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Abstract—Automatic Grammar Error Correction (GEC)
models identify and correct a wide range of grammatical
errors. Various strategies have been proposed for GEC, with
the Neural Machine Translation (NMT) approach being the
most effective. However, NMT-based GEC models with encoder-
decoder layers rely heavily on the highest layer, leading to
potential inaccuracies. Additionally, during inference, exposure
bias can cause the model to substitute previously targeted words
with incorrect alternatives. Another challenge is data scarcity.
This paper introduces a GEC model leveraging the seq-to-seq
Transformer framework, specifically designed for low-resource
languages like Arabic. We propose a method to generate noise
in the text to create synthetic parallel data, addressing the data
constraints. Inspired by Capsule Networks (CapsNet), we incor-
porate CapsNet in GEC to dynamically aggregate information
from multiple layers. In order to mitigate exposure bias, we
incorporated a bidirectional training approach and a regular-
ization term using Kullback-Leibler divergence to align left-to-
right and right-to-left models. Experiments on two benchmarks
demonstrate that our model outperforms current Arabic GEC
models, achieving the highest scores. The code is available on
GitHub (https://github.com/Zainabobied/ArabicGEC).

Index Terms—Neural Machine Translation, Grammar Error
Correction, Data Scarcity, Arabic Language Processing.

I. INTRODUCTION

THE demand for automated Grammatical Error Cor-
rection (GEC) tools has increased with the rise in

the global population learning a second language. Neural
Machine Translation (NMT) and neural-based techniques
such as multi-head attentions, have become essential in
offering GEC solutions for correcting text. The sequence-to-
sequence (seq2seq) architecture has demonstrated remarkable
improvements in performance. This effectiveness relies on
deep learning models such as RNN and CNN [1, 2]. How-
ever, GEC seq2seq neural-based approaches require massive
parallel training data, which is not available especially in
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low-resource languages such as Vietnamese, Hindi, and
Arabic.

In neural network-based GEC models that utilize neural
networks, it is typical to use a multi-layered architecture, in
which the uppermost layer in this structure serves a pivotal
role in subsequent operations. However, research in the field
of NMT has shown that utilizing representations from all
layers outperforms methods that only use the top layer [3].
Traditional GEC techniques use static aggregation, over-
looking valuable contextual information within the hidden
representations. In this scenario, the application of dynamic
aggregation within GEC can enhance correction accuracy
by leveraging the utilization of contexts that have not been
explored before.

Furthermore, the autoregressive structures in GEC systems
often lead to exposure bias problems [4]. This issue arises
when the model replaces previous target words during infer-
ence with words it has formulated, potentially introducing
early-generated errors that can negatively impact correction
accuracy and result in incorrect prefixes and suffixes. To
mitigate this challenge, the literature proposes an additional
model that generates corrections from right-to-left (R2L).
This model can distinguish the correct corrections in the
original list of candidates of the left-to-right model (L2R)
[5]. The drawback of this technique is that the R2L list is
also susceptible to the issue of exposure bias.

To improve the performance of our model and overcome
the limitations of the previous GEC systems, we propose
a noise method called Generate and Augment Synthetic
Data (GASD). GASD comprises two baselines: Swap Data
Augmentation (SDA) and Synthetic Error Generation (SEG).
In addition, a GEC neural network structure is proposed
that employs the Transformer-based architecture [6], which
has proven to be effective in various NLP tasks [7, 8].
This architecture utilizes a combination of Capsule Network
(CapsNet), which is inspired by the field of computer vision
[9], and a bidirectional agreement technique. CapsNet has
the advantage of being able to dynamically aggregate infor-
mation and optimize language capture features throughout
the network, leading to improved model performance. To
overcome the problem of exposure bias in GEC, our model
enforces an enhanced agreement process between the R2L
and L2R models, which is different from traditional re-
ranking strategies. To achieve this, we aligned the training
objectives of these two models using a Kullback-Leibler reg-
ularization term; this led to reduced divergence and enhanced
the correction quality. The main contributions of this paper
include:
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• Propose GASD, a noise method used to generate syn-
thetic parallel dataset for GEC that contains over 14.21
million examples.

• Propose the use of CapsNet with a seq2seq Transformer-
based model for more efficient aggregation of linguistic
information in GEC.

• Propose a regularization approach that applies KL-
divergence-based as a term between R2L and L2R
models to mitigate exposure bias in GEC.

The paper is organized into seven sections. Section II
introduces the research context. Section III gives an overview
of the related work. Section IV provides details of our
research methodology. Section V outlines the experimental
details. Section VI is devoted to results and discussion.
Finally, Section VII provides the conclusion of the paper.

II. RESEARCH CONTEXT

Deep layer representations play a pivotal role in the
domain of GEC [10, 11, 12]. These non-linear transformation
layers convert incorrect sentences into grammatically correct
outputs. The architecture utilizes multi-layer encoders and
decoders, with the first layer used for word embedding. In
mathematical terms, the structure of each encoder layer can
be represented as follows:

He
l = LAYERe(He

l−1) +He
l−1. (1)

The LAYER(·) incorporates various neural network tech-
niques, such as RNNs, CNNs, or Transformers. These layers
are connected through residual connections, an essential ar-
chitectural component that enables information flow between
layers [6]. In the same context, the decoder comprises a
sequence of L consecutive layers. These layers are designed
in a specific structure, which is represented as follows:

Hd
l = LAYERd(Hd

l−1, He
L) +Hd

l−1. (2)

Each decoder layer depends on its previous one (Hd
l−1)

and the information from the top encoder layer (He
L), as

in Equation 2. The output of the GEC model is primarily
derived from the top decoder layer (Hd

L). Therefore, both
the encoder and decoder operations mainly involve stacking
layers sequentially, with a preference for using only the top
layer. In the realm of deep learning, it is observed that
deeper layers are adept at extracting both contextual and
semantic information. Thus, the encoder and decoder opera-
tions mainly involve stacking layers sequentially, utilizing
the top layer for output. In deep learning, deeper layers
extract contextual and semantic information more efficiently.
However, the performance of the top layer in consistently
yielding good results is not guaranteed. To mitigate the
inefficiencies in deep learning methodologies, the concept
of residual connections is employed for layer aggregation.
Nevertheless, it is important to highlight that a single-step
operation within a residual connection might not be enough
to achieve adequate aggregation, as established in [13].

Neural-based GEC models generally use a seq2seq
encoder-decoder structure. The encoder takes in the er-
roneous input sequence, denoted as x, and transforms it
into a sequence of hidden vectors, represented as h =
(h1, h2, ..., hT ), through the use of a neural network. Follow-
ing this, the decoder uses the hidden states, referred to as h,

to predict the corrected output sequence y. During inference,
GEC faces the exposure bias problem, which can result in
errors due to the substitution of correct words with incorrect
alternative words [4].

To address these limitations, we introduce a GEC model
that leverages the strengths of deep layer representations and
also effectively mitigates the impact of exposure bias in text
correction.

III. RELATED WORK

This section highlights advancements in GEC, particularly
the use of NMT for low-resource languages. The dominant
approach in GEC was rule-based, relying on grammar rules
created by linguists. The introduction of the N-gram language
model marked a significant shift in GEC. This method
detects grammatical errors by evaluating the probability
of each n-gram occurring within a substantial corpus of
text. However, the landscape of GEC has been transformed
with the introduction of SMT and NMT techniques. These
techniques allowed the conversion of inaccurate sentences
into their accurate forms. Pre-trained language models, such
as BERT, have greatly benefited English GEC models. BERT
was trained on a monolingual corpus to understand the
complexities of text coherence for NLP applications [14].
Subsequently, it was fine-tuned for grammatical corrections.
Similarly, OpenAI introduced GPT-3, a language model
based on the Transformer architecture that utilizes a text
corpus of 570 GB, including 175 billion parameters [15].
OpenAI further advanced this technology with the introduc-
tion of GPT-4, showcasing the capabilities of these models in
replicating human-like text generation for various NLP tasks,
including GEC.

The main objective of research in this domain is to
overcome the shortage of training data. The authors in [16]
used beam search noising techniques to generate additional
training data from a monolingual corpus. Additionally, [17]
evaluated the effectiveness of cascading learning methodolo-
gies. The scarcity of GEC resources is a widespread issue
in Asian languages. To address this problem, [2] introduced
an Indonesian GEC system that utilizes LSTM for multi-
classification tasks, specifically designed to fix common
POS errors in Indonesian text. Nahid et al. [18] present a
transformer-based model called Panini for correcting gram-
matical errors in Bangla text. The model leverages a large-
scale parallel corpus and transfer learning, enhancing the
precision and eloquence of the Bangla language.

In the realm of GEC, Arabic is often considered to
have limited resources. The sole annotated training dataset
available is the QALB-2014 dataset, which comprises 20,430
sentences. To access more linguistic data, [19] utilized a
pre-trained embedding model combined with a character-
based and Bidirectional Recurrent Neural Network (BRNN)
GEC model. Ahmadi et al. [20] introduced a seq2seq model
leveraging BRNN and an attention mechanism. Another
study [21] proposed a GEC model utilizing multiple layers of
CNN as its fundamental structure. This approach was further
advanced by [22], which used synthetic data for pre-training
a GEC model consisting of 278,770 instances. Solyman et al.
[1] introduced an AGEC model based on data augmentation
techniques to augment data during training, demonstrating
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the potential of data augmentation in enhancing GEC mod-
els’ performance, particularly for low-resource languages like
Arabic.

In summary, previous studies have focused on generating
synthetic training sets. Arabic GEC approaches employed
simple confusion techniques, resulting in relatively small
data sets. Moreover, most Arabic GEC systems rely on rule-
based methods and traditional multi-layer architectures that
primarily utilize the top layer. The objective and motivation
of this paper are to address and overcome these limitations.

IV. RESEARCH METHODOLOGY

A. Model Outline

We proposed a noise method to augment the training
dataset with synthetic errors, enhancing the model’s gener-
alization capacity by mimicking real-life GEC data. Inspired
by the work of [9] in computer vision, our model incor-
porates CapsNet and EM routing to aggregate information
across multiple layers efficiently. To address exposure bias
in seq-to-seq models, we introduced a method to align
two models: R2L and L2R. Moreover, we incorporated the
Kullback–Leibler divergence into the training process, which
encouraged these models to learn from each other’s strengths.
The architecture of this approach is illustrated in Figure 1.

B. Noise Method

The scarcity of available training data limits the task of
GEC. In Arabic GEC, the QALB corpus, containing 19,411
examples, is the only annotated data available. Compared to
training datasets for GEC in other languages, this dataset is
relatively small. To address this challenge and increase the
training dataset, we proposed a noise approach leveraging
a monolingual corpus. We utilized the OSIAN dataset as a
seed corpus for our technique. OSIAN is a public monolin-
gual Arabic dataset comprising 477,556 articles, 15 million
sentences, and 367.5 million words. The data covers various
subjects, including education, economy, health, sports, and
stories. However, before adding the OSIAN corpus to the
training data, the corpus was combined into a single dataset,
and some preprocessing steps were applied. These steps
included eliminating links, non-UTF8 encoding, mentions,
diacritics, and extraneous white spaces. Subsequently, the
PyArabic library [23] was applied to segment the text into
sentences, each containing at least ten words. This process
yielded a substantial training resource in 14.21 million sen-
tences.

The objective of GASD is to produce reliable synthetic
data by generating grammatical errors that reflect common
mistakes found in human writing. This method involves using
SDA and SEG. SDA swaps words within the sentence, while
SEG introduces spelling mistakes or standardizes Arabic
characters with similar shapes. After organizing the data such
that each sentence was on a distinct line, the sentences were
input into GASD. SDA augments the data by swapping words
equivalent to 10% of the total word count in each sentence.
Experiments determined that exceeding 10% resulted in a
loss of sentence context. This phase generated syntax and
grammatical errors. Following this, SEG normalized Arabic
characters and generated spelling errors at a proportion of
10%, similar to SDA.

Fig. 1. Illustration of the Model Architecture Integrating GASD. (a)
Highlights the Bidirectional GEC-R2L and GEC-L2R Models Over Two
Iterations Governed by a Regularization Term. (b) Provides a Detailed View
of the Encoder and Decoder Architecture with CapsNet.
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Fig. 2. Architecture Overview of the Proposed Noise Method. The Red Box Indicates SDA and the Yellow Represents SEG.

Exploring the complexities of the noise method, Algorithm
1 outlines all stages and is illustrated in Figure 2. It is worth
noting that this dataset will be available for a broad spectrum
of uses, including academic investigations, commercial ven-
tures, and initiatives spearheaded by governmental agencies.

C. GEC model architecture

We utilize CapsNet, a collection of artificial neurons that
effectively extracts features from input data in various con-
texts [24]. Recently, [9] introduced an EM routing algorithm
for general-purpose applications. This algorithm activates
each output capsule based on two factors: its “cost to ignore”
and its “benefit to use” from earlier network layers. The
success of CapsNet inspired this work to integrate it into
our GEC model, which dynamically aggregates information
across network layers.

In our approach, we consider the layers denoted as
H1, ...,HL within the GEC model as input. Each input
capsule comprises a set of hidden states, with each state
representing distinct linguistic features. The input capsules
in our model propose vectors V that determine the amount
of information to be transferred to the output capsules.
Subsequently, the output capsules are merged to align with
the dimensions of the initial hidden layer, thereby producing
an enhanced representation, symbolized as O = Ω1, ...,ΩN .
This enhancement improves CapsNet’s ability to extract
rich contextual representations from multi-layered input data,
making it a valuable technique for various NLP tasks.

1) Dynamic Combination: A dynamic linear combination
technique, inspired by [25], was incorporated. This approach
allows the GEC model to generate dynamic weights, depart-
ing from the traditional practice of using fixed weights. The
dynamic weights are computed using the following equation:

Wl = FFNl(H
1, ...,HL) ∈ RJ×d. (3)

In this context, the l-th layer represents the input hidden
states utilized as input for a distinct feed-forward network
denoted by FFNl(·), and J denotes the length of the hidden
layer H l. The output weight, which has the same dimension
as H l, is derived using the representations of the entire layer.
This dynamic combination mechanism in the GEC system
can accurately weigh various contextual information layers
during inference, addressing a limitation of classical seq2seq
GEC systems.

In the GEC model, EM routing is utilized. This technique
accepts two tensors as inputs: the scores a

(inp)
i and the

capsules µ
(inp)
icd . It then outputs three tensors: the scores

a
(out)
j , the capsules µ

(out)
jch , and the variances σ

(out)
jch

2
. The

computation of input scores a
(inp)
i for the input capsules

Ĥ l is performed before the initiation of the routing loop as
follows:

a
(inp)
i = WlĤ

l. (4)

In this equation, Wl refers to a transformation matrix.
Additionally, the weight Vijch is calculated for each element
(ch) in the output capsule. These weights connect the i-th
input capsule to the j-th output capsule, as shown in the
following equation:

Vijch =
∑
d

Wjdh µ
(inp)
icd +Bjch. (5)

However, the CapsNet loop consists of three primary
stages: E-Step, D-Step, and M-Step.

E-Step: This is a critical stage in the dynamic routing-by-
agreement procedure. In this stage, we determine the routing
probabilities Cij , which have dimensions n(inp) × n(out)

and determine which output capsule receives the i-th input
capsule. For the first iteration, we assign Cij to 1

¯n(out)
, where

¯n(out) denotes the average count of output capsules. In the
iterations that follow, we calculate Cij using the following
equation:

Cij =
f(a

(out)
j )Pij∑

j f(a
(out)
j )Pij

. (6)

Here, a(out)j is the output score for the j-th output capsule,
f stands for the logistic function, and Pij indicates the
product probability of the votes.

D-Step: This step decides the distribution of data from
each i-th input capsule to each j-th output capsule, estab-
lished by the following equation:

D
(use)
ij = f(a

(inp)
i ) · Cij . (7)

Here, f represents the logistic function, and Cij are the
routing probabilities. The variable D

(use)
ij can range from

0 to 1. A value of 0 means that the i-th input capsule is
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Algorithm 1: Noise Method (GASD)
Input: S = {w1, w2, ..., wn}.
Output: Ŝ = {ŵ1, ŵ2, ..., ŵn}
initialization Ŝ = S;
for N iterations do

▷ Swap Data Augmentation (SDA)
if len(Ŝ) ≥ 10 then

Choose two random words in the sequence to
sweep.
X = {wx, wx+1, wx+2, wx+3}
Feed X to SDA to get
X̂ = {ŵx, ŵx+1, ŵx+2, ŵx+3}
Update Ŝ using X̂ considering each word
indexes.

end
▷ Spelling Error Generation (SEG) - spelling

errors
Select a random word in Ŝ = wi1

Decomposing word wi1 to array of characters =
[c1, c2, ..., cn]
for wi1 = [c1, c2, ..., cn] do

Select a random character in [c1, c2, ..., cn] =
ci
Add ci in the index of ci+1

end
Composing [c1, c2, ..., cn] to ŵi1

Select a random word in Ŝ = wi2

Decomposing word wi2 to array of characters =
[c1, c2, ..., cn]
for wi2 = [c1, c2, ..., cn] do

Select a random character in [c1, c2, ..., cn] =
ci
Delete ci

end
Composing [c1, c2, ..., cn] to ŵi2

Overwrite ŵi1 and ŵi2 to the corresponding
indexes in Ŝ.
Update Ŝ

▷ Spelling Error Generation (SEG) -
character-based normalization
Ch = { aa, ee, ah, eh, oo, ah, ea }, Ĉh = { ah,
ah, ah, ee, oo, h, ee }
if Ŝ include a word that has a character in Ch
then

for 1→ 5 do
Pick a word wi in Ŝ that has a character
ci in Ch.
Replaces ci with the corresponding
character in Ĉh to get ŵi.
Overwrite ŵi with in Ŝ in the index of
wi

Update Ŝ
end

end
end

completely ignored by the j-th output capsule, while a value
of 1 indicates that the j-th output capsule fully employs the
i-th input capsule. The function f maps real numbers from
the range of [-∞,∞] to the interval [0, 1]. Hence, the values
of D

(use)
ij are always limited by f(a

(inp)
i ), as shown in the

subsequent equation:

0 ≤ D
(use)
ij ≤ f(a

(inp)
i ) ≤ 1. (8)

The proportion of disregarded data D
(ign)
ij for each i-th

input capsule is calculated using the following equation:

D
(ign)
ij = f(a

(inp)
i )−D

(use)
ij . (9)

D
(use)
ij and D

(ign)
ij are calculated for all capsules, includ-

ing both input and output. Additionally, 1 − f(a
(inp)
i ) is

factored in, representing the data that is effectively “gated
off” by the logistic function f .

D
(use)
ij +D

(ign)
ij + (1− f(a

(inp)
i )) = 1. (10)

M-Step: The last phase in each iteration fulfills two
functions, including calculating the output scores of a

(out)
j ,

which are means µ
(out)
jch , and variances σ

(out)
jch

2
, representing

the optimized output capsule.

D. Training approach
A bidirectional training approach was introduced to over-

come the challenge of exposure bias in the GEC task,
which often results in unsatisfactory corrections and poor
predictions for prefixes and suffixes. This approach aims
to improve alignment between two GEC models by in-
corporating the Kullback-Leibler (KL) divergence into the
training process. This term, denoted as Dkl, measures the
difference in probabilities between the models that read R2L
and those that read from L2R. The updated training objective
is designed to optimize the conventional likelihood for both
models individually. This optimization is achieved through
the use of EM routing, and the bidirectional approach strives
to minimize the divergence between the two models, ensuring
consistent results.

In simple terms, the R2L and L2R GEC models pro-
cess text sequences in different directions. Despite these
distinct approaches, both aim to compute the probability
of a corrected output. Each model analyzes the sequences
individually, but the ultimate objective is to predict the
same probability. Ideally, both models should yield identical
probability outputs, as shown in the following equation:

logP (y|x;
←−
θ ) = logP (y|x;

−→
θ ). (11)

Achieving Equation (11) is challenging when the models
are independently trained using Maximum Likelihood Esti-
mation (MLE). To address this issue, a divergence regulariza-
tion term Dkl is introduced into the MLE training objective
of GEC as follows:

L(
←−
θ ) =

N∑
n=1

logP (yn|xn;
←−
θ )

+ λ

N∑
n=1

Dkl(P (y|xn;
←−
θ )||P (y|xn;

−→
θ )). (12)
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In this equation, the first term
∑N

n=1 logP (yn|xn;
←−
θ )

refers to the conventional loss of the R2L model, and λ
is the model hyper-parameter. A higher value of λ empha-
sizes reducing the divergence between the two models. If
Equation (11) is fulfilled, the regularization term reduces
to zero, indicating that both models are aligned and their
predictions are consistent. If this is not the case, the training
process continues to minimize the divergence between the
two models, ensuring alignment and leading to more reliable
predictions. However, any deficiencies in the L2R model
could destabilize the balance between these models and affect
the training process of the R2L model. This is because the
L2R model influences the R2L model’s training through the
regularization term in the objective function. Conversely, the
balance maintained between the two models enables the L2R
model to detect and dismiss any erroneous output generated
by the R2L model, a crucial aspect of the training process
for ensuring prediction accuracy and reliability. Accordingly,
the L2R model’s training objective is defined as:

L(
−→
θ ) =

N∑
n=1

logP (yn|xn;
−→
θ )

+ λ
N∑

n=1

Dkl(P (y|xn;
←−
θ )||P (y|xn;

−→
θ )). (13)

The two models operate as supplementary systems in
a combined training procedure, providing mutual support
through regularization. The Dkl term steers the training
process to a point where no additional improvements are
possible, minimizing discrepancies and improving both mod-
els. The training objective is defined as the sum of both
objectives:

L(θ) = L(
←−
θ ) + L(

−→
θ ). (14)

The overall training process begins with pre-training both
models using synthetic data. Following this initial phase,
the models proceed with iterative and coordinated training.
During the RTL model’s training, the MLE and EM routing
methods are utilized to optimize the L2R model. The process
is then reversed to fine-tune the R2L model, as detailed in
Equation 14.

V. EXPERIMENTAL DETAILS

A. Training data

The training dataset comprises both authentic and syn-
thetic collections. The data source is the monolingual Arabic
news corpus OSIAN [26], which includes a total of 15
million sentences. The synthetic dataset was created using
the noise method introduced in Section IV-B. This method
facilitated the production of synthetic data sufficient for train-
ing a neural-based GEC model. The training set consisted of
14 million pairs, while the development set included 210,000
pairs. These sentence pairs provided comprehensive training
examples for both models. For fine-tuning, the QALB-2014
dataset was utilized. To address the challenge of rare and un-
known words, the BPE method was employed, decomposing
unknown words into sub-words [27]. This preprocessing step
enhanced the model’s ability to handle a wider vocabulary,
further improving its performance.

B. Model settings

The experiments utilized a tailored GEC model built upon
the Transformer architecture as referenced in [6]. This model
was customized in various aspects to meet specific needs.
Initially, the model size was reduced from 512 to 256, and
the layer count decreased from 6 to 4, while maintaining the
head attention at 8 heads as in the original model. Learned
positional encoding, as applied in BERT [14], was chosen
for positional encoding. This approach enhances the model’s
ability to understand sequential dependencies in the data,
leading to improved performance. During the training stages,
learning rates were set at 1e-3 and 1e-1. Similar to the
BERT model, label smoothing was not incorporated, based
on experimental results showing no significant improvement
in performance. Training involved an initial iteration of 25
epochs using synthetic data, followed by 15 epochs with
the QALB-2014 training set, saving checkpoints after each
epoch to preserve the best-performing versions of the models.
To enhance performance and prevent overfitting, gradient
clipping with a threshold of 1.0 and dropout with a prob-
ability of 0.15 were applied, ensuring manageable gradients
and minimized instability. Beam search with a beam size
of five was utilized to create synthetic examples, enabling
the model to explore various possibilities and choose op-
timal examples for estimating the Kullback-Leibler (DKL)
divergence. During training and testing, a maximum sentence
length of 500 tokens was imposed. All models were trained
on a system equipped with two TITAN RTX GPUs and
Python 3.6, utilizing CUDA 10.2 Production for optimized
computing efficiency.

C. Evaluation

To evaluate the models, the test sets from the QALB-
2014 and QALB-2015 shared tasks were used, comprising
948 and 920 sentences, respectively. Each pair consists of a
sentence with grammatical errors and its corrected version.
The MaxMatch algorithm [28] was used to calculate word-
level edits for every corrected sentence by comparing it
with the respective golden target sentence. The assessment
was conducted using precision, recall, and the F1 score,
which are established standards for measuring effectiveness
in the GEC domain. These metrics provided insights into
the model’s accuracy in correcting errors and its ability
to produce outputs that closely align with the reference
sentences.

VI. RESULTS AND DISCUSSION

The evaluation initially focused on the QALB-2014
dataset, using the BPE technique to address the challenges
of rare and unknown words. The results showed that the
R2L model achieved an F1 score of 60.90, while the L2R
model secured an F1 score of 57.77, which means that
the R2L model performed better in correcting the Arabic
language’s right-to-left script. Table I presents the precision,
recall, and F2 scores for both models, highlighting a 3.13-
point difference in their F1 scores.

A. Synthetic Data

To assess the effectiveness of GASD in generating a reli-
able synthetic dataset for GEC, the models were pre-trained
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TABLE I
PERFORMANCE OF THE GEC TRANSFORMER-BASED MODELS

UTILIZING BPE.

GEC Precision Recall F1

GEC-L2R 72.53 48.01 57.77
GEC-R2L 73.06 52.22 60.90

using the constructed data. The synthetic data improved
the performance of both models. As shown in Table II,
the models achieved an increase of 8.13 and 6.35 points
in the F1 score, respectively. These results validate the
effectiveness of the proposed method in producing reliable
synthetic data. However, additional efforts are required to
further expand the training dataset for Arabic GEC.

TABLE II
RESULTS OF THE CONSTRUCTED DATA OVER THE TWO GEC MODELS.

GEC Precision Recall F1

GEC-L2R
+ Pre-training 77.53 57.31 65.90

GEC-R2L
+ Pre-training 78.51 58.83 67.25

B. Dynamic Combination
The influence of dynamic combination and CapsNet on

GEC was investigated. CapsNet is known for its ability to
capture hierarchical relationships within data. The critical
parameter of CapsNet, the number of iterations, was initially
set to its original value of 3.

The work of [9] was adapted to allow capsule networks
to accept variable input lengths, which is particularly advan-
tageous for NLP tasks. Incorporating dynamic combinations
into the model improved the agreement estimation during
routing, leading to a performance boost for the pre-trained
models. The F1 score increased by 1.03 for the L2R model
and 1.15 for the R2L model, as shown in Table III. These
results underscore the advantages of applying CapsNet to
GEC systems. However, it is important to note that the
introduction of CapsNet led to an increase in the number
of model parameters during training, necessitating a longer
training duration. The findings substantiate the potential of
dynamic combination as enhancements for CapsNet GEC
models, resulting in improved accuracy without significantly
increasing model complexity. Further research can explore
the fine-tuning of CapsNet parameters to optimize its perfor-
mance in NLP tasks.

TABLE III
THE IMPACT OF THE DYNAMIC COMBINATION ON TWO DIFFERENT

VERSIONS OF OUR ARABIC GEC MODEL.

GEC Precision Recall F1

GEC L2R
+ Pre-training

+ EM-Routing
77.47 58.92 66.93

GEC R2L
+ Pre-training

+ EM-Routing
79.13 60.24 68.40

C. Impact of the bidirectional training approach
During training, both models were compared based on

their probabilities to guide the process. The results are pre-
sented in Table IV. After the second iteration, the agreement

between the models improved, and the performance on the
development set stabilized. This indicates that two iterations
were sufficient to achieve consistency between the models in
this case.

This finding highlights the effectiveness of the introduced
regularization term in addressing exposure bias, thereby
enhancing the performance of each model. Additionally, the
difference in F1 scores between the two models decreased
from 3.13 to 0.24 points. This indicates that the regularization
term successfully promotes model agreement and coher-
ence. To better understand the influence of the bidirectional
training approach, Table IV provides detailed information.
Integrating regularization terms in the bidirectional training
approach is valuable in mitigating exposure bias issues and
improving model performance. However, it is important to
note that the iterative training approach doubles the training
time compared to MLE. Despite this increase in computa-
tional cost, the resulting performance improvements justify
the additional time required.

D. Multi-Pass Error Correction

Correcting sentences with multiple grammatical errors is
challenging due to the inherent complexity of human lan-
guage. Single-pass inference methods often fail to handle the
intricate details of such sentences effectively. Recognizing
this challenge, [5] introduced the concept of multi-round
correction to enhance the accuracy of GEC systems. This
approach entails iteratively correcting a sentence in multiple
rounds, improving its fluency and grammatical correctness.

Fig. 5. Impact of Hallucinations Across Two Benchmarks: Comparison of
GEC-CAPS (GEC R2L + CapsNet), GEC-BID (GEC R2L + Bidirectional),
and GEC Full Model (GEC R2L + CapsNet + Bidirectional).

The multi-pass correction paradigm was applied and
adapted to our GEC models. Specifically, GEC-R2L initiates
the process by taking the input sentence S and producing an
intermediate correction denoted as S̄1 through a single-round
correction. However, S̄1 is not considered the final output;
instead, an additional layer of correction is introduced. S̄1 is
fed into GEC-L2R, which performs a subsequent round of
correction, ultimately generating the system output correction
S̄2.

To evaluate the efficiency of this multi-pass correction
approach, two comparison baselines were set up. For the
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TABLE IV
PERFORMANCE OF OUR GECS AFTER TWO ITERATIONS OF COMBINED TRAINING USING THE REGULARIZATION TERM TECHNIQUE. THE TERM ”FULL

MODEL” REFERS TO THE MODE THAT IS PRE-TRAINED WITH CAPSNET.

GEC model Precision Recall F1

1st iteration
GEC L2R + (full
model) 79.13 59.11 67.67

GEC R2L + (full
model) 79.29 61.29 69.13

2nd iteration
GEC L2R + (full
model) 79.22 61.27 69.09

GEC R2L + (full
model) 79.69 61.41 69.33

TABLE V
COMPARISON OF BLEU SCORES FOR THE PROPOSED GEC SYSTEM AND BASELINE TRANSFORMER-BASED ACROSS DIFFERENT SENTENCE LENGTHS.

Sentence Length BLEU-unigram BLEU-bigram BLEU-trigram BLEU-four-gram

GEC Baseline GEC Baseline GEC Baseline GEC Baseline

05 - 19 54.3 ± 2.4 47.7 ± 2.2 56.7 ± 2.1 49.6 ± 2.3 67.9 ± 2.1 58.3 ± 2.8 77.6 ± 1.3 68.7 ± 1.9
20 - 39 66.4 ± 2.8 56.7 ± 2.9 69.2 ± 2.7 58.9 ± 2.9 76.2 ± 1.2 63.8 ± 2.5 79.7 ± 2.1 70.6 ± 2.8
40 - 59 77.1 ± 2.4 66.8 ± 2.8 79.4 ± 2.4 69.2 ± 2.8 82.3 ± 1.4 71.7 ± 2.1 85.2 ± 1.3 74.8 ± 2.4
60 - 79 78.2 ± 0.8 69.4 ± 1.4 81.0 ± 2.4 73.5 ± 1.5 86.7 ± 2.0 75.0 ± 1.9 88.9 ± 2.3 78.2 ± 1.5
80 - 99 82.3 ± 1.1 73.6 ± 2.1 86.2 ± 2.6 77.4 ± 1.9 89.3 ± 1.7 80.7 ± 2.3 94.2 ± 1.8 83.6 ± 2.1
≥ 100 85.1 ± 2.1 76.7 ± 2.4 88.3 ± 1.6 78.3 ± 2.5 94.3 ± 2.2 81.5 ± 0.9 96.3 ± 2.3 83.9 ± 1.6

TABLE VI
PERFORMANCE OF EMPLOYING A MULTI-PASS CORRECTION APPROACH

IN GECS.

GEC Model Precision Recall F1

L2R ⇒ R2L 78.28 65.94 71.58
R2L ⇒ L2R 78.64 66.13 71.84

TABLE VII
PERFORMANCE OF RERANKING TECHNIQUE FOR GEC MODEL USING

TWO BENCHMARKS.

Benchmark Precision Recall F1

QALB 2014 80.14 67.20 73.10
QALB 2015 81.35 70.43 75.49

first baseline, the output from GEC-R2L is used as input for
GEC-L2R. Conversely, in the second baseline, the correction
sequence is inverted by using the output from GEC-L2R
as input for GEC-R2L. As summarized in Table VI, the
results indicate an improvement in both recall and F1 score
across both baselines, with an average increase of 5 points.
However, it is noteworthy that precision decreased by 0.94
and 1.05 points for GEC-L2R and GEC-R2L, respectively.
This decrease in precision could potentially be attributed to
a delicate balance issue between the two correction models,
as highlighted in previous literature [32].

Incorporating multi-pass error correction into GEC models
is a promising strategy for enhancing the correction of
sentences in low-resource languages. It boosts recall and F1

score, though at the expense of a decrease in precision. This
highlights the need for further research into addressing model
agreement and balance concerns in multi-pass correction
scenarios.

E. Re-ranking approach

To mitigate the variance between both models and the
reduction in precision, a reranking approach was applied to
the GEC L2R outputs. This technique is based on the work
of [33], where using the L2R model during the decoding
stage improved NMT tasks.

TABLE VIII
EVALUATING THE PERFORMANCE OF THE PROPOSED MODEL AGAINST
THE EXISTING MODELS USING TWO BENCHMARKS, AND (+/-) REFERS

TO A DECREASE AND INCREASE IN THE SCORE.

Systems 2014 2015
F1 △ F1 △

Rozovskaya [29] 67.91 + 5.19 N/A -
Nawar [30] N/A - 72.87 + 2.62
Ahmadi [20] 50.34 + 22.76 N/A -
Watson [19] 70.39 + 2.71 73.19 + 2.30
Aiman [22] 70.91 + 2.19 N/A -
Solyman [1] 71.03 + 2.07 73.52 + 1.97
Mahmoud [31] 71.51 + 1.59 74.03 + 1.46
Our GEC Model 73.10 75.49

Initially, three distinct GEC models were trained for both
the L2R and R2L directions. Following this, the GEC models
in the R2L direction were used to generate a list of top
n-best candidate corrections, each with its corresponding
conditional probability score. The candidates were subse-
quently assessed by the three GEC models operating in
the L2R direction, with each model assigning a score to
the candidates. Ultimately, the R2L n-best candidates were
reordered based on the combined scores from both models.

Table VII presents the evaluation of the proposed GEC
model with the reranking L2R approach, utilizing the QALB-
2014 and QALB-2015 test sets. The results demonstrate
improvements in precision and F1 score relative to pre-
vious experiments. This enhancement is attributed to the
collaborative exploration between GEC models in R2L and
L2R directions, which effectively mitigates exploration bias
and promotes a more comprehensive search for correction
candidates.

F. Impact of hallucinations

In this subsection, the influence of the proposed system on
minimizing hallucinations when utilizing minimal training
data is explored. In GEC, hallucinations manifest as either
repeated segments or entirely disjointed syntax. It is posited
that models trained with the proposed technique generate
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Fig. 3. Illustration of BLEU Scores for GEC and Baseline (Transformer-based) Across Different Sentence Lengths and N-gram Settings.

fewer hallucinations. To demonstrate this, hallucinations
were analyzed using the L2-2015 dataset [34]. The dataset
consists of 311 sentences for the training set and 155 for
the validation set. It also exhibits a high rate of errors per
sentence, as it was collected from students learning Arabic as
a second language. This high error rate in the dataset renders
it well-suited for training and testing the model on halluci-
nations. To quantify hallucinations, the method outlined in
[35] was employed. This approach initially creates training
examples with hallucinations by inserting irrelevant tokens
into input sentences. Subsequently, it utilizes the BLEU score
to assess the presence of hallucinations in the sentences.
This method was adapted in GEC to determine the frequency
of hallucinations in system outputs. Specifically, the BLEU
score calculation was modified to focus on the precision of
unigrams with a weight of 0.8 and bigrams with a weight of
0.2. An output was classified as a hallucination if its BLEU
score fell below 25.

The influence of hallucinations was evaluated using several
models: the baseline (Transformer-based), GEC R2L with
CapsNet, GEC R2L with Bidirectional structure, and the full
model of GEC R2L with both CapsNet and Bidirectional
structure. This evaluation focused solely on sentences rele-
vant to hallucinations. Therefore, the frequency of sentences
containing hallucinations was calculated for each respective
system, and Figure 5 shows the frequency of hallucinations
over QALB-2014 and QALB-2015. A shorter bar signifies

better performance. As depicted in Figure 5, the full model
reported the lowest frequency of hallucinations. This result
underscores the efficacy of the proposed model in minimizing
hallucinations in GEC systems.

G. BLEU score with multiple grams

In this subsection, the performance of the proposed GEC
system was evaluated against a Transformer-based baseline
framework using the QALB-2014 benchmark dataset. Sen-
tences from the dataset were grouped by length into six
categories: 05-19, 20-39, 40-59, 60-79, 80-99, and 100+
words. For each length category, BLEU scores with n-gram
settings ranging from 1 to 4 (Unigram to Four-gram) were
computed. The BLEU score, a metric for evaluating the
quality of text generated by a model, was used to quantify
the performance of both systems. Scores were calculated
for unigrams, bigrams, trigrams, and four-grams to assess
accuracy at different levels of text granularity. As shown in
Table V, each BLEU score is presented with its respective
standard deviation to indicate variability in performance.
The results demonstrate that the proposed GEC system
outperforms the baseline across all sentence lengths and
n-gram settings, highlighting its effectiveness in correcting
grammatical errors in texts.
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Fig. 4. Illustration of F1 Scores for Top and Recent Models in Arabic GEC Over Two Benchmarks.

Fig. 6. Comparative analysis of correction outputs from GEC-CAPS, GEC-BID, and GEC Full Mode Models Against a Golden Target Sentence.

H. Case study

Figure 6 compares the outputs of three different versions
of the GEC model: GEC-CAPS, GEC-BID, and the GEC
Full Model, against a golden target sentence. Each model’s
output is presented in a separate column, and the corrected
sentences are shown in separate rows. The differences be-
tween the model outputs and the golden target sentence are
highlighted in pink, with varying shades indicating the degree
of alignment with the target. Darker shades represent higher
alignment scores, while lighter shades indicate lower ones.
The GEC Full Model outperforms the other two models, fol-
lowed by GEC-BID and then GEC-CAPS. This comparison
visually represents how these different GEC models perform
against a standard reference.

The most advanced model, which incorporates GEC R2L,
CapsNet, Bid-agreement, and reordering of L2R, yielded
promising results. It has outperformed the top systems in
Arabic GEC. Table VIII provides a comprehensive statistical
evaluation of the top and recent Arabic GEC models. The
proposed model demonstrated strong performance by achiev-
ing the highest scores for both QALB-2014 and QALB-2015
test sets. This system represents a promising solution for au-
tomatic grammar correction in Arabic. It delivers consistent

results and demonstrates its efficiency and effectiveness.

VII. CONCLUSION

This paper introduced an automatic grammar correction
model designed for languages with limited resources, focus-
ing on correcting grammatical and spelling errors in Arabic.
The model was built on a seq2seq Transformer-based frame-
work and addressed the challenge of limited training data
by generating parallel data from an out-of-domain corpus,
expanding the dataset to 14.21 million parallel examples.
This size surpasses existing Arabic GEC datasets. CapsNet
was integrated to identify complex linguistic patterns to
improve the model’s ability to correct errors. A regularization
term was added to address the exposure bias problem and
enhance consistency between the two versions of the GEC
model (R2L and L2R). This term uses Kullback–Leibler
divergence to determine the difference between two probabil-
ity distributions. This training approach allows each model
to iteratively evaluate and strengthen the other, leading to
improved performance. The results confirm the effectiveness
of CapsNet and the bidirectional training approach for GEC
systems in limited resource scenarios. The proposed model
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outperforms all current systems in Arabic GEC, achieving
the highest scores in two benchmarks.

Future work aims to extend the model to other languages
with limited resources in the GEC domain, utilizing both
CapsNet and the bidirectional training approach. Addition-
ally, CapsNet’s capabilities in other NLP tasks will be
investigated.
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