conveys the application request transfer timeslot
schedule message to users, receives users application
execution request during assigned control slot

4: conveys worker device resource status request,
receives resource update response (worker), dis-
patches/receives other task managers schedule re-
quest/response messages.

5: reorders metaverse, multiverse, and non-metaverse
aplication requests into three group ultra high,
medium, and low time critical application group.

6: if application request==ultra-high critical then
7: executes prior to the medium/low time critical ap-

plications, reorder each ultra-high application based
on small deadline first. checks all user-owned,
neighbor-owned, and service provider-owned re-
sources.

8: reserves the best VNF server with min VNF
processing delay (βk

pvp/svp/pvpp), best physical
worker with min physical work processing delay
(βk

xpu/xpr/xpuu/xpuc/xpus/xmu/xpuh), best digital
worker device (cloud/caching/digital twin/BC/FL
server) with min digital work processing delay
(βk

dwp/dwpp/bcc/bvm/dwps/dwop/csp/), best commu-
nication resource with minimum data dispatch de-
lay (βk

xdu/rdt/rdtt/xduu/tpd/rdu/btt/rdtc) for each
re-ordered application with a min predicted delay
βk
sdp, min Gk

ee, and min γk
uec

9: else if application request==medium critical then
10: executes before the low time critical and after the

ultra-high time critical application group. reorders
each medium critical applications based on small
deadline application first.

11: reserves the best VNF resources, physical, digi-
tal resources, communication resources for each
medium-critical app with a min predicted delay
βk
sdp, min Gk

ee, and min γk
uec

12: else
13: executes after ultra-high and medium-critical appli-

cations. re-orders all remaining low-critical appli-
cations based on their small deadline first.

14: allocates and reserves the best VNF resources, phys-
ical, digital resources, communication resources for
each low critical app with a min predicted delay
βk
sdp, min Gk

ee, and min γk
uec

15: end if
16: dispatches the resource schedule message to users.
17: end for

situated near the core network. A fiber link connects the core
network to the remote cloud computing system. The remote
cloud computing unit or digital server node can be located
three to five times farther away than the edge computing
digital server system.

In the network access sub-part, user devices can access
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Fig. 2. Proposed work timing or sequence model for multiverse, metaverse, and non-metaverse application execution

internet facilities through different wireless links such as tera-
hertz or THz links (i.e., by following the IEEE 802.15.3.d
standard with a .7 THz bandwidth amount and link distance
range of 1–15 m), traditional microwave links (by following
the IEEE 802.11b standard with a 6.2 GHz bandwidth
amount and link range within 1-200 m), and millimeter
wave or mm-wave links (by following the IEEE 802.11ad
standard with a 1.25 GHz bandwidth amount). Furthermore,
user devices can connect to the internet via WiFi access
points (using the IEEE 802.11ad standard with a 1.25 GHz
bandwidth amount). Furthermore, user devices can connect
to the internet via WiFi access points (using the IEEE
802.11b standard, 6.2 GHz bandwidth amount, and link range
within 1-200 m) and millimeter wave or mm-wave link (by
following the IEEE 802.11ad standard, 1.25 GHz bandwidth
amount. Furthermore, user devices can connect to the internet
via WiFi access points (using the IEEE 802.11b standard,
with a bandwidth of 7 GHz and a range of 1-100 m).

The IEEE 802.3 cd standard governs the fiber-based com-
munication link between the edge computing system and the
cellular base station, as well as the cellular base station’s
connection to a remote cloud server via a core network. The
cache server in the edge computing system uses zipfs law-
based cache distribution [141] and the least recently used
(LRU) cache replacement policy [142]. The VNF server on
the edge computing system can provide a variety of virtual
network function processing services, including firewalls

(FW), intrusion detection systems (IDS), load balancing
(LB), digital packet inspection (DPI), and network address
translation (NAT). The blockchain node, federated learning
(FL)-based task processing server, metaverse-related task
processing server, and digital twin-based work processing
server are located within the edge computing server, or MEC
server (digital worker node).

In this work, the digital work node resource can be owned
by both host users and collaborative neighbor users, as well
as service providers. In this work, triple collaboration occurs
between host-owned resources, neighbor-owned resources,
and service provider-owned resources. As a result, the task
manager can choose the best digital worker for users of
various applications by considering all three types of digital
worker resource ownership. The maximum computational
work processing speed (CPU speed) for a digital worker
device (MEC server, digital twin server, FL server, VNF
server, blockchain device) is 4.5 GHz. The user device
(XR device, smartphone, cobot, brain sensors, video camera,
vehicle, hololens) has a maximum CPU speed of 2000
MHz. During the request timeslot period, the user device
can send the task manager a multiverse, metaverse, or non-
metaverse application request. After receiving all user ap-
plication requests, the task manager assigns communication
resources, as well as physical and digital worker resources,
to each request. In this work, applications are classified
according to their time-criticality. The task manager can
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allocate communication, physical, and digital resources based
on an ultra-critical application first basis (applications with a
short deadline for execution), as well as high service delivery
delay, energy gain, and economic cost gain. During each user
work completion timeslot, the user device, physical work
node, and digital work node process the application workload
(multiverse, metaverse, and non-metaverse applications) and
finish the result generation. The user device and physical
worker device can capture and upload application data to a
digital work node for further processing and output. The dig-
ital work node processes the offloaded application data and
returns the application results to the users. The application
execution sequence diagram is depicted in Figure 2.

B. Liberty-based resource management scheme

This paper will then present the proposed liberty-based
resource management scheme for metaverse, multiverse, and
non-metaverse application execution over 6G networks. The
liberty-based resource management algorithm is discussed in
Algorithm 1. Figure 2 displays the resource management and
application work completion timing sequence model. The
simulation time cycle, or round, is divided into three parts:
the elementary formation phase, the collection and mapping
phase, and the application work completion phase. During
the elementary phase (first phase), the task manager starts
the time cycle by sending the elementary beacon message
(EB) to the user devices (such as XR devices, cobots,
smartphones, and vehicles).The user devices send the RCR
message (user registration and network connectivity request)
and the ASR (application service registration request) to the
task manager at the cellular base station device. The task
manager responds with an RCE (user registration and net-
work connectivity response) and an ASE (application service
registration response) message, which are both delivered to
the user devices. The task manager then sends the initial time
slot schedule message (iasb) to the user devices.

Next, the collection and mapping phases will begin. The
user device then sends the application request message
(which includes multiverse, metaverse, and non-metaverse)
to the task manager during the designated user application
request dispatch (uarc) time slot. The task manager then
sends the resource status update request (tmrt) to both
physical and digital worker devices. The task manager, in
turn, receives resource update response (rmrw) messages
from worker devices (resources owned by the user, neighbor,
or service provider).

Unlike previous works, we considered collaboration and
cooperation among user-owned, neighbor-owned, and service
provider-owned devices for resource usage in multiverse,
metaverse, and non-metaverse application execution. That
is, application processing resources can be chosen from
user-owned, neighbor-owned, and service provider-owned
resources (such as digital work processing nodes, VNF
servers, MEC servers, and physical devices).

The host task manager also communicates with the other
nearby task manager to obtain their resource schedule infor-
mation via resource schedule request (otmr) and response
(otmp) messages. The host task manager then calculates
the resource selection and scheduling process during the
computation period (cm). During this time, the task manager

reorders all application requests (e.g., multiverse, metaverse,
and non-metaverse applications) into three groups based
on lower application execution deadlines: high-time critical,
medium-time critical, and low-time critical. Following the
completion of high-time critical applications, medium- and
low-time critical applications are executed. The application
with the highest time criticality will be executed before
the medium and low time critical application groups. All
applications in each group are rearranged and served (as-
signed resources) in accordance with their small application
execution deadline value.

Before each application work execution phase, the task
manager recommends the best physical worker device,
digital worker device (cloud/caching/digital twin/BC/FL
server), VNF processing server, and communication link
resource selection based on the minimum predicted ap-
plication work completion delay (βk

sdp). First, the task
manager reorders the high-time critical application re-
quest based on the small deadline application first or-
der. Then, the task manager reserves and schedules the
best VNF server with min VNF processing delay (min
βk
pvp/svp/pvpp), best physical worker with min physical work

processing delay (min βk
xpu/xpr/xpuu/xpuc/xpus/xmu/xpuh),

best digital worker device with min digital work pro-
cessing delay (min βk

dwp/dwpp/bcc/bvm/dwps/dwop/csp), best
communication resource with minimum data dispatch de-
lay (βk

xdu/rdt/rdtt/xduu/tpd/rdu/btt/rdtc) for each re-ordered
high-time critical application with min predicted work com-
pletion delay (βk

sdp), min predicted energy expenditure for
users (Gk

ee), and min predicted economic cost for users
(γk

uec).
Next, the task manager reorders each medium-critical

application so that the small deadline application comes
first. Then, the task manger checking the remain-
ing available resources and reserves the best VNF
server with min VNF processing delay (βk

pvp/svp/pvpp),
best physical worker with min physical work process-
ing delay (βk

xpu/xpr/xpuu/xpuc/xpus/xmu/xpuh), best dig-
ital worker device with min digital work processing
delay (βk

dwp/dwpp/bcc/bvm/dwps/dwop/csp/), best commu-
nication resource with minimum data dispatch delay
(βk

xdu/rdt/rdtt/xduu/tpd/rdu/btt/rdtc) for each medium criti-
cal application with a with min predicted work completion
delay (βk

sdp), min predicted energy expenditure for users
(Gk

ee), and min predicted economic cost for users (γk
uec).

Next, the task manager re-orders all remaining low-
critical applications based on their small deadline first
order. The task manager allocates and reserves the re-
sources by checking all remaining available resources.
The task manager selects best VNF resources min VNF
processing delay (minimum βk

pvp/svp/pvpp), best physical
worker with minimum physical work processing delay
(minimum βk

xpu/xpr/xpuu/xpuc/xpus/xmu/xpuh), best dig-
ital worker device with minimum digital work process-
ing delay (βk

dwp/dwpp/bcc/bvm/dwps/dwop/csp), best commu-
nication resource with minimum data dispatch delay (min
βk
xdu/rdt/rdtt/xduu/tpd/rdu/btt/rdtc) for each low critical app

with a min predicted work completion delay (βk
sdp), min pre-

dicted energy expenditure for users (Gk
ee), and min predicted

economic cost for users (γk
uec).
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After resource reservation and mapping are completed,
the task manager sends the network VNF resource server,
physical worker, digital worker resource node, and commu-
nication link resource scheduling message (rb message) to
all workers and users. Finally, the work completion phase
(third phase) completes the metaverse, multiverse, and non-
metaverse application execution work completion process in
the order of their resource scheduling (i.e., ultra high critical
application first, then medium critical application execution,
and finally low critical application execution).

During a metaverse application execution time slot (e.g.,
XR-based immersive gaming), the user device first needs to
connect to the internet and the metaverse platform. After
that, the immersive gaming application request is dispatched
to the task manager. The task manager device next processes
the application request and delivers the work completion
instruction to workers (players device, digital worker, phys-
ical worker, VNF server). The users or players XR device
next captures the gaming information (e.g., action and state
associated with user game strategy, sound and image, input
data, moving, shooting, searching action information) and
uploads the selected game server (digital worker or MEC
server). Before the user’s game input data is offloaded, the
chosen VNF server performs the virtual network function
processing operation (for example, firewall, intrusion detec-
tion, load balancing, digital packet inspection, and network
address translation). Following that, the processed data from
the VNF server is routed to a specific digital worker or
MEC-based gaming server for processing. Based on the
user’s input, the digital worker processes game information
and generates the game’s next state or result (e.g., final
environment generation, user game point data generation,
next frame or output frame production, immersion, static data
addition, rendering frame, computation). The digital worker
processes game data before sending it to the user’s XR
device for display. However, before the output gaming data
is delivered to the receiver’s device, the selected VNF server
performs secondary virtual network function processing (e.g.,
intrusion detection, firewall, and network address translation)
and sends the final resultant data to the users. Finally, users
receive the final gaming application output data and have
the immersive gaming experience displayed to them via XR
devices.

Similarly, during a non-metaverse application execution
time slot (for example, a brain-computer-wheelchair device
interaction application), the user device first connects to the
internet before sending their application request to the task
manager. The task manager handles application requests and
sends application instructions to user and worker devices
(such as brain sensors, XR devices, wheelchairs, MEC
servers, and VNF servers). Next, the user’s brain sensor
devices collect brain sensing data (via MRI or CT scan)
and send it to the selected digital worker’s MEC device for
processing.

Before the user’s brain sensor-computer-wheelchair in-
teraction application input data is offloaded, the chosen
VNF server performs the virtual network function processing
operation (for example, firewall, intrusion detection, load
balancing, digital packet inspection, and network address
translation). Following that, the VNF server processes the
data and sends it to a designated digital worker or MEC

server. The digital work node executes and generates the
application result (for example, the brain sensor instructs
the wheelchair to move or not). Next, before delivering the
results to the wheelchair device, the selected VNF server
performs secondary virtual network function processing (e.g.,
intrusion detection, firewall, network address translation) and
sends the final resultant data to the user’s wheelchair device.
The MEC server sends the final result instruction to the user’s
wheelchair device, which then executes the brain instruction
(for example, moving the wheelchair based on brain signal
data).

During the multiverse application execution time slot, the
respective user devices, VNF server, physical worker, and
digital worker complete their own tasks before delivering
the application results to the users/receivers devices. In this
work, the multiverse application (avatar-based socialization
and NFT-based virtual art selling) is the result of multiple
metaverse platform-based work executions. For example,
avatar interaction in the metaverse is one type of work,
while virtual art trading via NFT (non-fungible token) on
the metaverse platform is another. Section 4 discusses the
working steps for avatar interaction and NFT-based trading
applications.

IV. ANALYTICAL MODEL

This section presents the analytical model that supports the
proposed liberty scheme. The performance metrics examined
are mean application service delivery delay, economic cost
for users, successful task completion ratio, throughput, profit
for service providers, users’ total benefit, unused energy,
network lifetime, and survivability ratio.

A. Mean Application Service Delivery Delay

The end-to-end application service delivery delay (βk
asd)

for multiple application execution includes not only elemen-
tary network formation phase delay (βk

ep) but also both infor-
mation collection and resource mapping phase delay (βk

sp),
and different application (i.e., multiverse, metaverse,and non-
metaverse application execution) work completion phase
delay (βk

sdp = βk
mv + βk

me + βk
nme). The mean application

service delivery delay (βk
mad) for k number of applications

(βk
mad =

∑z
k=1 βk

asd

k ) is analyzed by:

βk
mad =

∑z
k=1 β

k
ep + βk

sp + βk
sdp

k

=

∑z
k=1 β

k
ep + βk

sp + βk
mv + βk

me + βk
nme

k
(1)

Where k is the total application number. βk
mv , βk

me, and βk
nme

are the multiverse, metaverse, and non-metaverse application
work completion delay, respectively.

The first elementary phase delay includes task manager-
based beacon transfer to user devices, user device registration
and connectivity with the network, application service reg-
istration, and an initial control slot assignment schedule for
user application request transfer. The elementary phase delay
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βk
ep is ascertained by:

βk
ep =

Ψk
eb +Ψk

rcr +Ψk
rce +Ψk

asr +Ψk
ase +Ψk

iasb

Jwr
∗ uwr

+
Ψk

eb +Ψk
rcr +Ψk

rce +Ψk
asr +Ψk

ase +Ψk
iasb

Jor
∗ uor+

Qep
pd

Λpd
+

Qep
tm

Λdd
+ βk

pp + βk
rwd (2)

Ψk
eb,Ψ

k
rcr,Ψ

k
rce,Ψ

k
asr,Ψ

k
ase, and Ψk

iasb are the primary
beacon message data size (by task manager to users), net-
work registration request message size (by user device to
task manager), network registration response message size
(by task manager to user device), 6G application service
(metaverse, multiverse, non-metaverse) registration request
message (by user device to task manager), application service
registration response message size (by task manager to user
device), and initial time-slot assign schedule message size
(by task manager to user device), respectively.

Qep
pd is the workload for the user device during the elemen-

tary phase for different request message generation. Qep
tm is

the workload for task managers during the elementary phase
for different response message generation and timeslot sched-
ule message generation for users. Λpd and Λdd are workload
processing speeds for user devices and task managers (digital
workers at MEC), respectively.

Jwr, Jor, uor, and uwr are the wireless link-based data
exchange rate, fiber-link-based data exchange rate, hop num-
ber during optical fiber-link-based application data transfer,
and hop number during wireless link-based application data
transfer, respectively. βk

pp is the propagation delay latency
and βk

rwd is the resource access queuing latency. The resource
access waiting and queuing delay is measured by taking into
account the well-known M/D/1 queuing delay calculation
model as given in [132].

The second phase is the information collection and resurce
mapping phase (second phase). The resource and application
information collection along with the resurce mapping phase
(second phase) delay ∆i

urg is investigated by:

βk
sp =

Ψk
uarc +Ψk

tmrt +Ψk
rmrw +Ψk

otmr +Ψk
otmp

Jwr
∗ uwr

+
Ψk

uarc +Ψk
tmrt +Ψk

rmrw +Ψk
otmr +Ψk

otmp

Jor
∗ uor+

Qsp
pd

Λpd
+

Qsp
dd

Λdd
+

Ψk
urb +Ψk

wrb

Jwr
∗ uwr+

Ψk
urb +Ψk

wrb

Jor
∗ uor +

Qsp
cm

Λdd
+ βk

pp + βk
rwd (3)

Ψk
uarc,Ψ

k
tmrt,Ψ

k
rmrw,Ψ

k
otmr, and Ψk

otmp are the data
sizes regarding user application requests (from user device
to task manager at the edge network), resource status re-
quest message sizes (from task manager to worker device),
resource status response message sizes (from worker to task
manager), resource schedule information requests to other
nearby task managers (from host task manager), and resource
schedule information transfers to host task managers (from
other nearby task managers), respectively. Qsp

pd is the work-
load associated with the user device for different message
transfers during the second phase. Qsp

dd is the workload

associated with the task manager and digital worker device
for different message transfers during the second phase. Qsp

cm

is the task manager workload count for resource schedule
and application execution timeslot assignment work. Ψk

urb

and Ψk
wrb are the resource schedule and application execution

timeslot assignment message size for user device and worker
device, respectively. Λdd is the task manager device workload
processing speed.

The third phase is a different application work completion
phase. The total application (multiverse, metaverse, and non-
metaverse) work completion phase delay βk

sdp is determined
by:

βk
sdp =

z∑
k=1

(βk
ig + βk

mt + βk
vce + βk

mh + βk
sa + βk

hrp

+ βk
fs + βk

bnas + βk
drs + βk

ia + βk
av

+ βk
tb + βk

vc + βk
bcx + βk

vet + βk
snt + βk

cmt) (4)

βk
ig, β

k
mt, β

k
vce,Θ

k
mh, β

k
sa, β

k
hrp, β

k
fs, β

k
bnas, and βk

drs are the
work completion delays for (metaverse applications) XR-
based immersive gaming experiences, XR-based virtual
museum tours, XR-based virtual clothing experiences,
metaverse-based healthcare, metaverse-based avatar social-
ization, hologram-based remote presence, FL-based surveil-
lance applications, NFT- and blockchain-based visual art
sales, and DT-based robot worker selection for manufactur-
ing, respectively.

βk
ia, β

k
av, β

k
tb, β

k
vc, β

k
bcx, and βk

vet are the work completion
delays for (non-metaverse applications) industrial automa-
tion, autonomous vehicle applications, traditional broadband-
based data transfer applications, video file caching, brain-
computer-hololens-based interactive applications, and vehicle
energy transfer applications, respectively.

βk
snt and βk

cmt are the work completion delays for (mul-
tiverse or multiple metaverse platform-based applications)
avatar socialization with the NFT trading application and
XR-based clothing experience with the virtual museum tour
experience, respectively.

This paper first presents the analytical model to calculate
the work completion delay for XR-based immersive gaming
in the metaverse. The work completion delay for the XR-
based immersive gaming application βk

ig is highlighted by:

βk
ig =

z∑
k=1

(βk
cim + βk

trd + βk
tmp + βk

sip + βk
xpu + βk

xdu

+ βk
pvp + βk

dwp + βk
rdt + βk

svp + βk
xpr) (5)

βk
cim is the user or XR device initial connectivity delay

with metaverse (βk
cim = qcim

Λpd
). βk

trd is the immersive gaming
players application request dispatch delay to nearby task
manager (βk

trd =
Ψk

ar

Jwr
∗ uwr +

Ψk
ar

Jor
∗ uor + βk

pp + βk
rwd).

Where Ψk
ar, Jwr, Jor, uor, and uwr are the application

request message size, wireless link-based data exchange
rate, fiber-link-based data exchange rate, hop number during
optical fiber-link-based application data transfer, and hop
number during wireless link-based application data transfer,
respectively. βk

pp is the propagation delay latency and βk
rwd

is the resource access queuing latency. The resource access
waiting and queuing delay is measured by taking into account
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the well-known M/D/1 queuing delay calculation model as
given in [133]. qcim and Λpd are the workload during internet
connectivity and XR device internet connecting work speed,
respectively.

βk
tmp is the digital task manager (at the network edge or

MEC)-based application initial instruction generation delay
for the workers (βk

tmp =
qktmp

Λdd
). Where qktmp is the number of

workloads for the task manager regarding immersive gaming
application instruction generation for the workers. Λdd is the
application workload processing power at the digital task
manager (MEC server).

βk
sip is immersive gaming application work processing

instruction transfer delay from the digital task manager (at
the MEC) to workers ( βk

sip =
Ψk

sip

Jwr
∗uwr+

Ψk
sip

Jor
∗uor+βk

pp+

βk
rwd). Where Ψk

sip is the data size that includes application
processing instructions for the workers.

βk
xpu is the players XR device-based game information

(game starting information, state, field of view, moving,
shooting, attacking, sensing action selection) capture delay
(βk

xpu =
qigxpu

Λpd
). qigxpu is the XR device initial work instruction

or workload for the immersive gaming application. Λpd is the
work processing power or CPU speed for the XR device.

βk
xdu is the immersive gaming player device captured

gaming data upload delay to the digital worker device at the
MEC server (βk

xdu =
Ψig

di

Jwr
∗ uwr +

Ψig
di

Jor
∗ uor + βk

pp + βk
rwd).

Where Ψig
di is the data size that consists of the XR device

captured immersive gaming state selection data or offloaded
immersive gaming input data.

βk
pvp is the primary virtual network function processing de-

lay at the digital work node server for the immersive gaming
application (βk

pvp =
qkatn+qknfw+qknid+qknpdi

Λdd
+

Ψk
tvpd

Jlr
∗ ulr).

qkatn, qknfw, qknid, and qknpdi are the virtual network function
workload amounts for network address translation (NAT),
firewall (FW) operation, network intrusion detection or IDS
operation, and offloaded packet digital detection (DPI) op-
eration, respectively. Λdd is the virtual network function
processing device or worker node processing speed (CPU
speed).

Ψk
tvpd, Jlr, and ulr are the exchanged data amounts

during virtual network processing operations from one virtual
network function processing server or node to another virtual
network function processing node, transferred communica-
tion link associate data rate, and hop number during ex-
changed data dispatch from one link to another, respectively.

βk
dwp is the digital work node (at the MEC serer) based

offloaded game data processing (e.g., rendering frame, FoV,
immersion, add static data, add sound, create new environ-
ments, next game state generation based on players action

selection) and game result generation delay (βig
dwp =

qigdwp

Λdd
).

Where qigdwp is the number of workloads for the uploaded
immersive game data processing and result generation at the
digital worker node. Λdd is the immersive game application
workload processing power at the digital work processing
node (MEC server).

βk
rdt is the digital work node processed gaming resultant

data dispatch delay to players XR device (βk
rdt =

Ψig
rdt

Jwr
∗

uwr +
Ψig

rdt

Jor
∗ uor + βk

pp + βk
rwd). Where Ψig

rdt is the output
data size that consists of the immersive game application

resultant data amount.
βk
svp is the secondary virtual network function processing

delay at the digital work node before the immersive gaming
application output data reception at the players XR device.
(βk

svp =
qkatn+qknfw+qknpdi

Λdd
+

Ψk
stvd

Jlr
∗ ulr).

qkatn, qknfw, and qknpdi are the virtual network function
workload amounts for NAT, FW operation, and DPI op-
eration, respectively. Λdd is the virtual network function
processing device or worker node processing speed (CPU
speed). Ψk

stvd is the secondary exchanged data amount during
a virtual network processing operation from one virtual
network function processing server or node to another virtual
network function processing node, respectively.

βk
xpr is the receiver player XR device-based game output

information (rendered frame with immersion) visualization
and haptic sensation reception delay by haptic jacket (βk

xpr =
qigxpr

Λpd
). qigxpr is the workload (gaming output data visualization

with haptic sensation) for the receiver device (XR device and
haptic jacket). Λpd is the work processing power or CPU
speed for the user haptic jacket or XR device.

Next, this article will discuss the analytical model to
calculate the work completion delay for an XR-based virtual
museum tour application in the metaverse. The work comple-
tion delay for the XR-based virtual museum tour application
βk
mt execution is measured by:

βk
mt =

z∑
k=1

(βmt
cim + βmt

trd + βmt
tmp + βmt

sip + βmt
xpu + βmt

xdu

+ βmt
pvp + βmt

dwp + βmt
rdt + βmt

svp + βmt
xpr) (6)

βk
cim is the user or XR device initial connectivity delay

with metaverse. βk
trd is the virtual museum tour application

that requests dispatch delay to the nearby task manager. βmt
tmp

is the digital task manager (at the network edge, or MEC)-
based museum tour applications initial instruction generation
delay for the workers. βk

sip is virtual museum tour application
work processing instruction transfer delay from the digital
task manager (at the MEC) to workers. βmt

cim, βmt
trd, βmt

tmp, and
βmt
sip are calculated by using the similar calculation formula

as βk
cim, βk

trd, βk
tmp, and βk

sip (see previous application
discussion).

βmt
xpu is the player’s XR device-based QR code-based arti-

fact and museum object image capture delay (βmt
xpu =

qmt
xpu

Λpd
).

qmt
xpu is the XR device initial work instruction or workload for

the QR code-based artifact and museum object image capture
work. Λpd is the work processing power or CPU speed for
the XR device.

βmt
xdu is the XR device captured QR code-based artifact

and museum object image data upload delay to the digital
worker device at the MEC server (βmt

xdu =
Ψmt

di

Jwr
∗uwr+

Ψmt
di

Jor
∗

uor+βk
pp+βk

rwd). Where Ψmt
di is the data size that consists of

the XR device captured QR code-based artifact and museum
object image data (i.e., offloaded input data).

βmt
pvp is the primary virtual network function processing

delay at the digital work node server for the metaverse-based
virtual museum tour application (βmt

pvp =
qmt
nfw+qmt

nid+qmt
npdi

Λdd
+

Ψmt
tvpd

Jlr
∗ ulr).

qmt
nfw, qmt

nid, and qmt
npdi are the virtual network function

workload amounts for firewall, network intrusion detection,
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and packet digital inspection for virtual museum tour ap-
plications based on offloaded data on the MEC server,
respectively. Λdd is the virtual network function processing
device at the digital worker node.

Ψmt
tvpd, Jlr, and ulr are the exchanged data amounts (XR

device to digital worker MEC server) during virtual network
processing operations from one virtual network function
processing server or node to another virtual network function
processing node, selected communication link data rate, and
hop number during data dispatch from one link to another,
respectively.

βmt
dwp is the digital work node (at the MEC serer) based

offloaded data processing (i.e., detect artifact picture, gather
information, artifact environment setup, render image, add
static data, show navigation path for museum tour, name
of different museum object, produce museum tour data for
viewing) and result generation delay (βmt

dwp =
qmt
dwp

Λdd
). Where

qmt
dwp is the number of workloads for the uploaded museum

tour data processing and result generation at the digital
worker node. Λdd is the virtual museum tour application
workload processing power at the digital work processing
node (MEC server).

βmt
rdt is the digital work node processed virtual museum

tour resultant data dispatch delay to players XR device
(βmt

rdt =
Ψmt

rdt

Jwr
∗ uwr +

Ψmt
rdt

Jor
∗ uor + βk

pp + βk
rwd). Where Ψmt

rdt

is the output data size that consists of the virtual museum
tour application resultant data amount.

βmt
svp is the secondary virtual network function processing

delay at the digital work node before the immersive gaming
application output data reception at the players XR device.
(βmt

svp =
qmt
atn+qmt

nfw+qmt
nid

Λdd
+

Ψmt
stvd

Jlr
∗ ulr).

qmt
atn, qmt

nfw, and qknid are the virtual network function
workload amounts for network address translation, firewall,
and intrusion detection-based VNF operations, respectively.
Λdd is the virtual network function processing device or
worker node processing speed (CPU speed). Ψmt

stvd is the
secondary exchanged data amount during virtual network
processing operation during metaverse-based virtual museum
tour application execution from one virtual network function
processing server or node to another virtual network function
processing node, respectively.

βmt
xpr is the receiver player XR device-based virtual mu-

seum tour data result (rendered frame with immersion)
visualization and haptic sensation reception delay by haptic
jacket (βmt

xpr =
qmt
xpr

Λpd
). qmt

xpr is the workload (virtual museum
tour applications output data visualization with haptic sensa-
tion) for the receiver device (XR device and haptic jacket).
Λpd is the work processing power or CPU speed for the
user’s haptic jacket or XR device.

The third application that we are going to discuss is an XR-
based virtual clothing experience via the avatar. The work
completion delay for XR-based virtual clothing experience
βk
vce execution is given by:

βk
vce =

z∑
k=1

(βvce
cim + βvce

trd + βvce
tmp + βvce

sip + βvce
xpu + βvce

xdu

+ βvce
pvp + βvce

dwp + βvce
xpp + βvce

xduu + βvce
pvpp + βvce

dwpp

+ βvce
rdt + βvce

svp + βvce
xpr) (7)

βvce
cim is the initial internet connectivity delay for the user

and XR device. βvce
trd is the virtual clothing application

request dispatch delay to nearby task manager. βvce
tmp is

the digital task manager-based virtual clothing experience
applications initial instruction generation delay for the work-
ers. βvce

sip is virtual clothing application work processing
instruction transfer delay from the digital task manager to
workers. βvce

cim, βvce
trd , βvce

tmp, and βvce
sip are calculated by using

the same calculation formula as βk
cim, βk

trd, βk
tmp, and βk

sip

(see XR-based gaming application discussion).
βvce
xpu is the user XR device-based person data (profile im-

age for avatar, personal information) capture delay (βvce
xpu =

qvce
xpu

Λpd
). qvcexpu is the workload for XR device-based person data

(profile image for avatar, personal information) capture work.
Λpd is the work processing power or CPU speed for the XR
device.

βvce
xdu is the XR device captured avatar data upload delay

to the digital worker device at the MEC server (βvce
xdu =

Ψvce
di

Jwr
∗uwr+

Ψvce
di

Jor
∗uor+βk

pp+βk
rwd). Where Ψvce

di is the data
size that consists of the XR device captured avatar creation
data (profile image for avatar, personal information).

βvce
pvp is the primary virtual network function processing

delay at the digital work node server for the metaverse-
based virtual clothing application (βvce

pvp =
qvce
nfw+qvce

nlb+qvce
npdi

Λdd
+

Ψvce
tvpd

Jlr
∗ ulr).

qvcenfw, qvcenlb , and qvcenpdi are the virtual network function
workload amounts for firewall, load balancing, and packet
digital inspection for virtual clothing applications based
offloaded data in the MEC server, respectively. Λdd is the
virtual network function processing device at the digital
worker node.

Ψvce
tvpd is the exchanged data amount (XR device to digital

worker MEC server) during virtual network processing op-
eration from one virtual network function processing server
or node to another virtual network function processing node
during the virtual clothing experience application.

βvce
dwp is the digital work node (at the MEC server) based

offloaded data processing (i.e., avatar creation at metaverse,
rendering frame, add static data, create environment) and
result generation delay (βvce

dwp =
qvce
dwp

Λdd
). Where qvcedwp is

the number of workloads for the offloaded data processing
and result generation during virtual clothing application
execution at the digital worker node. Λdd is the workload
processing power at the digital work processing node (MEC
server).

βvce
xpp is the user XR device-based persons shopping data

selection and cloth selection (for the avatar at metaverse)
delay (βvce

xpp =
qvce
xpp

Λpd
). qvcexpp is the workload for XR device-

based persons shopping data selection and cloth selection
(for the avatar in the metaverse) work.

βvce
xduu is the XR device captured shopping data upload

delay to digital worker device at the MEC server (βvce
xduu =

Ψvce
dii

Jwr
∗ uwr +

Ψvce
dii

Jor
∗ uor + βk

pp + βk
rwd). Where Ψvce

dii is the
data size that consists of the XR device captured shopping
data (selected cloth for avatar).

βvce
pvpp is the secondary virtual network function processing

delay at the digital work node server during the second data
offload operation for the metaverse-based virtual clothing
application. (βvce

pvpp =
qvce
nfw+qvce

nlb+qvce
npdi

Λdd
+

Ψvce
tvpd

Jlr
∗ ulr).

βvce
dwpp is the digital work node (at the MEC server) based

secondary offloaded data processing (i.e., visualize avatar
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with selected users cloth, haptic sensation generation, ren-
dering frame) and result generation delay (βvce

dwpp =
qvce
dwpp

Λdd
).

Where qvcedwpp is the number of workloads for the second
offloaded data processing and result generation during virtual
clothing application execution at the digital worker node.

βvce
rdt is the digital work node processed virtual clothing

experience resultant data dispatch delay to players XR device
(βvce

rdt =
Ψvce

rdt

Jwr
∗uwr +

Ψvce
rdt

Jor
∗uor +βk

pp+βk
rwd). Where Ψvce

rdt

is the output data size that consists of the virtual clothing
experience applications resultant data amount.

βvce
svp is the tertiary virtual network function processing

delay at the digital work node before the virtual clothing
experience application output data reception at the players
XR device (βvce

svp =
qvce
npdi+qvce

nfw+qvce
nid

Λdd
+

Ψvce
stvd

Jlr
∗ ulr).

qvcenpdi, qvcenfw, and qvcenid are the virtual network function
workload amounts for DPI, firewall, and intrusion detection-
based VNF operations, respectively. Λdd is the virtual net-
work function processing device or worker node processing
speed (CPU speed). Ψvce

stvd is the tertiary exchanged data
amount during virtual network processing operation during
metaverse-based virtual clothing application execution from
one virtual network function processing server or node to
another virtual network function processing node.

βvce
xpr is the receiver user or XR device-based virtual

clothing experience resultant data (rendered frame with im-
mersion) visualization and haptic sensation reception delay
by haptic jacket (βvce

xpr =
qvce
xpr

Λpd
). qvcexpr is the workload (virtual

clothing experience applications output data visualization
with haptic sensation) for the receiver device (XR device
and haptic jacket). Λpd is the work processing power or CPU
speed for the user’s haptic jacket or XR device.

The fourth application that this paper is going to analyze
is a metaverse-based healthcare application. The work com-
pletion delay for metaverse-based healthcare application βk

mh

execution is investigated by:

βk
mh =

z∑
k=1

(βmh
cim + βmh

trd + βmh
tmp + βmh

sip + βmh
xpu + βmh

xdu

+ βmh
pvp + βmh

dwp + βmh
tpd + βmh

pvpp + βmh
xpuu

+ βmh
rdt + βmh

svp + βmh
xpr) (8)

βmh
cim is the initial readyness and metaverse connectivity

delay for the user and XR device. βmh
trd is the metaverse-

based healthcare application that requests dispatch delay to a
nearby task manager. βmh

tmp is the digital task manager-based
healthcare applications initial instruction generation delay for
the workers. βmh

sip is a metaverse-based healthcare application
for work processing and instruction transfer delay from the
digital task manager to workers. βmh

cim, βmh
trd , βmh

tmp, and βmh
sip

are calculated by using the similar calculation formula as
βk
cim, βk

trd, βk
tmp, and βk

sip (see XR-based gaming application
discussion).

βmh
xpu is the user XR device-based persons own health-care

data (MRI data, CT-scan data, body temperature, blood rate
data) capture delay (βmh

xpu =
qmh
xpu

Λpd
). qmh

xpu is the workload for
XR device persons own health-care data (MRI data, CT-scan
data, body temperature, blood rate data) capture work. Λpd is
the work processing power or CPU speed for the XR device.

βmh
xdu is the XR device captured healthcare data upload

delay to digital worker device at the MEC server (βmh
xdu =

Ψmh
di

Jwr
∗ uwr +

Ψmh
di

Jor
∗ uor + βk

pp + βk
rwd). Where Ψmh

di is the
data size that consists of the XR device captured persons
health-care information.

βmh
pvp is the primary virtual network function processing

delay at the digital work node server for the metaverse-based
healthcare application (βmh

pvp =
qmh
nfw+qmh

npdi+qmh
nid

Λdd
+

Ψmh
tvpd

Jlr
∗ulr).

qmh
nfw, qmh

npdi, and qmh
nid are the virtual network function

workload amounts for firewalls, digital packet inspection,and
intrusion detection for healthcare applications based on of-
floaded data on the MEC server, respectively. Λdd is the
virtual network function processing power at the digital
worker node.

Ψmh
tvpd is the exchanged data amount (XR device to digital

worker MEC server) during virtual network processing op-
eration from one virtual network function processing server
or node to another virtual network function processing node
during metaverse-based healthcare application execution.

βmh
dwp is the digital work node (at the MEC server) based

offloaded data processing (i.e., predict disease and medicine
prescription) and result generation delay (βmh

dwp =
qmh
dwp

Λdd
).

Where qmh
dwp is the number of workloads for the offloaded

data processing and result generation during healthcare ap-
plication execution at the digital worker node. Λdd is the
workload processing power at the digital work processing
node (MEC server).

βmh
tpd is the digital worker processed data transfer delay

to doctor device from MEC server (βmh
tpd =

Ψmh
dii

Jwr
∗ uwr +

Ψmh
dii

Jor
∗ uor + βk

pp + βk
rwd). Where Ψmh

dii is the data size that
consists of the digital worker’s (MEC) processed output data
for healthcare services.

βmh
pvpp is the secondary virtual network function process-

ing delay at the virtual network function processing server
for the metaverse-based healthcare application (βmh

pvpp =
qmh
nfw+qmh

npdi+qmh
nid

Λdd
+

Ψmh
tvpdd

Jlr
∗ ulr).

qmh
nfw, qmh

npdi, and qmh
nid are the virtual network function

workload amounts for firewalls, digital packet inspection,and
intrusion detection for healthcare applications based on of-
floaded data on the MEC server, respectively. Λdd is the
virtual network function processing power at the virtual
network function processing server.

Ψmh
tvpdd is the exchanged data amount from one virtual

network function processing server or node to another virtual
network function processing node during secondary VNF
processing.

βmh
xpuu is the doctors XR device-based disease and medi-

cation result selection delay (βmh
xpuu =

qmh
xpuu

Λpd
). qmh

xpuu is the
workload for doctors XR device-based disease and medica-
tion result generation.

βmh
rdt is the doctor device processed resultant healthcare

data dispatch delay to users or patients XR device (βmh
rdt =

Ψmh
rdt

Jwr
∗ uwr +

Ψmh
rdt

Jor
∗ uor + βk

pp + βk
rwd). Where Ψmh

rdt is the
output data size that consists of the resultant healthcare data
amount.

βmh
svp is the tertiary virtual network function processing

delay at the virtual network function processing node before
the output data reception at the players XR device (βmh

svp =
qmh
atn+qmh

nfw+qmh
nid

Λdd
+

Ψmh
stvd

Jlr
∗ ulr).

qmh
atn, qmh

nfw, and qmh
nid are the virtual network function
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workload amounts for NAT, firewall, and intrusion detection-
based VNF operations, respectively. Λdd is the virtual net-
work function processing device or worker node processing
speed (CPU speed). Ψmh

stvd is the tertiary exchanged data
amount during a virtual network processing operation from
one virtual network function processing server or node to
another virtual network function processing node.

βmh
xpr is the receiver user device or XR device-based

healthcare resultant data visualization delay (βmh
xpr =

qmh
xpr

Λpd
).

qmh
xpr is the workload for the receiver device (XR device).
Λpd is the work processing power or CPU speed for the user
XR device.

The fifth application considered in this paper is social-
ization activities in the metaverse via the avatar. The work
completion delay for socialization activities in the metaverse
via the avatar βk

sa is given by:

βk
sa =

z∑
k=1

(βsa
cim + βsa

trd + βsa
tmp + βsa

sip + βsa
xpu + βsa

xdu

+ βsa
pvp + βsa

dwp + βsa
xpp + βsa

xduu + βsa
pvpp + βsa

dwpp

+ βsa
rdt + βsa

svp + βsa
xpr) (9)

βsa
cim is the initial device readyness and internet connectiv-

ity delay for the user and XR device. βsa
trd is the socialization

activities (in the metaverse) application request dispatch de-
lay to nearby task manager. βsa

tmp is the digital task manager-
based socialization activity applications initial instruction
generation delay for the workers. βsa

sip is a metaverse-based
socialization application for work processing and instruction
transfer delay from the digital task manager to workers. βsa

cim,
βsa
trd, βsa

tmp, and βsa
sip are calculated by using the similar

calculation formula as βk
cim, βk

trd, βk
tmp, and βk

sip (see XR-
based gaming application discussion).

βsa
xpu is the user XR device-based avatar creation pre-

liminary data capture delay (βsa
xpu =

qsaxpu

Λpd
). qsaxpu is the

workload for XR device-based person data (profile image for
avatar, pose, background data, personal information) capture
work for avatar creation in the metaverse. Λpd is the work
processing power or CPU speed for the XR device.

βsa
xdu is the XR device captured avatar creation data upload

delay to digital worker device at the MEC server (βsa
xdu =

Ψsa
di

Jwr
∗uwr+

Ψsa
di

Jor
∗uor+βk

pp+βk
rwd). Where Ψsa

di is the data size
that consists of the XR device captured avatar creation data
(profile image for avatar, pose, background data, personal
information).

βsa
pvp is the primary virtual network function processing

delay at the virtual network function processing node server
for the metaverse-based socialization application (βsa

pvp =
qsanfw+qsanlb+qsanid

Λdd
+

Ψsa
tvpd

Jlr
∗ ulr).

qsanfw, qsanlb, and qsanid are the virtual network function
workload amounts for firewall, load balancing, and IDS for
metaverse socialization applications during offloading data
on the MEC server, respectively. Λdd is the virtual network
function processing device at the digital worker node or
virtual network function processing node.

Ψsa
tvpd is the exchanged data amount during a virtual net-

work processing operation from one virtual network function
processing server or node to another virtual network function
processing node during a socialization application.

βsa
dwp is the digital work node (at the MEC server) based

offloaded data processing (i.e., avatar creation at metaverse,
rendering frame, add static data, create environment) and
result generation delay (βsa

dwp =
qsadwp

Λdd
). Where qsadwp is the

number of workloads for the offloaded data processing and
result generation during meaverse socialization application
execution at the digital worker node. Λdd is the workload
processing power at the digital work processing node (MEC
server).

βsa
xpp is the user XR device-based avatar socialization data

selection (for one avatar to another avatar interaction in the
metaverse) delay (βsa

xpp =
qsaxpp

Λpd
). qsaxpp is the workload for XR

device-based avatar socialization data selection work.
βsa
xduu is the XR device captured socialization data upload

delay to digital worker device at the MEC server (βsa
xduu =

Ψsa
dii

Jwr
∗uwr+

Ψsa
dii

Jor
∗uor+βk

pp+βk
rwd). Where Ψsa

dii is the data
size that consists of the XR device captured socialization or
interaction data (selected for avatar).

βsa
pvpp is the secondary virtual network function processing

delay at the digital work node server during secondary inter-
action data offload operation for the metaverse-based social-
ization application. (βsa

pvpp =
qsanfw+qsanid+qsanpdi

Λdd
+

Ψsa
tvpd

Jlr
∗ulr).

qsanfw, q
sa
nid, and qsanpdi are workloads for firewall, intrusion

detection,and digital packet inspection operations at the vir-
tual network function processing device during secondary
offload operations.

βsa
dwpp is the digital work node (at the MEC server) based

secondary offloaded data processing (i.e., visualize action,
avatar to avatar interaction, or social conversion) and result
generation delay (βsa

dwpp =
qsadwpp

Λdd
). Where qsadwpp is the num-

ber of workloads for secondary offloaded data processing and
result generation during metaverse socialization execution at
the digital worker node.

βsa
rdt is the digital work node processed metaverse avatar

socialization resultant data dispatch delay to players XR
device (βsa

rdt =
Ψsa

rdt

Jwr
∗ uwr +

Ψsa
rdt

Jor
∗ uor + βk

pp + βk
rwd).

Where Ψsa
rdt is the output data size that consists of the

avatar-to-avatar interaction experience application resultant
data amount.

βsa
svp is the tertiary virtual network function processing

delay at the digital work node before the metaverse avatar
socialization resultant output data reception at the players
XR device (βsa

svp =
qsanpdi+qsanfw+qsanid

Λdd
+

Ψsa
stvd

Jlr
∗ ulr).

qsanpdi, qsanfw, and qsanid are the virtual network function
workload amounts for DPI, firewall, and intrusion detection-
based VNF operations, respectively. Λdd is the virtual net-
work function processing device or worker node processing
speed (CPU speed). Ψsa

stvd is the tertiary exchanged data
amount during virtual network processing operation dur-
ing metaverse-based avatar interaction application execution
from one virtual network function processing server or node
to another virtual network function processing node.

βsa
xpr is the receiver user or XR device-based metaverse

avatar socialization result visualization and haptic sensation
reception delay by haptic jacket (βsa

xpr =
qsaxpr

Λpd
). qsaxpr is

the workload for the receiver device (XR device and haptic
jacket) for the avatar socialization application. Λpd is the
work processing power or CPU speed for the user’s haptic
jacket or XR device.

The sixth application considered in this paper is a
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hologram-based remote presence application for video con-
ferencing. The work completion delay for the hologram-
based remote presence application βk

hrp is given by:

βk
hrp =

z∑
k=1

(βhrp
cim + βhrp

trd + βhrp
tmp + βhrp

sip + βhrp
xpu + βhrp

xdu

+ βhrp
pvp + βhrp

dwp ++βhrp
rdt + βhrp

svp + βhrp
xpuu + βhrp

xpr ) (10)

βhrp
cim is the initial device readyness and internet connectiv-

ity delay for the user and XR device. βhrp
trd is the hologram-

based remote presence application that requests dispatch
delay to the nearby task manager. βhrp

tmp is the digital task
manager-based hologram-based remote presence applications
instruction generation delay for the workers. βhrp

sip is a
hologram-based remote presence application that works with
instruction transfer delays from the digital task manager to
workers. βhrp

cim, βhrp
trd , βhrp

tmp, and βhrp
sip are measured by using

the similar calculation formula as βk
cim, βk

trd, βk
tmp, and βk

sip

(see first XR based gaming application discussion).
βhrp
xpu is the user XR device-based voice and video data

capture delay for remote telepresence applications (βhrp
xpu =

qhrp
xpu

Λpd
). qhrpxpu is the workload for XR device-based voice and

video data capture work. Λpd is the work processing power
or CPU speed for the XR device.

βhrp
xdu is the XR device captured data upload delay to the

digital worker device at the MEC server (βhrp
xdu =

Ψhrp
di

Jwr
∗

uwr+
Ψhrp

di

Jor
∗uor+βk

pp+βk
rwd). Where Ψhrp

di is the data size
that consists of the XR device captured voice and video data
amounts for remote telepresence applications.

βhrp
pvp is the primary virtual network function processing

delay at the virtual network function processing node server
for the metaverse-based remote telepresence application

(βhrp
pvp =

qhrp
nfw+qhrp

atn+qhrp
nid

Λdd
+

Ψhrp
tvpd

Jlr
∗ ulr).

qhrpnfw, qhrpatn , and qhrpnid are the virtual network function
workload amounts for firewall, NAT, and IDS for remote
telepresence applications during offloading data on the MEC
server, respectively. Λdd is the virtual network function
processing device at the digital worker node or virtual
network function processing node. Ψhrp

tvpd is the exchanged
data amount during virtual network processing operation
execution.

βhrp
dwp is the digital work node (at the MEC server)

based offloaded data processing (i.e., compress, encoding,
rendering, hologram generation) and result generation delay

(βhrp
dwp =

qhrp
dwp

Λdd
). Where qhrpdwp is the number of workloads for

the offloaded data processing and result generation during
hologram-based telepresence application execution at the
digital worker node. Λdd is the workload processing power
at the digital work processing node (MEC server).

βhrp
rdt is the digital work node processed hologram-based

telepresence resultant data dispatch delay to players XR
device (βhrp

rdt =
Ψhrp

rdt

Jwr
∗uwr+

Ψhrp
rdt

Jor
∗uor+βk

pp+βk
rwd). Where

Ψhrp
rdt is the output data size that consists of the hologram-

based telepresence resultant data amount.
βhrp
svp is the secondary virtual network function processing

delay at the virtual network processing work node before the
hologram-based telepresence resultant data reception at the

players XR device (βhrp
svp =

qhrp
atn+qhrp

nfw+qhrp
nid

Λdd
+

Ψhrp
stvd

Jlr
∗ ulr).

qhrpatn , qhrpnfw, and qhrpnid are the virtual network function
workload amounts for NAT, firewall, and intrusion detection-
based VNF operations, respectively. Λdd is the virtual net-
work function processing device or worker node processing
speed (CPU speed). Ψhrp

stvd is the secondary exchanged data
amount during virtual network processing operation during
a hologram-based telepresence application.

βhrp
xpuu is the receiver user or XR device-based final result

generation delay by the user XR device (βhrp
xpuu =

qhrp
xpuu

Λpd
).

qhrpxpuu is the workload for the receiver device (XR device) for
decompressing, decoding, and final hologram-based resultant
data generation. Λpd is the work processing power or CPU
speed for the user or XR device.

βhrp
xpr is the receiver user or XR device hologram-based

remote tele-presence result visualization and execution delay
(βhrp

xpr =
qhrp
xpr

Λpd
). qhrpxpr is the workload for the receiver device

(XR device and haptic device) for final hologram-based
remote telepresence data visualization.

Our next considered metaverse application is a federated
learning (FL)-based surveillance application. The work com-
pletion delay for the federated learning-based surveillance
application βk

fs is calculated by:

βk
fs =

z∑
k=1

(βfs
cim + βfs

trd + βfs
tmp + βfs

sip + βfs
rdu + βfs

xpu

+ βfs
xdu + βfs

pvp + βfs
dwp + βfs

dwpp ++βfs
rdt + βfs

svp + βfs
xpuu)

(11)

βfs
cim is the initial device readyness and internet con-

nectivity delay for the user and XR device. βfs
trd is the

federated learning (FL)-based surveillance application that
requests dispatch delay to the nearby task manager. βfs

tmp

is the digital task manager-based federated learning (FL)
surveillance application instruction generation delay for the
workers. βfs

sip is FL applications work instruction transfer
delay from the digital task manager to workers. βfs

cim, βfs
trd,

βfs
tmp, and βfs

sip are measured by using the similar calculation
formula as βk

cim, βk
trd, βk

tmp, and βk
sip (see first XR based

gaming application discussion).
βfs
rdu is the XR device-based global deep learning model

(i.e., CNN for human recognition) for data download delay
from a digital worker device or the MEC server βfs

rdu =
Ψfs

dii

Jwr
∗ uwr +

Ψfs
dii

Jor
∗ uor + βk

pp + βk
rwd). Where Ψfs

dii is the
data size that consists of the global deep learning model
(i.e., CNN for human recognition) data for FL-based human
surveillance applications.

βfs
xpu is the user XR device-based video data capture,

local model training, and updated parameter generation delay
(βfs

xpu =
qfs
xpu

Λpd
). qfsxpu is the workload for XR device-based

data capture and local training work. Λpd is the work
processing power or CPU speed for the XR device.

βfs
xdu is the XR device generated local model parameter

data upload delay to the digital worker device at the MEC
server (βfs

xdu =
Ψfs

di

Jwr
∗ uwr +

Ψfs
di

Jor
∗ uor + βk

pp + βk
rwd).

Where Ψfs
di is the uploaded data size that consists of the XR

device-generated local model parameter for FL-based human
surveillance applications.

βfs
pvp is the primary virtual network function process-

ing delay at the virtual network function processing node
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server for the FL-based surveillance application (βfs
pvp =

qfs
nfw+qfs

atn+qfs
nid

Λdd
+

Ψfs
tvpd

Jlr
∗ ulr).

qfsnfw, qfsatn, and qfsnid are the virtual network function work-
load amounts for firewall, NAT, and IDS during offloading
data on the MEC server, respectively. Λdd is the virtual
network function processing device at the digital worker node
or virtual network function processing node. Ψfs

tvpd is the
exchanged data amount during virtual network processing
operation execution.

βfs
dwp is the digital work node (at the MEC server) based

offloaded data processing (local model data aggregation and
global model update) and result generation delay (βfs

dwp =
qfs
dwp

Λdd
). Where qfsdwp is the number of workloads for the

offloaded data processing and result generation during Fl-
based surveillance application execution at the digital worker
node. Λdd is the workload processing power at the digital
work processing node (MEC server).

βfs
dwpp is the digital work node (at the MEC server) based

secondary data processing (integrate learning result to the

avatar) delay (βfs
dwpp =

qfs
dwp

Λdd
). Where qfsdwpp is the number

of workloads for the secondary operation (avatar learning)
processing at the digital worker node.

βfs
rdt is the digital work node processed resultant global

FL model data dispatch delay to players XR device (βfs
rdt =

Ψfs
rdt

Jwr
∗ uwr +

Ψfs
rdt

Jor
∗ uor + βk

pp + βk
rwd). Where Ψfs

rdt is the
output data size that consists of the global FL model data
amount.

βfs
svp is the secondary virtual network function processing

delay at the virtual network processing work node before the
resultant data reception at the players XR device (βfs

svp =
qfs
atn+qfs

nfw+qfs
nid

Λdd
+

Ψfs
stvd

Jlr
∗ ulr).

qfsatn, qfsnfw, and qfsnid are the virtual network function
workload amounts for NAT, firewall, and intrusion detection-
based VNF operations, respectively. Λdd is the virtual net-
work function processing device or worker node processing
speed (CPU speed). Ψfs

stvd is the secondary exchanged data
amount during virtual network processing operations during
FL-based surveillance applications.

βfs
xpuu is the receiver user or XR device-based final result

generation delay by the user XR device (βfs
xpuu =

qfs
xpuu

Λpd
).

qfsxpuu is the workload for the receiver device (XR device).
Λpd is the work processing power or CPU speed for the user
or XR device.

Our next considered application for analysis is blockchain
(BC) and NFT-based visual art selling in the metaverse. The
work completion delay for blockchain and NFT-based visual
art selling in the metaverse βk

bnas is given by:

βk
bnas =

z∑
k=1

(βbnas
cim + βbnas

trd + βbnas
tmp + βbnas

sip +

βbnas
bcr + βbnas

xpu + βbnas
xdu + βbnas

pvp + βbnas
dwp +

βbnas
xpuu + βbnas

xduu + βbnas
dwpp + βbnas

bcc + βbnas
btt

+ βbnas
bvm + βbnas

dwps + βbnas
rdt + βbnas

svp + βbnas
xpr ) (12)

βbnas
cim is the initial device readyness and internet con-

nectivity delay for the user and XR device. βbnas
trd is the

blockchain (BC) and NFT-based visual art selling request

dispatch delay to the nearby task manager. βbnas
tmp is the digital

task manager-based applications instruction generation delay
for the workers. βbnas

sip is a BC-based NFT trading application
that works with instruction transfer delays from the digital
task manager to workers. βbnas

cim , βbnas
trd , βbnas

tmp , and βbnas
sip are

analyzed by using the similar calculation formula as βk
cim,

βk
trd, βk

tmp, and βk
sip (see first XR based gaming application

discussion).
βbnas
bcr is the user XR device and MEC based initial

blockchain operation delay (βbnas
bcr =

qbnas
bcr

Λpd
+

qbnas
bcrr

Λdd
+βbnas

bcdt ).
qbnasbcr is the workload for the XR device during the initial
blockchain operation (BC registration, smart contract cre-
ation, key transfer, user verification). qbnasbcrr is the workload
for the edge blockchain device during the initial blockchain
operation (BC registration, smart contract creation, key
transfer, user verification). βbnas

bcdt is the data transfer delay
between the user XR device and the edge blockchain device
during the initial blockchain operation. Λpd is the work
processing power or CPU speed for the XR device. Λdd

is the work processing power or CPU speed for the edge
blockchain device.

βbnas
xpu is the user XR device-based avatar data capture and

art selling data capture delay (βbnas
xpu =

qbnas
xpu

Λpd
). qbnasxpu is the

workload for XR device-based avatar creation and art-selling
data capture work. βbnas

xdu is the XR device captured data
upload delay to the digital worker device at the MEC server
(βbnas

xdu =
Ψbnas

di

Jwr
∗ uwr +

Ψbnas
di

Jor
∗ uor + βk

pp + βk
rwd). Where

Ψbnas
di is the data size that consists of the XR device captured

avatar creation and visual art selling post data.
βbnas
pvp is the primary virtual network function processing

delay at the virtual network function processing node server
for the BC and NFT-based trading applications (βbnas

pvp =
qbnas
nfw +qbnas

atn +qbnas
nid

Λdd
+

Ψbnas
tvpd

Jlr
∗ ulr).

qbnasnfw , qbnasatn , and qbnasnid are the virtual network function
workload amounts for firewall, NAT, and IDS for NFT-
based art trading applications during offloading data on the
MEC server, respectively. Λdd is the virtual network function
processing device at the digital worker node or virtual
network function processing node. Ψbnas

tvpd is the exchanged
data amount during virtual network processing operation
execution.

βbnas
dwp is the digital work node (at the MEC server)

based offloaded data processing (i.e., digital art selling post
creation by avatar at the metaverse platform) and result
generation delay (βbnas

dwp =
qbnas
dwp

Λdd
). Where qbnasdwp is the number

of workloads for the offloaded data processing and result
generation during NFT-based art selling at the digital worker
node. Λdd is the workload processing power at the digital
work processing node (MEC server).

βbnas
xpuu is the buyer user or XR device-based visual art

buying information generation delay (βbnas
xpuu =

qbnas
xpuu

Λpd
). qbnasxpuu

is the workload for the buyer user or XR device-based visual
art buying information generation work.

βbnas
xduu is the buyer XR device captured data upload delay

to digital worker device at the MEC server (βbnas
xduu =

Ψbnas
dii

Jwr
∗

uwr +
Ψbnas

dii

Jor
∗ uor + βk

pp + βk
rwd). Where Ψbnas

dii is the data
size that consists of the buyer’s XR device captured visual
art buying data via the exchange of cryptocurrency.
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βbnas
dwpp is the digital work node (at the MEC server) based

offloaded data processing (i.e., digital art selling confirmation
by seller avatar and NFT transfer to buyer account, cryp-
tocurrency transfer to seller account) and result generation
delay (βbnas

dwpp =
qbnas
dwpp

Λdd
). Where qbnasdwpp is the number of

secondary workloads for the offloaded data processing and
result generation during NFT-based art selling at the digital
worker node. Λdd is the workload processing power at the
digital work processing node (MEC server).

βbnas
bcc is the digital work node (blockchain master node

at the MEC server) based block creation and hashing delay
(βbnas

bcc =
qbnas
bcc

Λdd
). Where qbnasbcc is the number of workloads for

block creation at the digital worker node (blockchain node at
MEC). Λdd is the workload processing power at the digital
work processing node (MEC server).

βbnas
btt is the block data dispatch delay to verifier devices

(MEC server) at the blockchain network (βbnas
btt =

Ψbnas
dib

Jwr
∗

uwr +
Ψbnas

dib

Jor
∗ uor + βk

pp + βk
rwd). Where Ψbnas

dib is the data
size that consists of the block creation data.

βbnas
bvm is the digital work node (blockchain verifier node

at the MEC server) based block verification delay (βbnas
bvm =

qbnas
bvm

Λdd
). Where qbnasbvm is the number of workloads for the block

verification at the digital worker node (blockchain verifier
node at MEC). Λdd is the workload processing power at the
digital work processing node (MEC server).

βbnas
dwps is the digital work node (blockchain master node at

the MEC server) based blockchain ledger update delay after
verification (βbnas

dwps =
qbnas
dwps

Λdd
). Where qbnasdwps is the number of

workloads for the ledger update at the digital worker node
(blockchain node at MEC). Λdd is the workload processing
power at the digital work processing node (MEC server).

βbnas
rdt is the digital work node processed resultant NFT

trading updated data dispatch delay to users XR device
(βbnas

rdt =
Ψbnas

rdt

Jwr
∗ uwr +

Ψbnas
rdt

Jor
∗ uor + βk

pp + βk
rwd). Where

Ψbnas
rdt is the output data size that consists of the resultant

NFT trading finalization data.

βbnas
svp is the secondary virtual network function processing

delay at the virtual network processing work node before
the resultant data reception at the users XR device (βbnas

svp =
qbnas
atn +qbnas

nfw +qbnas
nid

Λdd
+

Ψbnas
stvd

Jlr
∗ ulr).

qbnasatn , qbnasnfw , and qbnasnid are the virtual network function
workload amounts for NAT, firewall, and intrusion detection-
based VNF operations, respectively. Λdd is the virtual net-
work function processing device or worker node processing
speed (CPU speed). Ψbnas

stvd is the secondary exchanged data
amount during the virtual network processing operation
during the NFT trading application.

βbnas
xpr is the receiver user or XR device-based final NFT

trading result display delay (βbnas
xpr =

qbnas
xpr

Λpd
). qbnasxpr is the

workload for the receiver device (XR device) during resultant
data visualization.

The next considered application is digital twin-based robot
selection for manufacturing work. The work completion
delay for the digital twin-based simulation application βk

drs

is given by:

βk
drs =

z∑
k=1

(βdrs
cim + βdrs

trd + βdrs
tmp + βdrs

sip + βdrs
xpu + βdrs

xdu

+ βdrs
pvp + βdrs

dwp + βdrs
xpuu + βdrs

xduu + βdrs
dwop + βdrs

rdt

+ βdrs
dwpp + βdrs

rdtt + βdrs
svp + βdrs

xpr) (13)

βdrs
cim is the initial device readyness and internet connec-

tivity delay for the user and XR device. βdrs
trd is the digital

twin-based simulation (for best robot selection) application
that requests dispatch delay to the nearby task manager. βdrs

tmp

is the digital task manager-based digital twin applications
instruction generation delay for the workers. βdrs

sip is the
digital twin applications work instruction transfer delay from
the digital task manager to workers. βdrs

cim, βdrs
trd , βdrs

tmp, and
βdrs
sip are measured by using the similar calculation formula

as βk
cim, βk

trd, βk
tmp, and βk

sip (see first XR based gaming
application discussion).

βdrs
xpu is the user device or robot-based data capture op-

eration for digital twin creation (βdrs
xpu =

qdrsxpu

Λpd
). qdrsxpu is the

workload for the user device or robot-based data capture op-
eration for digital twin creation. Λpd is the work processing
power or CPU speed for the user device.

βdrs
xdu is the user device or robot captured data upload delay

to the digital worker device at the MEC server for digital twin
creation (βdrs

xdu =
Ψdrs

di

Jwr
∗ uwr +

Ψdrs
di

Jor
∗ uor + βk

pp + βk
rwd).

Where Ψdrs
di is the data size that consists of the user device or

robot device captured data amount for the digital twin-based
robot selection application.

βdrs
pvp is the primary virtual network function process-

ing delay at the virtual network function processing node
server for the digital twin simulation application (βdrs

pvp =
qdrsnfw+qdrsatn+qdrsnid

Λdd
+

Ψdrs
tvpd

Jlr
∗ ulr).

qdrsnfw, qdrsatn, and qdrsnid are the virtual network function
workload amounts for firewall, NAT, and IDS for the digital
twin simulation application during offloading data on the
MEC server, respectively. Λdd is the virtual network function
processing device at the digital worker node or virtual
network function processing node. Ψdrs

tvpd is the exchanged
data amount during virtual network processing operation
execution.

βdrs
dwp is the digital work node (at the MEC server) based

offloaded data processing (i.e., digital twin creation and
synchroization) delay (βdrs

dwp =
qdrsdwp

Λdd
). Where qdrsdwp is the

number of workloads for the offloaded data processing at the
digital worker node. Λdd is the workload processing power
at the digital work processing node (MEC server).

βdrs
xpuu is the robot present state data capture operation for

digital twin creation (βdrs
xpuu =

qdrsxpuu

Λpd
). qdrsxpuu is the workload

for the robot’s own data capture operation for digital twin
simulation.

βdrs
xduu is the robot’s own data upload delay to the digital

worker device at the MEC server for digital twin-based
simulation operation (βdrs

xduu =
Ψdrs

dii

Jwr
∗uwr+

Ψdrs
dii

Jor
∗uor+βk

pp+

βk
rwd). Where Ψdrs

dii is the data size that consists of the robot
device’s own data amount for the digital twin simulation-
based robot selection application.

βdrs
dwop is the digital twin node (at the MEC server) based

offloaded data processing (i.e., simulate the behavior of
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robots for manufacturing jobs, robot status prediction during
work execution, fuel status prediction, and fault detection)
delay (βdrs

dwop =
qdrsdwop

Λdd
). Where qdrsdwop is the number of

workloads for the offloaded data processing at the digital twin
node. Λdd is the workload porcessing power at the digital
twin node.

βdrs
rdt is the digital twin-generated resultant data dispatch

delay to the MEC device (βdrs
rdt =

Ψdrs
rdt

Jwr
∗uwr +

Ψdrs
rdt

Jor
∗uor +

βk
pp+βk

rwd). Where Ψdrs
rdt is the output data size that consists

of the digital twin simulated data amount.
βdrs
dwpp is the digital worker node (at the MEC server)

based simulated data processing (i.e., best robot selection
for manufacturing job from digital twin simulated data) delay
(βdrs

dwpp =
qdrsdwpp

Λdd
). Where qdrsdwpp is the number of workloads

for the offloaded data processing at the digital worker node.
Λdd is the workload-consuming power at the digital worker
or MEC node.

βdrs
svp is the secondary virtual network function processing

delay at the virtual network processing work node before the
robot selection or resultant data reception at the users device
(βdrs

svp =
qdrsatn+qdrsnfw+qdrsnid

Λdd
+

Ψdrs
stvd

Jlr
∗ ulr).

qdrsatn, qdrsnfw, and qdrsnid are the virtual network function work-
load amounts for NAT, firewall, and intrusion detection-based
VNF operations, respectively. Λdd is the virtual network
function processing device or worker node processing speed
(CPU speed). Ψdrs

stvd is the secondary exchanged data amount
during virtual network processing operation during a digital
twin-based application.

βdrs
xpr is the receiver user or XR device-based remote robot

selection result visualization delay (βdrs
xpr =

qdrsxpr

Λpd
). qdrsxpr is the

workload for the receiver device (XR device and user device)
for final robot selection result visualization.

Next, this article will provide an analytical model for non-
metaverse-based industrial automation application execution.
The work completion delay for industrial automation appli-
cation execution βk

ia is given by:

βk
ia =

z∑
k=1

(βia
cim + βia

trd + βia
tmp + βia

sip + βia
xpu + βia

xdu

+ βia
pvp + βia

dwp + βia
rdtc + βia

xpuc + βia
xpus + βia

rdth

+ βia
xpuh + βia

rdtt + βia
svp + βia

xpr) (14)

βia
cim is the initial device readyness and internet connec-

tivity delay for the user, cobot, human device, video camera,
and XR device. βia

trd is the industrial automation application
(checking the shoe sole glueing process) execution request
dispatch delay to nearby task manager. βia

tmp is the digital
task manager-based industrial automation application instruc-
tion generation delay for the workers (cobot, human worker,
video camera). βia

sip is an industrial automation application
processing work instruction transfer delay from the digital
task manager to workers. βia

cim, βia
trd, βia

tmp, and βia
sip are

calculated by using the same calculation formula as βk
cim,

βk
trd, βk

tmp, and βk
sip (see first XR based gaming application

discussion).
βia
xpu is the video camera-based lether goods or shoe soles

glue spraying image capture operation delay (βia
xpu =

qiaxpu

Λpd
).

qiaxpu is the workload for video camera-based shoe sole image

capture operations. Λpd is the work processing power or CPU
speed for the video camera device.

βia
xdu is the users video camera captured shoe soles data

upload delay to digital worker device at the MEC server
(βia

xdu =
Ψia

di

Jwr
∗uwr +

Ψia
di

Jor
∗uor +βk

pp+βk
rwd). Where Ψia

di is
the data size that consists of the users video camera device
captured data amount for shoe soles glue spray monitoring
application.

βia
pvp is the primary virtual network function process-

ing delay at the virtual network function processing node
server for the industrial automation application (βia

pvp =
qianfw+qiaatn+qianid

Λdd
+

Ψia
tvpd

Jlr
∗ ulr).

qianfw, qiaatn, and qianid are the virtual network function
workload amounts for firewall, NAT, and IDS for industrial
automation applications during offloading data on the MEC
server, respectively. Λdd is the virtual network function
processing device at the digital worker node or virtual
network function processing node. Ψia

tvpd is the exchanged
data amount during virtual network processing operation
execution.

βia
dwp is the digital work node (at the MEC server)

based offloaded data processing (i.e., glue spraying path
and point coordinate computation from sole image) delay
(βia

dwp =
qiadwp

Λdd
). Where qiadwp is the number of workload

for the offloaded data processing at the digital worker node.
Λdd is the workload processing power at the digital work
processing node (MEC server).

βia
rdtc is the digital work node generated resultant data

dispatch delay to cobot (collaborative robot) device (βia
rdtc =

Ψia
rdtc

Jwr
∗ uwr +

Ψia
rdtc

Jor
∗ uor + βk

pp + βk
rwd). Where Ψia

rdtc is
the output data size that consists of the digital work node-
generated resultant data.

βia
xpuc is the cobot-based glue spraying operation comple-

tion delay based on MEC instruction (βia
xpuc =

qiaxpuc

Λpd
). qiaxpuc

is the workload for cobot-based glue sparaying operations
for industrial automation operations.

βia
xpus is the video camera-based glue spraying operation

image capture delay based on MEC instruction after cobot
work completion (βia

xpus =
qiaxpus

Λpd
). qiaxpus is the workload

for video camera-based glue sparaying image capture for
industrial automation operations.

βia
rdth is the video camera-based resultant data dispatch

delay to human worker (mobile phone) device (βia
rdth =

Ψia
rdth

Jwr
∗ uwr +

Ψia
rdth

Jor
∗ uor + βk

pp + βk
rwd). Where Ψia

rdth is
the video camera captured and offloaded resultant data size.

βia
xpuh is the human worker device based glue spraying

operation checking or inspection delay based on MEC in-
struction after cobot and video camera work completion
(βia

xpuh =
qiaxpuh

Λpd
). qiaxpuh is the workload for human worker

device-based glue sparaying operation checking for industrial
automation applications.

βia
rdtt is the human worker device based final sole glueing

work inspection result or final output data dispatch delay to
all worker and user devices (βia

rdtt =
Ψia

rdtt

Jwr
∗ uwr +

Ψia
rdtt

Jor
∗

uor+βk
pp+βk

rwd). Where Ψia
rdtt is the human worker device-

based offloaded resultant data size.
βia
svp is the secondary virtual network function processing

delay at the virtual network processing work node before

IAENG International Journal of Computer Science

Volume 51, Issue 11, November 2024, Pages 1804-1844

 
______________________________________________________________________________________ 



the resultant data reception at the users device (βia
svp =

qianpdi+qianfw+qianid

Λdd
+

Ψia
stvd

Jlr
∗ ulr).

qianpdi, qianfw, and qianid are the virtual network function
workload amounts for DPI, firewall, and intrusion detection-
based VNF operations, respectively. Λdd is the virtual net-
work function processing device or worker node process-
ing speed (CPU speed). Ψia

stvd is the secondary exchanged
network function processing data amount during virtual
network processing operation during industrial automation
applications.

βia
xpr is the receiver user or XR device-based industrial

automation application completion (sole glue spraying work)
result visualization delay (βia

xpr =
qiaxpr

Λpd
). qiaxpr is the workload

for the receiver device (XR device and user device) for final
work completion result visualization.

Now, we will discuss the non-metaverse-based au-
tonomous vehicle application execution delay. The work
completion delay for autonomous vehicle application exe-
cution βk

av is given by:

βk
av =

z∑
k=1

(βav
cim + βav

trd + βav
tmp + βav

sip + βav
xpu + βav

xdu

+ βav
pvp + βav

dwp + βav
rdt + βav

svp + βav
xpr) (15)

βav
cim is the initial device readyness and internet con-

nectivity delay for the user, vehicle sensors, video camera,
and XR device. βav

trd is the industrial autonomous vehicle
application (checking the traffic light or object detection
in the road) execution request dispatch delay to nearby
task manager. βav

tmp is the digital task manager-based au-
tonomous vehicle application instruction generation delay for
the workers (MEC, video camera, vehicle steering). βav

sip is an
autonomous vehicle application processing work instruction
transfer delay from the digital task manager to workers. βav

cim,
βav
trd, βav

tmp, and βav
sip are calculated by using the similar

calculation formula as βk
cim, βk

trd, βk
tmp, and βk

sip (see first
XR based gaming application discussion).

βav
xpu is the vehicle’s video camera-based image capture

(i.e., traffic light or road object for detection) operation delay
(βav

xpu =
qav
xpu

Λpd
). qavxpu is the workload for video camera-based

image capture (i.e., traffic light or road object detection)
operations. Λpd is the work processing power or CPU speed
for the vehicle’s video camera device.

βav
xdu is the vehicle video camera captured data upload

delay to the digital worker device at the MEC server (βav
xdu =

Ψav
di

Jwr
∗uwr +

Ψav
di

Jor
∗uor +βk

pp+βk
rwd). Where Ψav

di is the data
size that consists of the vehicle video camera device captured
data amount for autonomous vehicle application.

βav
pvp is the primary virtual network function process-

ing delay at the virtual network function processing node
server for the autonomous vehicle application (βav

pvp =
qav
nfw+qav

atn+qianpdi

Λdd
+

Ψav
tvpd

Jlr
∗ ulr).

qavnfw, qavatn, and qavnpdi are the virtual network function
workload amounts for firewall, NAT, and DPI for au-
tonomous vehicle applications during offloading data on the
MEC server, respectively. Λdd is the virtual network function
processing device at the digital worker node or virtual
network function processing node. Ψav

tvpd is the exchanged
data amount during virtual network processing operation
execution.

βav
dwp is the digital work node (at the MEC server) based

offloaded data processing (i.e., traffic light detection re-
sult,road object detection result, and vehicle action such as
moving or stop action generation based on image detection)
delay (βav

dwp =
qav
dwp

Λdd
). Where qavdwp is the number of work-

loads for the offloaded data processing at the digital worker
node. Λdd is the workload processing power at the digital
work processing node (MEC server).

βav
rdt is the digital work node generated resultant data

dispatch delay to vehicle for action (βav
rdt =

Ψav
rdt

Jwr
∗ uwr +

Ψav
rdt

Jor
∗uor+βk

pp+βk
rwd). Where Ψav

rdt is the output data size
that consists of the digital work node generated resultant data
for autonomous vehicle applications.

βav
svp is the secondary virtual network function processing

delay at the virtual network processing work node before
the resultant data reception at the vehicles device (βav

svp =
qav
npdi+qav

nfw+qav
nid

Λdd
+

Ψav
stvd

Jlr
∗ ulr).

qavnpdi, qavnfw, and qavnid are the virtual network function
workload amounts for DPI, firewall, and intrusion detection-
based VNF operations, respectively. Λdd is the virtual net-
work function processing device or worker node processing
speed (CPU speed). Ψav

stvd is the secondary exchanged net-
work function processing data amount during virtual network
processing operation during autonomous vehicle application.
βav
xpr is the receiver vehicle device-based final digital worker

processed result visualization delay (βav
xpr =

qav
xpr

Λpd
). qavxpr is

the workload for the receiver XR or vehicle device for final
work completion result visualization.

Next, we will present a non-metaverse-based traditional
broadband-based personal data transfer application execution
delay. The work completion delay for traditional broadband-
based data transfer application execution βk

tb is given by:

βk
tb =

z∑
k=1

(βtb
cim + βtb

trd + βtb
tmp + βtb

sip + βtb
xpu + βtb

xdu

+ βtb
pvp + βtb

dwp + βtb
rdt + βtb

svp + βtb
xpr) (16)

βtb
cim is the initial device readyness and internet con-

nectivity delay for the user device. βtb
trd is the traditional

broadband-based data transfer application execution request
dispatch delay to the nearby task manager. βtb

tmp is the digital
task manager-based traditional broadband-based data transfer
application instruction generation delay for the workers. βtb

sip

is a traditional broadband-based data transfer application
processing work instruction transfer delay from the digital
task manager to workers. βtb

cim, βtb
trd, βtb

tmp, and βtb
sip are

calculated by using the similar calculation formula as βk
cim,

βk
trd, βk

tmp, and βk
sip (see first XR based gaming application

discussion).
βtb
xpu is the user XR device or mobile phone-based per-

sonal data capture (i.e., own image or message) operation
delay (βtb

xpu =
qtbxpu

Λpd
). qtbxpu is the workload for user XR device

or mobile phone-based personal data capture (i.e., own image
or message) operation. Λpd is the work processing power or
CPU speed for the user device.

βtb
xdu is the user device captured data upload delay to the

digital worker device at the MEC server (βtb
xdu =

Ψtb
di

Jwr
∗uwr+

Ψtb
di

Jor
∗ uor + βk

pp + βk
rwd). Where Ψtb

di is the data size that
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consists of the user’s XR device or mobile phone captured
personal data (i.e., personal image or message).

βtb
pvp is the primary virtual network function processing

delay at the virtual network function processing node server
for the traditional broadband-based data transfer application
(βtb

pvp =
qtbnfw+qtbatn+qtbnpdi

Λdd
+

Ψtb
tvpd

Jlr
∗ ulr).

qtbnfw, qtbatn, and qtbnpdi are the virtual network function
workload amounts for firewall, NAT, and DPI for traditional
broadband-based data transfer applications during offloading
data on the MEC server, respectively. Λdd is the virtual
network function processing device at the digital worker node
or virtual network function processing node. Ψtb

tvpd is the
exchanged data amount during virtual network processing
operation execution.

βtb
dwp is the digital work node (at the MEC server) based

offloaded data processing (i.e., compression, encoding, re-
ceiver location selection) delay (βtb

dwp =
qtbdwp

Λdd
). Where βtb

dwp

is the number of workloads for the offloaded data processing
at the digital worker node. Λdd is the workload processing
power at the digital work processing node (MEC server).

βtb
rdt is the digital work node generated resultant data

dispatch delay to receiver user device (βtb
rdt =

Ψtb
rdt

Jwr
∗ uwr +

Ψtb
rdt

Jor
∗uor+βk

pp+βk
rwd). Where Ψtb

rdt is the output data size
that consists of the digital work node-generated resultant data
for traditional broadband-based data transfer applications.

βtb
svp is the secondary virtual network function processing

delay at the virtual network processing work node before
the resultant data reception at the receiver device (βtb

svp =
qtbnpdi+qtbnfw+qtbatn

Λdd
+

Ψtb
stvd

Jlr
∗ ulr).

qtbnpdi, qtbnfw, and qtbatn are the virtual network function
workload amounts for DPI, firewall, and NAT-based VNF
operations, respectively. Λdd is the virtual network function
processing device or worker node processing speed (CPU
speed). Ψtb

stvd is the secondary exchanged network function
processing data amount during virtual network processing
operation during traditional broadband-based data transfer
applications.

Next, we will present a non-metaverse-based caching
application execution delay. The work completion delay for
caching application execution βk

vc is given by:

βk
vc =

z∑
k=1

(βvc
cim + βvc

trd + βvc
tmp + βvc

sip + βvc
xpu + βvc

xdu

+ βvc
pvp + βvc

dwp + βvc
rdt + βvc

svp + βvc
xpr) (17)

βvc
cim is the initial device readyness and internet connectiv-

ity delay for the user device. βvc
trd is the caching application

execution request dispatch delay to the nearby task manager.
βvc
tmp is the digital task manager-based traditional caching

application execution application instruction generation delay
for the workers (MEC, user device). βvc

sip is traditional
caching application execution processing work instruction
transfer delay from the digital task manager to workers. βvc

cim,
βvc
trd, βvc

tmp, and βvc
sip are calculated by using the similar

calculation formula as βk
cim, βk

trd, βk
tmp, and βk

sip (see first
XR based gaming application discussion).

βvc
xpu is the user XR device or mobile phone-based video

file name information selection or file name capture operation
delay (βvc

xpu =
qvc
xpu

Λpd
). qvcxpu is the workload for the user’s XR

device or mobile phone-based caching request data capture
operation. Λpd is the work processing power or CPU speed
for the user device.

βvc
xdu is the user device captured data upload delay to the

digital worker device at the MEC server (βvc
xdu =

Ψvc
di

Jwr
∗uwr+

Ψvc
di

Jor
∗ uor + βk

pp + βk
rwd). Where Ψvc

di is the data size that
consists of the user XR device or mobile phone captured
users caching request data.

βvc
pvp is the primary virtual network function processing

delay at the virtual network function processing node server
for the video caching application (βvc

pvp =
qvc
nfw+qvc

atn+qvc
npdi

Λdd
+

Ψvc
tvpd

Jlr
∗ ulr).

qvcnfw, qvcatn, and qvcnpdi are the virtual network function
workload amounts for firewall, NAT, and DPI operations
during offloading data on the MEC server, respectively. Λdd

is the virtual network function processing device at the digital
worker node or virtual network function processing node.
Ψvc

tvpd is the exchanged data amount during virtual network
processing operation execution.

βvc
dwp is the digital work node (at the MEC server) based

offloaded data processing (i.e., cache lookup, file search,
preparation for access) delay (βvc

dwp =
qvc
dwp

Λdd
+H∗(βvc

ew+βvc
rw).

Where qvcdwp is the number of workloads for the offloaded
data processing (i.e., cache lookup, file search, preparation
for access) at the digital worker node. Λdd is the workload
processing power at the digital work processing node (MEC
server). H is the cache hit ratio (H = 0 or 1). βvc

ew is
the associated communication delay if the video file is
accessed from the edge cloud server. βvc

rw is the associated
communication delay if the video file is accessed from the
remote or central cloud server (similar to [133]).

βvc
rdt is the digital work node generated resultant caching

data dispatch delay to receiver user device (βvc
rdt =

Ψvc
rdt

Jwr
∗

uwr+
Ψvc

rdt

Jor
∗uor+βk

pp+βk
rwd). Where Ψvc

rdt is the output data
size that consists of the digital work node-generated caching
file data.

βvc
svp is the secondary virtual network function processing

delay at the virtual network processing work node before
the resultant data reception at the receiver device (βvc

svp =
qvc
npdi+qvc

nfw+qtbnid

Λdd
+

Ψvc
stvd

Jlr
∗ ulr).

qvcnpdi, qvcnfw, and qvcnid are the virtual network function
workload amounts for DPI, firewall, and IDS-based VNF
operations, respectively. Λdd is the virtual network function
processing device or worker node processing speed (CPU
speed). Ψvc

stvd is the secondary exchanged network function
processing data amount during virtual network processing
operation during caching-based application.

βvc
xpr is the receiver device-based caching data visualiza-

tion delay (βvc
xpr =

qvc
xpr

Λpd
). qvcxpr is the workload for the

receiver XR or mobile phone device for final caching data
visualization.

Now, this article will present a non-metaverse-based hu-
man brain-computer-wheelchair interaction application exe-
cution delay. The work completion delay for human brain-
computer-wheelchair interaction-based application execution
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βk
bcx is given by:

βk
bcx =

z∑
k=1

(βbcx
cim + βbcx

trd + βbcx
tmp + βbcx

sip + βbcx
xpu + βbcx

xdu

+ βbcx
pvp + βbcx

dwp + βbcx
rdt + βbcx

svp + βbcx
xpr) (18)

βbcx
cim is the initial device readyness and internet connec-

tivity delay for the user device. βbcx
trd is the human brain-

computer-wheelchair interaction application that requests
dispatch delay to the nearby task manager. βbcx

tmp is the dig-
ital task manager-based human brain-computer-wheelchair
interaction application instruction generation delay for the
workers (MEC, brain sensors, wheelchair, user device). βbcx

sip

is human brain-computer-wheelchair interaction application
processing work instruction transfer delay from the digital
task manager to workers. βbcx

cim, βbcx
trd , βbcx

tmp, and βbcx
sip are

calculated by using the similar calculation formula as βk
cim,

βk
trd, βk

tmp, and βk
sip (see first XR based gaming application

discussion).
βbcx
xpu is the user brain sensor-based data capture (i.e., brain

signal) operation delay (βbcx
xpu =

qbcxxpu

Λpd
). qbcxxpu is the workload

for user brain sensor-based data capture operations. Λpd is
the work processing power or CPU speed for the user brain
sensor device.

βbcx
xdu is the user brain sensor device captured data upload

delay to digital worker device at the MEC server (βbcx
xdu =

Ψbcx
di

Jwr
∗ uwr +

Ψbcx
di

Jor
∗ uor + βk

pp + βk
rwd). Where Ψbcx

di is the
data size that consists of the user brain sensor device captured
data.

βbcx
pvp is the primary virtual network function processing

delay at the virtual network function processing node server
for the human brain. computer-wheelchair interaction appli-
cation (βbcx

pvp =
qbcxnfw+qbcxatn+qbcxnpdi

Λdd
+

Ψbcx
tvpd

Jlr
∗ ulr).

qbcxnfw, qbcxatn, and qbcxnpdi are the virtual network function
workload amounts for firewall, NAT, and DPI for human
brain-computer-wheelchair interaction application execution
during offloaded data on the MEC server, respectively. Λdd is
the virtual network function processing device at the digital
worker node or virtual network function processing node.
Ψbcx

tvpd is the exchanged data amount during virtual network
processing operation execution.

βbcx
dwp is the digital work node (at the MEC server) based

offloaded data processing (i.e., brain signal to instruction or
action generation) delay (βbcx

dwp =
qbcxdwp

Λdd
). Where qbcxdwp is the

number of workloads for the offloaded data processing at the
digital worker node. Λdd is the workload processing power
at the digital work processing node (MEC server).

βbcx
rdt is the digital work node generated resultant data

dispatch delay to receiver wheelchair device (βbcx
rdt =

Ψbcx
rdt

Jwr
∗

uwr +
Ψbcx

rdt

Jor
∗ uor + βk

pp + βk
rwd). Where Ψbcx

rdt is the output
data size that consists of the digital work node generated
resultant data for the wheelchair operation.

βbcx
svp is the secondary virtual network function processing

delay at the virtual network processing work node before
the resultant data reception at the receiver wheelchair device
(βbcx

svp =
qbcxnpdi+qbcxnfw+qbcxatn

Λdd
+

Ψbcx
stvd

Jlr
∗ ulr).

qbcxnpdi, qbcxnfw, and qbcxatn are the virtual network function
workload amounts for DPI, firewall, and NAT-based VNF
operations, respectively. Λdd is the virtual network function

processing device or worker node processing speed (CPU
speed). Ψbcx

stvd is the secondary exchanged network function
processing data amount during virtual network processing
operation during human brain-computer-wheelchair interac-
tion application execution.

βbcx
xpr is the receiver wheelchair device-based final instrauc-

tion execution (e.g., move forward) delay (βbcx
xpr =

qbcxxpr

Λpd
). qbcxxpr

is the workload for the receiver wheelchair device for final
work execution.

Next, this paper will discuss a non-metaverse-based charg-
ing station for vehicle electric energy transfer applications.
The work completion delay for charging stations to vehicles
electric energy transfer application execution βk

vet is given
by:

βk
vet =

z∑
k=1

(βvet
cim + βvet

trd + βvet
tmp + βvet

sip + βvet
pvp + βvet

xmu

+ βvet
csp + βvet

rdt + βvet
svp + βvet

xpr) (19)

βvet
cim is the initial device readyness and internet con-

nectivity delay for user devices and vehicles. βvet
trd is the

charging station to vehicles electric energy transfer applica-
tion request dispatch delay to nearby task manager. βvet

tmp is
the digital task manager-based charging station to vehicles
electric energy transfer application instruction generation
(i.e., charging time selection for vehicles and charging station
selection) delay for the workers (charging station, vehicles,
user device). βvet

sip is an energy transfer application processing
work instruction transfer delay from the digital task manager
to workers (vehicle, charging station). βvet

cim, βvet
trd , βvet

tmp, and
βvet
sip are measured by using the similar calculation formula

as βk
cim, βk

trd, βk
tmp, and βk

sip (see first XR based gaming
application discussion).

βvet
pvp is the primary virtual network function processing

delay at the virtual network function processing node server
for the charging station to vehicles electric energy transfer
application (βvet

pvp =
qvet
nfw+qvet

atn+qvet
npdi

Λdd
+

Ψvet
tvpd

Jlr
∗ ulr).

qvetnfw, qvetatn, and qvetnpdi are the virtual network function
workload amounts for firewall, NAT, and DPI for charging
station to vehicle electric energy transfer application exe-
cution during MEC instruction reception data in the user
vehicle device, respectively. Λdd is the virtual network func-
tion processing device at the digital worker node or virtual
network function processing node. Ψvet

tvpd is the exchanged
data amount during virtual network function processing
operation execution.

βvet
xmu is the vehicle device-based movement operation

execution (e.g., move to the charging station) delay (βvet
xmu =

dvet
xmu

Λpm
). dvetxmu is the distance between the vehicle and charging

station. Λpm is the movement speed for the vehicles.
βvet
csp is the receiver vehicle-based charging operation

execution (e.g., at the charging station) delay (βvet
csp =

xrr−xaa+xbn∗xth

acr
). Where xrr, xaa, xbn, xth, and acr are

required charges for vehicles, already present charge avail-
ability at the vehicle, threshold value for vehicle battery
depletion, capacity of vehicle battery, and rate of charging
for vehicles (per second), respectively.

βvet
rdt is the work completion message data dispatch delay

to receiver vehicles device from charging station (βvet
rdt =
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Ψvet
rdt

Jwr
∗ uwr +

Ψvet
rdt

Jor
∗ uor + βk

pp + βk
rwd). Where Ψvet

rdt is the
output data size (e.g., work completion message).

βvet
svp is the secondary virtual network function processing

delay at the virtual network processing work node before
the resultant data reception at the receiver vehicle’s device
(βvet

svp =
qvet
npdi+qvet

nfw+qvet
nid

Λdd
+

Ψvet
stvd

Jlr
∗ ulr).

qvetnpdi, qvetnfw, and qvetnid are the virtual network function
workload amounts for DPI, firewall, and IDS-based VNF
operations, respectively. Λdd is the virtual network function
processing device or worker node processing speed (CPU
speed). Ψvet

stvd is the secondary exchanged network function
processing data amount during virtual network function pro-
cessing operation during harging station to vehicle electric
energy transfer application execution. βvet

xpr is the receiver

device-based final result display delay (βvet
xpr =

qvet
xpr

Λpd
). qvetxpr

is the workload for the receiver device for final work com-
pletion result display.

Next, this article will present multiverse (multiple meta-
verse platform-based) avatar socialization and NFT trading
application execution delays. The work completion delay for
avatar socialization and NFT trading application execution
βk
snt is given by:

βk
snt =

z∑
k=1

βk
sa + βk

bnas

Where βk
sa is the avatar socialization application work

completion delay. βk
bnas is the blockchain and NFT (non-

fungible token) transfer-based visual art selling application
work completion delay.

βk
sa calculation is described in equation 9 (see previ-

ously discussed section on avatar socialization application
work completion delay calculation). βk

bnas calculation is
described in equation 12 (see previously discussed section
on blockchain and NFT (non-fungible token) transfer-based
visual art selling application work completion delay calcula-
tion).

Finally, this article will discuss another multiverse (mul-
tiple metaverse platform-based)-based virtual clothing and
a virtual tour of museum application execution delays. The
work completion delay βk

cmt for virtual clothing (via avatar)
and virtual tour of museum applications (via avatar) is
calculated by:

βk
cmt =

z∑
k=1

βk
vce + βk

mt

Where βk
vce is the virtual clothing experience application

work completion delay. βk
mt is the virtual museum tour

application work completion delay.
βk
vce calculation is described in equation 7 (see previ-

ously discussed section of XR-based virtual clothing expe-
rience work completion delay calculation). βk

mt calculation
is briefed in equation 6 (see previously discussed section of
XR-based virtual museum tour experience application work
completion delay calculation).

B. Economic cost for users

The economic cost for users (γk
uec) concerning different

6G application (metaverse, multiverse, and non-metaverse

application) execution can be calculated by taking the sum-
mation of users financial cost for bandwidth resource, local
user device or physical device resource use, virtual network
function processing server resource use, resource waiting ac-
tivity, cloud/caching/blockchain server resource usage. γk

uec

is analyzed by:

γk
uec =

ξhc∑
k=1

(ςkbw ∗ βk
et + ςkbw ∗ βk

er) +

ξhc∑
i=1

(ςkuo ∗ βk
vc

+ ςksh ∗ βk
vc + ςksp ∗ βk

vc) +

ξhc∑
k=1

(ςiew ∗ βk
ew + ςkud ∗ βk

pd)+

ξmc∑
k=1

(ςkbw ∗ βk
et + ςkbw ∗ βk

er) +

ξmc∑
i=1

(ςkuo ∗ βk
vc

+ ςksh ∗ βk
vc + ςksp ∗ βk

vc) +

ξmc∑
k=1

(ςiew ∗ βk
ew + ςkud ∗ βk

pd)+

ξlc∑
k=1

(ςkbw ∗ βk
et + ςkbw ∗ βk

er) +

ξlc∑
i=1

(ςkuo ∗ βk
vc

+ ςksh ∗ βk
vc + ςksp ∗ βk

vc) +

ξlc∑
k=1

(ςiew ∗ βk
ew + ςkud ∗ βk

pd)

(20)

ξhc, ξmc, and ξlc are the total number of high-time crit-
ical requirement-based, medium-time critical requirement-
based, and low-time critical requirement-based 6G appli-
cations (e.g., multiverse-based, metaverse-based, and non-
metaverse-based applications), respectively. The total number
of applications is z = ξhc+ξmc+ξlc.
ςkbw, ςkud, and ςkew are the economic expenditure average

cost (per milisecond) for users concerning bandwidth usage
(for data transfer and receive), physical local device usage
for local device-based work processing (e.g., mobile phone,
robot, sensor, XR device), and resource access waiting ac-
tivity, respectively. ςkuo, ςksh, and ςksp are the economic ex-
penditure average cost (per milisecond) for users concerning
user-owned virtual network function processing and digital
work node resource usage (e.g., MEC server, VNF server,
blockchain server), sharing neighbor-owned virtual network
function processing and digital work node resource usage,
and service provider-owned virtual network function process-
ing and digital work node resource usage, respectively.
βk
et, βk

er, βk
pd, βk

vc, and βk
ew are the application work

completion delays concerning application data transmission
activity, application data receive activity, physical device
(e.g., user device, XR device, robot, video sensor)-based
application work processing activity, digital device-based
application work processing (e.g., cloud server-based work
processing, virtual network function processing) activity, and
resource access waiting activity, respectively.

C. Sucessful task completion ratio

The successful task completion ratio (ϵkstcr) can be ascer-
tained by taking the ratio of the total application number that
can fulfill the deadline requirements during execution and the
total arrived application number (e.g., metaverse, multiverse,
and non-metaverse). The successful task completion ratio
ϵkstcr is measured by ϵkstcr =

∑z
k=1 ξkta−

∑z
k=1 ξkns∑z

k=1 ξkta
=

∑z
k=1 ξkts∑z
k=1 ξkta

.
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Where ξkta, ξkns, and ξkts are the total arrived application
number, total unsucessful application that cannot satisfy
the deadline limit, and total successful application that can
satisfy the deadline limit, respectively.

D. Energy expenditure of users devices

The energy expenditure of user devices (Gk
ee) for the total

k number of 6G applications (metaverse, multiverse, and
non-metaverse application execution) can be measured by
taking the summation of users different energy expenditure
values concerning application data transfer activity, applica-
tion data receive activity, physical and digital work node-
based application workload processing, and waiting activity.
Gk

ee can be analyzed as follows:

Gk
ee =

ξmv∑
k=1

(yket ∗ βk
et + yker ∗ βk

er + ykpd ∗ βk
pd)

+

ξmv∑
k=1

(ykvc ∗ βk
vc + ykew ∗ βk

ew)+

ξme∑
k=1

(yket∗βk
et+yker∗βk

er+ykpd∗βk
pd)+

ξme∑
k=1

(ykvc∗βk
vc+ykew∗βk

ew)+

ξnme∑
k=1

(yket∗βk
et+yker∗βk

er+ykpd∗βk
pd)+

ξnme∑
k=1

(ykvc∗βk
vc+ykew∗βk

ew)

(21)

ξmv , ξme, and ξnme are the total number of exe-
cuted multiverse-based 6G applications, metaverse-based
6G applications, and non-metaverse-based 6G applications,
respectively. The total number of applications is z =
ξmv+ξme+ξnme.

yket, y
k
er, ykpd, ykvc, and ykew are the energy expenditure aver-

age cost (per milisecond) for user host devices concerning ap-
plication data transmission activity, application data receive
activity, physical device (e.g., user device, XR device, robot,
video sensor)-based application work processing activity,
digital device-based application work processing (e.g., cloud
server-based processing, virtual network function processing)
activity, and resource access waiting activity, respectively.

βk
et, βk

er, βk
pd, βk

vc, and βk
ew are the application work

completion delays concerning application data transmission
activity, application data receive activity, physical device
(e.g., user device, XR device, robot, video sensor)-based
application work processing activity, digital device-based
application work processing (e.g., cloud server-based work
processing, virtual network function processing) activity, and
resource access waiting activity, respectively.

E. Total throughput value for the network

The total network throughput value χk
nwt is ascertained by

taking the ratio of exchanged data size total amount during
application execution and application execution makespan
time delay (i.e., maximum time delay for all arrived appli-
cation execution).

χk
nwt is described by: χk

nwt =
∑z

k=1(Ψ
k
dit+Ψk

dot+Ψk
dod)∑z

k=1 βk
ts

.

Where Ψk
dit is the arrived application input data size total

value. Ψk
dot is the arrived application output data size total

value. Ψk
dod is the arrived applications other exchanged data

size total value during different operation execution.
βk
ts is the application’s maximum timespan delay. βk

ts is
computed by:
βk
ts=max{β1

asd, β
2
asd, ..β

k
asd}, k∈ 1, 2, ..z. z is the total ap-

plication count number. βk
asd is the end-to-end application

service delivery delay (please see Section 5.1 for details).

F. Total profit for the different service providers

The total profit value concerning different service
providers (γk

tpv =
∑z

k=1 γ
k
uec − γk

spec) can be measured
by taking the difference between collected economic ex-
penditure or revenue from users (γk

uec) and service provider
cost (γk

spec) for different services (i.e., resource buy, service
delivery, maintenance). γk

spec is the service provider’s cost
for different 6G application service delivery. γk

spec can be
analyzed as follows:

γk
spec =

ξhc∑
k=1

(ςksbw ∗ βk
et + ςksbw ∗ βk

er) +

ξhc∑
i=1

(ςksuo ∗ βk
vc

+ ςkssh ∗ βk
vc + ςkssp ∗ βk

vc) +

ξhc∑
k=1

(ςisew ∗ βk
ew + ςksud ∗ βk

pd)+

ξmc∑
k=1

(ςksbw ∗ βk
et + ςksbw ∗ βk

er) +

ξmc∑
i=1

(ςksuo ∗ βk
vc

+ ςkssh ∗ βk
vc + ςkssp ∗ βk

vc) +

ξmc∑
k=1

(ςisew ∗ βk
ew + ςksud ∗ βk

pd)+

ξlc∑
k=1

(ςksbw ∗ βk
et + ςksbw ∗ βk

er) +

ξlc∑
i=1

(ςksuo ∗ βk
vc

+ ςkssh ∗ βk
vc + ςkssp ∗ βk

vc) +

ξlc∑
k=1

(ςisew ∗ βk
ew + ςksud ∗ βk

pd)

(22)

ςksbw, ςksud, and ςksew are the economic expenditure av-
erage cost (per milisecond) for different service providers
concerning bandwidth service (i.e., resource buying cost,
maintainance, and electricity cost) delivery to users, physical
local device usage service delivery for application execution,
and resource access waiting operation, respectively. The total
number of applications is z = ξhc+ξmc+ξlc. ςksuo, ςkssh, and
ςkssp are the economic expenditure average cost (per milisec-
ond) for service providers concerning user-owned virtual net-
work function processing/digital work node resource usage
service delivery (e.g., MEC server, VNF server, blockchain
server), sharing neighbor-owned virtual network function
processing/digital work node resource usage, and service
provider-owned virtual network function processing/digital
work node resource service delivery (i.e., resource buying
cost, maintenance cost, and electricity cost), respectively.
βk
et, β

k
er, βk

pd, βk
vc, and βk

ew are the users application work
completion delays concerning application data transmission
activity, application data receive activity, physical device
(e.g., user device, XR device, robot, video sensor) based
application work processing activity, digital device based
application work processing (e.g., cloud server based work
processing, virtual network function processing) activity, and
resource access waiting activity, respectively.
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G. User total benefit or welfare ratio

The total user benefit ratio or welfare ratio (vkwr) is
measured by taking the summation of time benefit ratio (vkbt),
energy benefit ratio (vkbee), and economic cost ratio (vkbec).
vkwr is given by:

vkwr =
z∑

k=1

vkbt + vkbee + vkbec =∑z
k=1 β

k
td − βk

ts∑z
k=1 β

k
td

+

∑z
k=1 G

k
ed −Gk

ee∑z
k=1 G

k
ed

+

∑z
k=1 γ

k
ecb − γk

uec∑z
k=1 γ

k
ecb

(23)

Where βk
td, Gk

ed, and γk
ecb are the host user application

execution deadline value, energy expenditure budget, and
economic cost budget for multiple application executions,
respectively. βk

ts, G
k
ee, and γk

uec are the application execution
work completion makespan delay, energy expenditure for
users, and economic cost for users for multiple application
executions, respectively.

H. Average unused energy and network lifetime

The unused user device energy, or leftover energy, Gk
ve can

be calculated by investigating the ratio of leftover energy for
the users (the difference between total user energy at the
beginning of the simulation and energy cost for users per
simulation round) and total users within a network.

Gk
ve is ascertained by:

Gk
ve =

∑z
k=1 Gk

tt−k∗Gk
auec∗η∑z

k=1 Φk
un

.

Where Gk
tt is the total energy summation value that

includes all users device energy. k is the executed application
number per simulation instance. Gk

auec is the user’s average
energy expenditure per simulation round. η is the total
simulation instance or round. Φk

un is the total user device
number within a network.

The network lifetime (δknl) can be measured by determin-
ing the ratio of the the total sum of initial energy that includes
all user deviceenergy at the beginning of the simulation (Gk

tt)
and the energy expenditure of the user device for application
execution per simulation round (Gk

tue = k ∗Gk
auec ∗ η).

I. User survivability ratio

User survivability ratio (Θk
usr) is ascertained by measuring

the ratio of alive or non-dead user device number after the
completion of the simulation round and total user device
within a network (at the beginning of the the simulation).
Θk

usr is measured by:
Θk

usr =
∑ν

η=1
Φk

un−Φk
dn

Φk
un

= Φk
un −

∑ν
η=1

Gk
tue

Guie
.

Where Φk
un is the total user device number. Φk

dn is the
non-alive device number after the completion of a specific
simulation round. η is the simulation round number. Guie

is the initial energy of a user device. Gk
tue is the energy

expenditure of the user device per simulation round.

V. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the experimental results and analysis
of the proposed liberty scheme, which includes resource
management, application, and worker scheduling strategies

for multiverse, metaverse, and non-metaverse-based applica-
tion execution over 6G edge computing networks.

The proposed liberty-based resource management
and worker selection scheme (triple collabora-
tion+SJF+ECS+UEES) has the following key features:
minimum service delivery delay, economic cost saving
(ECS), and user energy expenditure cost saving (UEES)
based network resource and worker selection (physical
worker, digital worker, virtual network function processing
server, and communication resources) for application
execution, the shortest deadline application first-based multi
The proposed liberty scheme is compared to two existing
schemes to determine which is superior. The existing
scheme one (double collaboration+EAS+NUEES) selects
the best resources with maximum power by verifying
both user and service provider owned digital resources
along with earliest application arrival first served based
scheduling (EAS) and non-user energy saving based
application scheduling (e.g., [70], [38]). The existing
scheme two (single collaboration+EAS+NUEES) selects
the best resources casually by verifying only service
provider-owned resources along with random application
and worker scheduling (RAS) and non-user energy-saving
(NUEES)-based scheduling (e.g., [37], [137]). This article
employs a simulation framework built on MATLAB.
The total number of applications (multiverse, metaverse,
and non-multiverse-based) ranges from 16 to 132, and
is determined at random. The application execution
deadline has a time limit ranging from 1900 to 57,000
milliseconds. This paper generates multiverse, metaverse,
and non-metaverse application requests with various data
sizes and workloads at random. However, application
resource allocation (digital worker, physical worker, and
VNF server) prioritizes the shortest deadline. The digital
worker device and the user physical device have maximum
computation work processing speeds of 4.5 GHz and 2000
MHz, respectively. Tables I-V contain experimental values
for simulation, such as input and output data size for
various applications, workload associated with physical
workers, digital workers, and VNF processing servers,
wired and wireless link data rates, energy expenditure costs,
economic costs, and service provider costs. This work
considers the following metaverse applications: XR-based
immersive gaming, avatar-based virtual tours of museums,
avatar-based virtual clothing experiences, XR-based remote
healthcare, socialization via avatar interaction, hologram-
based remote presence for video conferencing, federated
learning-based surveillance applications, NFT (non-fungible
token) and blockchain-enabled visual art selling, and
digital twin-based robot selection for manufacturing jobs.
Non-metaverse applications include human-digital worker-
cobot-video sensor industrial automation jobs, autonomous
driving applications, traditional broadband-based data
exchange applications, video file caching applications,
brain sensor-digital worker-wheelchair interaction-based
biological application porcessing, and charging station-to-
electric vehicle energy transfer applications. The multiverse
application combines avatar socialization and NFT-based
trading, as well as a virtual museum tour and virtual clothing
experience delivered via XR and haptic devices.

Figure 3(a) depicts the relationship between the mean
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(a)

(b)

Fig. 3. Mean application service delivery latency and energy expenditure of users
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(a)

(b)

Fig. 4. Sucessful task completion ratio and network throughput

IAENG International Journal of Computer Science

Volume 51, Issue 11, November 2024, Pages 1804-1844

 
______________________________________________________________________________________ 



(a)

(b)

Fig. 5. Users economic cost and profit for service providers
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(a)

(b)

Fig. 6. Welfare ratio for users and average unused energy
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(a)

(b)

Fig. 7. User device survivability ratio and lifetime of network existence
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TABLE I
EXPERIMENTAL NOTATIONS AND VALUES

Parameters Values/Units
z, Ψk

eb,Ψ
k
rcr,Ψ

k
rce,Ψ

k
asr,

Ψk
ase, Ψk

iasb, Qep
pd, Qep

tm,
Λpd, Λdd, Jwr , Jor , uor ,
and uwr , βk

pp, βk
rwd

Total application request, primary beacon message size (160 bits), network
registration request size (160 bits), network registration response size (160
bits), application service registration request size (160 bits), application service
registration response size (160 bits), initial time-slot assign schedule message
size (192 bits), workload for user device (10 CPU cycles/bit), workload for task
managers during elementary phase (50 CPU cycles/bit), workload processing
speed for user/physical worker (1200 MHz) and task manager/MEC/digital
worker (2.5-4.5 GHZ), wireless link rate (10-50 Gbps for THz link, 2-8 Gbps
for mm wave link, 50-500 Mbps for microwave link), fiber link data exchange
rate (20-50 Gbps), hop number (optical fiber link) transfer (1-5), hop number for
wireless link based data transfer (1-5), propagation delay (ms, vary), resource
access queuing and waiting latency (ms, vary).

Ψk
uarc/Ψ

k
ar,Ψ

k
tmrt,

Ψk
rmrw,Ψk

otmr, Ψk
otmp,

Qsp
pd, Qsp

dd, Qsp
cm, Ψk

urb,
and Ψk

wrb, qcim, qktmp,
total number of user-owned,
neighbor-owned, and service
provider-owned digital
workers at network edge,
service provider-owned
remote digital workers, total
user devices

Data size regarding user app request (1 KB), resource status request message
size (192 bits), resource status response message size (192 bits), resource
schedule information request (160 bits), resource schedule information response
message (192 bits), workload associated with user device (10 cpu cycles/bit),
workload associated with task manager and digital worker device during second
phase (10 cpu cycles/bit), task managers workload count for resource schedule
and application execution timeslot assignment work (10 cpu cycles/bit), re-
source schedule and application execution timeslot assignment message size for
user device (5 cpu cycles/bit) and worker device (50 cpu cycles/bit), workload
required during internet connectivity work (50 cpu cycles/bit), workload for
task manager during application processing instruction generation, 2, 2, 4, 4,
300.

TABLE II
EXPERIMENTAL NOTATIONS AND VALUES (CONT.)

Parameters Values/Units

yket, yker , ykpd, ykvc, ykew ,
ςkbw , ςkud, ςkew , ςkuo, ςksh,
ςksp, ςksbw , ςksud, ςksew , ςksuo,
ςkssh, ςkssp, work simulation
network area, dvetxmu, Λpm,
xrr, xaa, xbn, xth, and
acr , Ψvet

rdt

Energy expenditure avg. cost (per ms) for user host devices concerning data
transmission (.44W), data receive activity (.35W), physical device based work
processing (.54W), digital device based work processing (.0008W), resource
access waiting activity (.0005W), economic expenditure avg. cost (per ms) for
bandwidth usage (.4 usd for ultra-high, .3 usd for medium high, and .2 usd for
low time critical app), physical device resource usage (.3 usd for ultra-high,
.25 usd for medium high, and .2 usd for low time critical application), waiting
activity during resource access (.001 usd), economic expenditure avg. cost
(per ms) concerning user owned VNF processing/digital work node resource
usage (.3 usd for ultra-high, .25 usd for medium high, and .22 usd for
low time critical application), sharing neighbor owned VNF processing/digital
worker resource usage (.4 usd for ultra-high, .35 usd for medium high, and
.32 usd for low time critical), service provider owned VNF/digital worker
resource usage (.5 usd for ultra-high, .45 usd for medium high, and .40 usd
for low time critical), economic expenditure avg. cost (per ms) for different
service providers concerning bandwidth service delivery (.25/.2/.15), physical
device usage service delivery (.2/.28/.18), resource access waiting (.002 usd),
economic expenditure average cost (per ms) for service providers concerning
user owned VNF/digital work node resource usage (.18/.16/.15 usd), sharing
neighbor owned VNF/digital worker resource usage (.22/.20/.18 usd), service
provider owned VNF/digital work node resource service delivery (.32/.30/.28
usd), 500m*500m, distance between vehicle and charging station (10-500 m),
movement speed for EVs (5-100 m/s), required charge for vehicles (.25-.95),
present charge availability at the vehicle (.1-.75), threshold for vehicles battery
depletion (.1), capacity of vehilces battery (65 KWh), rate of charging for
vehicles (40-50 KW), output size for EV energy transfer app (1-5 KB)

application service delivery latency and total application
requests for the three compared schemes. Figure 3(a) shows
that the large total application execution number has a higher
mean service delivery latency than the small application
execution number in all schemes tested. For different total
application execution numbers, the proposed liberty scheme
had a lower mean service delivery latency than the other two
existing schemes. The notable reason is that the proposed lib-
erty scheme only selects the best worker device and resources
(i.e., communication and computation resource nodes with
lower predicted service workload processing delay, commu-
nication delay, and waiting delay) for different applications
(e.g., multiverse, metaverse, and non-metaverse) by checking

not only the service provider resources but also the resources
owned by the users and nearby collaborative users. In the
proposed liberty scheme, three types of owner resources
(user-owned, neighbor-owned, and service-provided-owned)
are used to execute user applications via triple collaboration.
Furthermore, the proposed liberty scheme (triple collabora-
tion+SJF+ECS+UEES) combines the shortest deadline-based
job scheduling (SJF) policy with the economy cost-saving
(ECS) and user energy expenditure cost-saving (UEES) poli-
cies. It should be noted that in this study, service delivery
delay latency includes a variety of delays such as com-
munication delay, computation delay, request transfer delay,
resource scheduling delay, and resource access waiting time.

IAENG International Journal of Computer Science

Volume 51, Issue 11, November 2024, Pages 1804-1844

 
______________________________________________________________________________________ 



TABLE III
EXPERIMENTAL NOTATIONS AND VALUES (CONT.)

Parameters Values/Units
qigxpu, qkatn/qknfw ,
qknid/qknpdi, qigdwp,
qigxpr , qmt

xpu,
qmt
atn/qmt

nfw/qmt
nid/qmt

npdi,
qmt
dwp, qmt

xpr , qvcexpu,
qvcenfw/qvcenlb /qvcenpdi/q

vce
nid,

qvcedwp, qvcexpp,
qvcedwpp, qvcexpr , qmh

xpu,
qmh
atn/qmh

nfw/qmh
npdi/q

mh
nid,

qmh
dwp, qmh

xpuu,
qmh
xpr , qmh

xpr , qsaxpu,
qsanfw/qsanlb/qsanid/qsanpdi,
qsadwp, qsaxpp, qsadwpp, qsaxpr ,
qhrpxpu, qhrpnfw/qhrpatn /qhrpnid ,

qhrpdwp, qhrpxpuu,

qhrpxpr , qfsxpu, Ψfs
di ,

qfsnfw/qfsatn/qfsnid,

qfsdwp/q
fs
dwpp, Ψfs

rdt,

qfsxpuu

Workload for the XR device initial work for immersive gaming app (10 CPU cycles/bit), workload
for NAT/firewall/IDS/DPI operation for immersive gaming (100 CPU cycles/bit), immersive
gaming app workload for digital worker node (1K CPU cycles/bit), workload for the immersive
gaming appication receiver device (10 CPU cycles/bit), XR device initial work instruction for
virtual museum tour (100 CPU cycles/bit), workload tour (100 CPU cycles/bit), workload for
the digital worker node during museum tour (1K CPU cycles/bit), virtual museum tour app
final workload for the receiver device (10 CPU cycles/bit), workload for XR device initial
virtual clothing task (10 CPU cycles/bit), workload for firewall/LB/DPI/IDS operation during
virtual clothing experience task (100 CPU cycles/bit), workload at digital worker during virtual
clothing work (500 CPU cycles/bit), workload for XR device based shopping data selection (10
CPU cycles/bit), digital worker workload for the second offloaded data processing during virtual
clothing task (500 CPU cycles/bit), virtual clothing app workload for receiver device (10 CPU
cycles/bit), workload amount for NAT/firewall/DPI/IDS operation for healthcare task (100 CPU
cycles/bit), healthcare task workload for the offloaded data processing at digital worker (500 CPU
cycles/bit), workload for doctors device (10 CPU cycles/bit), final workload for user device during
healthcare task (10 CPU cycles/bit), initial workload for user device during avatar socialization
(10 CPU cycles/bit), workload for firewall/LB/IDS/DPI operation for avatar socialization (100
CPU cycles/bit), digital worker workload for the meaverse socialization (500 CPU cycles/bit),
workload for XR device based avatar socialization data selection (10 CPU cycles/bit), digital
worker workload for secondary offloaded data processing (500 CPU cycles/bit), final workload
for the receiver device for avatar socialization (10 CPU cycles/bit), initial workload for XR device
during hologram based remote presence (10 CPU cycles/bit), VNF processing workload for
firewall/NAT/IDS operation (100 CPU cycles/bit), workload for the MEC server during hologram
based telepresence (500 CPU cycles/bit), decompress and decoding workload for the receiver (10
CPU cycles/bit), workload for the receiver device during remote telepresence data visualization
(10 CPU cycles/bit), workload for XR device based data capture and local training work for FL
based task (20 CPU cycles/bit), uploaded data size for FL based app (100-700 KB), workload for
firewall/NAT/IDS operation for FL based app (100 CPU cycles/bit), workload for digital worker
during initial offload and secondary operation during FL app (1K CPU cycles/bit), output data
size for FL based surveillance app (100-700 KB), final result visualization workload for the
receiver device during FL based app (10 CPU cycles/bit)

TABLE IV
EXPERIMENTAL NOTATIONS AND VALUES (CONT.)

Parameters Values/Units
Ψk

sip, Ψig
di,

Ψk
tvpd/Ψ

k
stvd, Ψig

rdt,
Ψmt

di , Ψmt
tvpd/Ψmt

stvd,
Ψmt

rdt, Ψvce
di /Ψvce

dii ,
Ψvce

tvpd/Ψvce
stvd, Ψvce

rdt ,
Ψmh

di , Ψmh
tvpd/Ψmh

stvd,
Ψmh

dii , Ψmh
rdt , Ψsa

di ,
Ψsa

tvpd/Ψsa
stvd,

Ψsa
dii, Ψsa

rdt, Ψhrp
di ,

Ψhrp
tvpd/Ψhrp

stvd, Ψhrp
rdt ,

Ψfs
dii, Ψfs

tvpd/Ψfs
stvd,

Ψbnas
di , Ψbnas

dii , Ψbnas
rdt ,

Ψbnas
tvpd /Ψbnas

stvd ,

Data size that includes instruction for workers (1 KB), immersive gaming app input data (1-7
MB), exchanged data between VNF node for gaming (1-7 MB), output data size for immersive
gaming (1-7 MB), museum app input data (1-5 MB), exchanged data amount for museum
tour app (1-5 MB), output data size for museum tour app (1-5 MB), offloaded data for virtual
clothing (1-6 MB), exchanged data amount for virtual clothing (1-6 MB), output data size for
virtual clothing app (1-6 MB), input data size for healthcare task (100-700 KB), exchanged data
amount for healthcare app (100-700 KB), MEC processed data size for healthcare task (100-700
KB), final output data size for healthcare task (100-700 KB), initial input data size for avatar
based socialization task (10-70 KB), exchanged data amount for VNF processing during avatar
socialization app (10-70 KB), input data size for socialization app data (10-70 KB), output data
size for avatar to avatar interaction experience (10-70 KB), input data size for remote telepresence
app (1-5 MB), exchanged data amount for VNF processing during remote telepresence app (1-5
MB), output data size for remote presence app (1-5 MB), global deep learning model data for FL
based surveillance app (1-5 MB), exchanged data amount for VNF processing during FL based
app (1-5 MB), input data size for NFT and BC based visual art selling work (1-6 MB), data size
that consists the buyer user XR device captured visual art buying data (1-6 MB), output data
size that consists NFT trading finalization data (1-6 MB), VNF server exchanged data amount
during NFT trading application (1-6 MB)

Ψdrs
di , Ψdrs

tvpd/Ψdrs
stvd,

Ψdrs
dii , Ψdrs

rdt ,
Ψia

di/Ψ
ia
rdth,

Ψia
tvpd/Ψia

stvd and
Ψav

tvpd/Ψav
stvd, Ψia

rdtc,
Ψia

rdtt, Ψav
di /Ψav

rdt,
Ψtb

di, Ψtb
tvpd/Ψtb

stvd,
Ψtb

di/Ψ
tb
rdt, Ψvc

di ,
Ψvc

tvpd/Ψtb
stvd, Ψvc

rdt,
βvc
ew/βvc

rw , Ψbcx
di /Ψbcx

rdt ,
Ψbcx

tvpd/Ψbcx
stvd,

Ψvet
tvpd/Ψvet

stvd

Input data size for digital twin based robot selection (20-120 KB), exchanged data amount
VNF processing for digital twin based task (20-120 KB), data size for robot captured data (20-
120 KB), output data size for digital twin based task (20-120 KB), input data size for industrial
automation (10-70 KB), exchanged data amount during VNF processing for industrial automation
(10-70 KB) and autonomous vehicles application (100-700 KB), MEC procesed primary output
data for industrial automation (10-70 KB), human worker device offloaded data size (10-70
KB), input/output data size for autonomous vehicle app (100-700 KB), input/output data size
for traditional broadband app (10-70 KB), exchanged data amount during VNF processing for
broadband app (10-70 KB), input data size for caching app (1 KB), exchanged data amount
during VNF processing for video caching app (4-32 KB), output data size for video caching
app (4-32 KB), communication delay for edge caching/remote server caching (ms, vary), input
data size (10-70 KB) and output data size (10-70 KB) for human-brain sensor-wheel chair
interface based app, exchanged data amount during VNF processing for human brain-computer-
wheelchair interaction app (10-70 KB), exchanged data amount during EV energy transfer app
VNF processing operation (1-5 KB)
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TABLE V
EXPERIMENTAL NOTATIONS AND VALUES (CONT.)

Parameters Values/Units
qbnas
bcr /qbnas

bcrr , qbnas
xpu ,

qbnas
nfw /qbnas

atn /qbnas
nid ,

qbnas
dwp , qbnas

xpuu, qbnas
dwpp,

qbnas
bcc , Ψbnas

dib , qbnas
bvm ,

qbnas
dwps, qbnas

xpr , qdrsxpu,
qdrsnfw/qdrsatn/qdrsnid , qdrsdwp,
qdrsxpuu, qdrsdwop, qdrsdwpp,
qdrsxpr , qiaxpu/q

ia
xpus,

qianfw/qiaatn/qianid/qianpdi,
qiadwp, qiaxpuc,
qiaxpuh/qiaxpr , qavxpu,
qavnfw/qavatn/qavnid/qavnpdi,
qavdwp, qavxpr , qtbxpu,
qtbnfw/qtbatn/qtbnid/qtbnpdi,
qtbdwp, qvcxpu/qvcxpr ,
qvcnfw/qvcatn/qvcnid/qvcnpdi,
qvcdwp, qbcxxpu,
qbcxnfw/qbcxatn/qbcxnid/qbcxnpdi,
qbcxdwp, qbcxxpr ,
qvetnfw/qvetatn/qvetnid/qvetnpdi,
qvetxpr ,

Workload for user/blockchain worker device during initial blockchain operation (100 CPU cy-
cles/bit), workload for XR device based avatar data capture (10 CPU cycles/bit), workload for
firewall/NAT/IDS operation regarding NFT and BC based art selling app (100 CPU cycles/bit),
digital worker workload for during NFT based selling (500 CPU cycles/bit), workload for the buyer
user (10 CPU cycles/bit), secondary workload for the digital worker node for art selling (500 CPU
cycles/bit), workload for the block creation at digital worker (100 CPU cycles/bit), data size that
consists the block creation data (1-6 MB), workload for the block verification at digital worker (100
CPU cycles/bit), workload for the ledger update by digital worker (50 CPU cycles/bit), workload
for the receiver during NFT based selling (10 CPU cycles/bit), Workload for user device data
capture for digital twin simulation task (10 CPU cycles/bit), workload for firewall/NAT/IDS/DPI
operation (100 CPU cycles/bit), digital worker initial workload for digital twin simulation task
(500 CPU cycles/bit), workload for robots own data capture (10 CPU cycles/bit), workload for
digital twin based task processing (500 CPU cycles/bit), workload for digital worker during digital
twin based task (500 CPU cycles/bit), workload for the receiver during digital twin based task (10
CPU cycles/bit), workload for video camera for data capture (10 CPU cycles/bit), VNF processing
workload for firewall/NAT/IDS during industrial automation (100 CPU cycles/bit), initial workload
for digital worker during industrial automation work (500 CPU cycles/bit), workload for cobot (10
CPU cycles/bit), workload for human worker/receiver device (10 CPU cycles/bit), workload for
vehicles camera (10 CPU cycles/bit), workload for firewall/NAT/IDS/DPI operation for autonomous
vehicle app (100 CPU cycles/bit), workload for digital worker during autonomous vehicle app
(500 CPU cycles/bit), workload for the receiver device during autonomous vehicle application (10
CPU cycles/bit), workload for user device for personal data capture (10 CPU cycles/bit), VNF
processing workload for firewall/NAT/IDS during traditional broadband app (100 CPU cycles/bit),
workload for digital worker during traditional broadband app (500 CPU cycles/bit), workload for
host user device/receiver device during caching application (10 CPU cycles/bit), workload for
firewall/NAT/IDS/DPI operation for video caching application (100 CPU cycles/bit), workload for
digital worker during video caching (500 CPU cycles/bit), workload for brain sensor based data
capture operation/receiver device during human brain-computer-wheelchair interaction app (10 CPU
cycles/bit), workload for firewall/NAT/IDS/DPI operation during human brain-computer-wheelchair
interaction app (100 CPU cycles/bit), workload for digital worker during human brain-computer-
wheelchair interaction app (500 CPU cycles/bit), workload for firewall/NAT/IDS/DPI operation
during charging station to vehicles electric energy transfer app (100 CPU cycles/bit), workload for
the receiver device during energy transfer app (10 CPU cycles/bit)

Figure 3(a) shows that the existing scheme one pro-
vides the second-best mean service delivery delay, while
the existing scheme three provides the worst delay. The
primary reason for this is that the existing scheme one
only uses two types of resources (user-owned and ser-
vice provider-owned) for application execution. The existing
scheme one, which has a no-user energy expenditure sav-
ing policy (double collaboration+EAS+NUEES), allocates
resources for application execution based on the earliest
application request (EAS). The existing scheme two (sin-
gle collaboration+RAS+NUEES) relies solely on service
provider resources and does not include any user-owned or
neighbor-owned resources. The existing scheme uses random
approaches to application and resource scheduling. Thus, the
existing scheme two provides the worst result in terms of
mean service delivery delay. Figure 3(a) shows that when
the total number of application execution requests is 132, the
proposed liberty scheme, existing scheme one, and existing
scheme two have mean service delivery delay latency of
16257 ms, 33705 ms, and 40794 ms, respectively.

Figure 3(b) depicts the change in users’ energy expenditure
for three different schemes as the number of application
requests increases. Figure 3(b) shows that increasing the total
number of application execution requests can significantly
increase users’ energy expenditure value in both existing and
proposed liberty schemes. The reason for this type of out-
come is that more application execution requires more energy
consumption on user devices due to application workload
processing, data transmission and reception, and resource
access wait activities. The proposed liberty scheme requires
minimal energy expenditure from users. This is because the

proposed liberty scheme reduces application service delivery
delays by selecting the best resources and using three types
of collaborative resources. Users experience lower energy ef-
ficiency as service delivery delays are reduced. Furthermore,
the proposed liberty scheme follows the user energy energy
expenditure cost-saving policy. This policy allows users to
go to sleep mode during other devices’ time slots.They can
get up right before their own time slot. The proposed liberty
scheme reduces energy waste by preventing idle listening
during other users’ time slots.Users’ energy expenditure
costs are highest in existing scheme two and second best
in existing scheme one. The primary reason is that existing
schemes do not include a user energy-saving policy based
on device sleep and wake-up policies. Another important
factor is that the application service delivery delay latency is
the highest and second highest in existing schemes two and
one, respectively. This additional delay in application service
delivery necessitates a higher level of energy expenditure
in both current schemes. Figure 3(b) shows that when the
total number of application execution requests is 98, users’
energy expenditures for the proposed liberty scheme, existing
scheme one, and existing scheme two are 10794 mJ, 12614
mJ, and 13550 mJ.

Figure 4(a) depicts the relationship between the three
schemes’ successful task completion ratios and the time limit
for application execution. The proposed liberty scheme’s
successful task completion ratio is always higher than both
existing schemes one and two, regardless of the size of the
time limit (deadline for execution). It is clear that when the
application execution time limit is set to a high value, the
successful task completion ratio is high in all comparison
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schemes. In this paper, the successful task completion ratio
is defined as the ratio of the total number of successful
application executions meeting the time limit criteria to the
total number of application requests. The proposed liberty
scheme can select the best resources (communication, ap-
plication workload processing device, caching node) with
a lower predicted application execution or service deliv-
ery delay by implementing the triple collaboration policy
(e.g., utilizing host user-owned, neighbor-owned, and service
provider-owned resources), the SJF scheduling policy, and
economic cost savings. The existing scheme one (with a
double collaboration policy and an earliest application arrival
first-based resource scheduling policy) has the second-best
communication delay, resource access waiting time, and
application work processing delay. Thus, the existing scheme
two can provide the lowest success task completion ratio
for various application execution time limits. The exist-
ing scheme two (with a single collaboration policy and a
random-based resource scheduling policy) has the highest
communication delay, resource access waiting delay, and
application workload processing delay. Figure 4(a) shows
that when the application execution time limit is 39000
ms and the application arrival number is 132, the proposed
liberty scheme, existing scheme one, and existing scheme
two have successful task completion ratios of 75 percent, 66
percent, and 60 percent, respectively.

Figure 4(b) depicts the effect of application data size on
network throughput value. The network throughput can be
calculated as the ratio of the amount of data exchanged
to the total time it takes to execute an application. As the
number of executed applications grows, the throughput of
the three compared schemes gradually increases (see figure
4(b)). The proposed liberty scheme selects the best resources
(e.g., cloud and network) for application execution through
triple collaboration (i.e., use of user-owned, neighbor-owned,
and service provider-owned resources) and by ensuring that
they have lower communication, application work processing
delay, and resource access waiting delay. As a result, the
proposed liberty scheme achieves higher network throughput
than others. The existing scheme one has the second-highest
application execution timespan delay, while the existing
scheme two has the highest application execution timespan
value. As a result, the network throughput value is the
second-lowest in schemes one and lowest in previous scheme
two, respectively. Figure 4(b) shows that for 23564 KB
of executed application data, the proposed liberty scheme,
existing scheme one, and existing scheme two have network
throughput values of 15.81 Mbps, 7.45 Mbps, and 6.3 Mbps,
respectively.

Figure 5(a) reflects the user’s economic expenditure costs
for various schemes by varying the application execution
amounts. As application executions increase, users incur
economic costs for service execution and resource usage
in three areas. Compared schemes show an upward trend.
The proposed liberty schemes have a much lower economic
cost than the existing schemes one and two. The primary
reason for this is that the proposed liberty scheme reduces
resource utilization time by selecting the best resource with
the lowest predicted service delivery delay latency. Economic
costs associated with application service execution include
coordination, communication, computation, and resource

caching. It should be noted that the proposed liberty scheme
selects the best resources with the least communication,
computation, caching, and resource access waiting delay
by examining three different types of resources (host user-
owned, collaborative neighbor-owned, and service provider-
owned). The resource utilization time (i.e., application ser-
vice delivery delay) is greatest in existing scheme two and
second best in existing scheme one. Thus, existing scheme
two has the highest economic expenditure cost for users,
while existing scheme one has the second lowest. Figure
5(a) shows that with 98 executed application data, the user’s
economic expenditure cost value for the proposed liberty
scheme, existing scheme one, and existing scheme two is
8364 USD, 9647 USD, and 10576 USD, respectively.

Figure 5(b) depicts changes in service provider profit as
the number of executed application data requests increases.
The results in Figure 5(b) show that for both large and small
data amounts, the proposed liberty scheme can maximize
profit for service providers. The primary reason for this is
that the proposed liberty scheme can reduce resource access
waiting time and utilization time by selecting the best avail-
able resources and scheduling policy. The proposed liberty
scheme also has the highest number of applications com-
pleted by the deadline when compared to others. The existing
scheme one has the second-highest resource access waiting
time during application execution. The existing scheme 2 has
the longest resource access waiting delay during application
execution. Because of increased overhead, fewer application
executions, and an inefficient resource scheduling policy, the
service provider’s profit is lowest in existing scheme two and
second lowest in existing scheme one. Figure 5(b) shows that
for an executed application data amount of 270074 KB, the
service provider profit value for the proposed liberty scheme,
existing scheme one, and existing scheme two is 4330 USD,
2420 USD, and 1670 USD, respectively.

Figure 6(a) shows the welfare ratio for users under various
numbers of application execution requests and three com-
pared schemes. The results show that the welfare ratio for
users increases as the application execution number increases
in all three schemes. In this study, the welfare ratio is
calculated by adding the service delivery delay gain ratio, the
energy expenditure gain ratio, and the economic cost gain
ratio. Figure 6(a) shows that the proposed liberty scheme
provides the best welfare or benefit ratio for users by having
the highest service delivery delay gain ratio, energy expen-
diture gain ratio, and economic cost gain ratio. Similarly,
the existing scheme two provides the lowest welfare or
benefit ratio to users due to the lowest service delivery delay
gain ratio, energy expenditure gain ratio, and economic cost
gain ratio. The existing scheme one provides the second-
best welfare or benefit ratio for users due to its second-
best service delivery delay gain ratio, energy expenditure
gain ratio, and economic cost gain ratio. For example, in
Figure 6(a), when the executed application amount is 64, the
user welfare ratios for the proposed liberty scheme, existing
scheme one, and existing scheme two are 3.15, 1.96, and
1.16, respectively.

Figure 6(b) shows that the average unused (leftover)
energy of users decreases as the simulation round or instance
number increases in both the proposed liberty scheme and the
existing schemes. It is worth noting that the energy cost or
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expenditure value of user devices for application execution
increases with the number of simulation rounds. However,
due to lower resource usage time and lower energy expendi-
ture per round, combined with the user energy saving policy,
the proposed liberty scheme has the highest average unused
(leftover) energy amount on the user’s device. Whereas, due
to incorrect resource selection, higher resource usage time
per application, and a lack of an energy-saving policy, the
average unused energy value is lowest in existing scheme
two and second lowest in existing scheme one. This means
that energy waste is minimal in our proposed liberty scheme
compared with others. It can be seen in figure 6(b) that
when the simulation instance amount is 1400, the total user
device is 300, the initial energy of the user device is 3000
mJ, and the application execution number per round is 16,
the average unused energy values for the proposed liberty
scheme, existing scheme one, and existing scheme two are
250 mJ, 158 mJ, and 64 mJ, respectively.

Figure 7(a) depicts the relationship between the user
survivability ratio and the simulation instance or round in
three different schemes. The figure shows that increasing the
number of simulation instances or rounds shortens.The user-
device survival ratio. The user survivability ratio is calculated
by dividing the number of alive user devices with sufficient
energy after the simulation round by the total number of
users at the start of the application execution process. As the
number of simulation rounds increases, the number of active
users decreases due to a lack of remaining energy in each
compared scheme.

The proposed liberty scheme has the highest number of
alive user device numbers with sufficient remaining energy
due to lower energy expenditure at each round for varying
application execution numbers. The number of alive user
devices is the lowest in the current scheme two due to the
higher amount of energy expended at each round for different
numbers of application executions. The number of alive user
devices is second best in the existing scheme one due to the
second best energy expenditure at each round for varying
application execution numbers. As the number of simulation
rounds increases, the number of active users decreases due to
a lack of remaining energy in each compared scheme. It can
be visualized in figure 7(a) that when the simulation instance
amount is 1300, the total user device is 300, the initial
energy of the user device is 3000 mJ, and the application
execution number per round is 16, the user survivability
ratios for the proposed liberty scheme, existing scheme one,
and existing scheme two are 14 percent, 9 percent, and 4
percent, respectively.

As illustrated in Figure 7(b), the network lifetime un-
der three different schemes (both proposed and existing)
decreases as the number of total application executions in-
creases. Increasing the number of networked applications can
reduce their effectiveness.the user device’s remaining energy.
The network lifetime can be calculated by dividing the total
available energy of users by the total energy expenditure
of users in each round for various application executions.
The proposed liberty scheme (with triple collaboration, the
shortest application deadline, first-based scheduling, and
an economic and energy-saving policy) provides the best
network lifetime value due to the low amount of energy
spent at each simulation instance when compared to others.

The existing scheme two (with single collaboration, random
resource scheduling, and no energy-saving policy) has the
lowest network lifetime value due to higher energy expendi-
ture at each simulation instance than the others. The existing
scheme one (with double collaboration, earliest arrival-based
resource scheduling, and no energy-saving policy) provides
the second-highest network lifetime value due to the second-
best amount of energy expenditure at each simulation in-
stance when compared to others. Figure 7(b) shows that
when the application amount is 132 per round, the total user
device is 300, and the user device’s initial energy is 3000
mJ, the network lifetime for the proposed liberty scheme,
existing scheme one, and existing scheme two is 54, 42,
and 36 simulation rounds, respectively. The results show
that the proposed liberty scheme outperforms the existing
scheme for multiverse, metaverse, and non-metaverse-based
6G application execution.

A. Comprehensive comparison results
Tables VI and VII show the comprehensive evaluation

results of our proposed liberty scheme (triple collabora-
tion+SJF+ECS+UEES), the compared scheme (double col-
laboration+EAS+NUEES) one (e.g., [38], [70]), the com-
pared scheme (single collaboration+RAS+NUEES) two (e.g.,
[37], [137]), and the compared scheme (double collabora-
tion+MCDS+NUEES) three (e.g., [58], [78]), and existing
scheme (single collaboration+GFS+NUEES) four (e.g., [21],
[139]). We compared the results of the proposed scheme
to existing schemes in terms of user economic cost, energy
expenditure, user welfare ratio, mean service delivery latency,
service provider profit, task completion ratio, and network
throughput. Table VI shows that when the application com-
pletion number is 132, the proposed liberty scheme has
lower mean service delivery latency, user economic cost, and
energy expenditure than the other schemes tested. Table VII
also shows that, for app number 132, the proposed liberty
scheme outperforms the existing schemes in terms of service
provider profit, network throughput, task completion ratio,
and network lifetime (simulation round persistance) values.
The compared scheme (double collaboration+EAS+NUEES)
one ranks second, while the compared scheme (single col-
laboration+RAS+NUEES) two ranks fifth across all perfor-
mance metrics. The compared scheme (double collabora-
tion+MCDS+NUEES) three achieves third position among
all compared methods. The previous scheme (single collabo-
ration+GFS+NUEES) four secures fouth position among all
schemes.

The proposed liberty scheme is effective because it em-
ploys the shortest job or lowest deadline-based scheduling
technique for multiple application executions. However, by
leveraging the triple collaboration feature, the proposed lib-
erty scheme is dependent on the use of host user-owned
resources, neighbor-owned resources, and service provider
resources for various application executions. The proposed
liberty scheme also uses minimum predicted communication,
workload processing, and waiting delays to select the best
resources.

The compared scheme one (double collabora-
tion+EAS+NUEES) achieves the second-best results
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TABLE VI
COMPREHENSIVE RESULTS AND EVALUATION FOR APP=132

Scheme Name User economic cost Energy expenditure of
users

Welfare ratio for users Mean service delivery
latency

Proposed liberty
scheme (triple
collabora-
tion+SJF+ECS+UEES)

12928 USD 16461 mW 5.36 16257 ms

Existing scheme
(double collabora-
tion+EAS+NUEES)
one ([70], [38])

15860 USD 21611 mW 3.05 33705 ms

Existing scheme
(single collabora-
tion+RAS+NUEES)
two ([37], [137])

17612 USD 23811 mW 1.81 40794 ms

Previous scheme
(double collabora-
tion+MCDS+NUEES)
three ([58], [78])

16882 USD 22740 mW 2.42 37025 ms

Previous scheme
(single collabora-
tion+GFS+NUEES)
four ([21], [139])

17220 USD 23290 mW 2.15 38660 ms

TABLE VII
COMPREHENSIVE COMPARISON FOR APP=132

Scheme Name Providers profit Task completion ratio Network throughput Network lifetime
(round)

Proposed liberty
scheme (triple
collabora-
tion+SJF+ECS+UEES)

4330 USD 100% 16.81 Mbps 54

Existing scheme
(double collabora-
tion+EAS+NUEES)
one ([70], [38])

2420 USD 91.17% 8.12 Mbps 42

Existing scheme
(single collabora-
tion+RAS+NUEES)
two ([37], [137])

1670 USD 80.88% 6.98 mbps 36

Previous scheme
(double collabora-
tion+MCDS+NUEES)
three ([58], [78])

2050 USD 85.6% 7.6 Mbps 39

Previous scheme
(single collabora-
tion+GFS+NUEES)
four ([21], [139])

1844 USD 83.2% 7.28 Mbps 37

because it only uses user and service provider-owned
resources for all application executions. Furthermore, the
optimal resource for each application execution is chosen
based on the maximum CPU power. They also used
the earliest arrival-based scheduling (EAS) technique to
schedule multiple jobs, as well as the non-user energy
expenditure cost-saving process (NUEES). The existing
scheme two (single collaboration+RAS+NUEES) selects
the best resources by combining random applications
with the worker scheduling process (RAS). As a result,
resource selection, queuing, and waiting delay are all
largest in existing scheme two. The existing scheme three
(double collaboration+MCDS+NUEES) relies on minimum
communication delay latency (MCDS) based nearby
suitable resource utilization for assigned task execution.
This scheme can also utilize both user and service provider
resources (double collaboration). There is no user energy
cost saving policy is this existing scheme three (NUEES).
Thus, the existing scheme three suffers from third best

service execution latency. The resource selection, queuing,
and waiting delays are the third best in existing scheme
three (double collaboration+MCDS+NUEES). The existing
scheme four (single collaboration+GFS+NUEES) depends
on only service provider resources. They utilizes greedy
scheduling technique (GFS) for resource selection and first
job request arrival based appliication scheduling technique
with no user energy cost saving policy (NUEES). The
resource selection, queuing, and waiting delays are the
fourth best in existing scheme four.

The proposed liberty scheme has the shortest resource
selection, queuing, and waiting delays. Table VI displays
the mean service delivery latency for the proposed liberty
scheme, existing scheme one, existing scheme two, existing
scheme three and existing scheme four, which are 16257 ms,
33705 ms, 40794 ms, and 37025 ms, and 38660 ms, respec-
tively. Table VII shows that our proposed liberty scheme has
the highest network lifetime value (for 132 application exe-
cutions) among the compared schemes. The network lifetime
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value of the proposed liberty scheme, existing schemes one,
two, three, and four are 54, 42, 36, 39, and 37, respectively.

Tables VI and VII clearly depict that for the execution
of 132 applications, the proposed liberty scheme achieves
22.67% more economic cost gain, 31.28% more energy ex-
penditure cost gain, 42.91% more welfare ratio gain, 44.11%
more providers profit gain, 8.83% more task completion
success gain, and 51.75% more network throughput gain than
the compared scheme (double collaboration+EAS+NUEES)
one. Tables VI and VII also hint that for the execution
of 132 applications, the proposed liberty scheme shows
36.23% economic cost gain, 44.65% energy expenditure cost
gain, 66.23% welfare ratio gain, 61.43% providers profit
gain, 19.12% task completion success gain, and 58.48%
network throughput gain than the compared scheme two
(single collaboration+RAS+NUEES). Tables VI and VII also
notify that for the execution of 132 applications, the proposed
liberty scheme shows 30.58% economic cost gain, 38.14%
energy expenditure cost gain, 54.85% welfare ratio gain,
52.65% providers profit gain, 14.4% task completion success
gain, and 54.78% network throughput gain than the com-
pared scheme three (double collaboration+MCDS+NUEES).
Tables VI and VII depict that for the 132 applications, the
proposed liberty scheme gives 33.19% economic cost gain,
41.48% energy expenditure cost gain, 59.88% welfare ratio
gain, 57.41% providers profit gain, 16.8% task completion
success gain, and 56.69% network throughput gain than the
compared scheme four (single collaboration+GFS+NUEES).

Thus, based on the findings, it can be concluded that
the proposed liberty scheme is best suited for resource
management in metaverse and multiverse-based application
execution over 6G-enabled networks.

VI. CONCLUSION

This article describes a resource management scheme
for multiverse, metaverse, and non-metaverse applications
over 6G edge computing networks that considers econ-
omy, time criticality, three-fold collaboration (using differ-
ent ownership-based resources), minimum service delivery
delay latency, network function virtualization, and minimum
energy cost. The proposed scheme integrates a resource and
application scheduling scheme (based on shortest job first)
along with a selected worker management scheme by taking
different 6G and non-6G application requests, user, neigh-
bor, and service provider-ownership-based digital worker
resources (e.g., MEC server, blockchain node, caching server,
digital twin, federated learning server), communication links,
different physical worker resources, different application
workloads, and application deadlines. In order to show the
working sequence of various stages related to multiverse,
metaverse, and non-metaverse application execution by con-
sidering the elementary network formation phase, informa-
tion collection and resource mapping phase, and application
work completion phase, Additionally, by accounting for
various communication link types, user devices and physical
workers, and different ownership-based digital workers (e.g.,
blockchain, MEC servers, FL servers, caching servers), this
paper offers a novel network model for 6G edge computing
services. To compute the performance of the proposed liberty
scheme, this article provides an analytical or numerical

model that includes the mean application service delivery de-
lay, economic cost for users, successful task completion ratio,
energy expenditure of users, throughput value, total benefit
for service providers, user total benefit ratio, unused energy
value, lifetime of the network, and survivability ratio of users.
In order to highlight the advantages of the proposed liberty
scheme, this article compares the simulation results of the
proposed three-fold collboration-based liberty scheme with
the existing scheme one (with no user energy saving policy,
double collboration with user and service provider resource
usage, earliest application arrival-based resource scheduling),
and the existing scheme two (single collboration with only
service provider resource usage, random scheduling-based
resources, and no user energy saving policy). The exper-
imental and performance comparison results illustrate that
the suggested new liberty scheme delivers 76.98% mean app
service delivery gain, 17.13% users energy expenditure gain,
and 15.33% economic cost gain of users over the existing
scheme one policy (double collaboration+EAS+NUEES) for
the application work completion number of ninety-eight.
The performance comparison results also visualize that the
liberty scheme provides 115% mean app service delivery
gain, 25.53% users energy expenditure gain, and 26.44%
economic cost gain of users over the existing scheme two
policy (single collaboration+RAS+NUEES) for the applica-
tion work completion number of 98. The future research
challenges and future extensions of this work may include
game theory-based auction mechanism design for network
resource selling, deep reinforcement learning-based routing
paths, congested paths, best digital worker selection, ser-
vice provider service delivery strategy selection, federated
learning-based security threat detection, and network failure
identification prediction for different multiverse, metaverse,
and non-metaverse-based application execution over 6G edge
computing networks.
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