
 

  

Abstract— Facility Layout optimization is a crucial aspect of 

operations management, impacting efficiency, productivity, 

and overall operational costs. In dynamic environments, where 

layout adjustments are frequent due to changes in product 

demand, machinery breakdowns, or workforce variations, it 

becomes imperative to employ efficient optimization 

techniques. This research paper presents an investigation into 

the performance of various Genetic Algorithm (GA) variants to 

address the challenging Dynamic Facility Layout Problem. 

Three primary approaches for dynamic facility layout 

optimization have been examined: Genetic Algorithm (GA), 

GA with Local Search, and Machine Learning-Enhanced GA 

for robust layout design. The results show that the Machine 

Learning-Enhanced GA outperforms the traditional GA and 

Genetic Algorithm with Local Search in terms of both solution 

quality and adaptability to dynamic changes. This suggests that 

leveraging machine learning techniques can significantly 

enhance the effectiveness of Genetic Algorithms in addressing 

DFLP. 

 
Index Terms— Facility layout optimization, Genetic 

Algorithm, Local Search, Machine learning, Robust layout. 

I. INTRODUCTION 

ACILITY layout planning involves arranging the 

physical components within a facility, such as a 

manufacturing plant, warehouse, office, or healthcare 

facility, in an efficient and organized manner. The primary 

goal is to optimize the use of space, resources, and 

personnel to enhance operational efficiency, productivity, 

safety, and overall workflow. This process entails 

determining the best location and arrangement of 

workstations, machinery, equipment, storage areas, and 

other elements within the facility. Essential elements of 

facility layout planning include space utilization, workflow 

optimization, safety, productivity, flexibility, and cost 

reduction. Effective organization of space within a facility is 

crucial for ensuring the smooth flow of work, materials, and 

information. Balancing the needs of people, materials, and 

equipment within a facility is fundamental for optimizing 

operations and resource utilization. When these elements are 
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harmoniously integrated into an efficient system, it can lead 

to improved productivity, reduced costs, and enhanced 

overall performance. Facility layout planning is not 

universally applicable; rather, it varies significantly 

depending on the type of facility and its distinct 

requirements. For example, in a manufacturing facility, 

layout planning aims to minimize material handling and 

reduce production lead times. In an office environment, 

layout planning is crucial for creating a workspace that 

enhances productivity and fosters collaboration among 

employees. The strategic nature of facility layout decisions 

underscores the significance of meticulous planning and 

thorough consideration of all relevant factors to ensure long-

term efficiency and cost-effectiveness. 

The facility layout problem, a well-studied combinatorial 

optimization issue, pertains to structuring the physical 

arrangement of a production system. Moore’s [1] definition 

of this problem establishes a fundamental concept in 

industrial engineering and operations management, 

highlighting the strategic importance of optimizing the 

arrangement of facilities and resources within a plant. 

Facility layout can be classified into "static" and "dynamic" 

categories, determined by the stability of the layout and 

consideration of changes over time. Drira et al. [2] present a 

distinct classification of facility layout problems, 

specifically as SFLP (Static Facility Layout Problem) and 

DFLP (Dynamic Facility Layout Problem). 

 

A. Static Facility Layout Problems (SFLP) 

SFLP typically focuses on facility layout in environments 

that are relatively stable or static, where the layout does not 

undergo frequent or significant changes. The primary aim of 

SFLP is to develop an efficient layout that maximizes 

operational efficiency, minimizes costs, and enhances 

productivity, assuming that the layout will remain 

unchanged for an extended period. The main objective of 

addressing an SFLP is to optimize the arrangement of 

resources, workstations, machinery, and other elements 

within the facility. The emphasis lies in designing the "best" 

layout tailored to the given, predominantly unchanging 

conditions. 

Traditional manufacturing plants fall into this category. 

This approach suits facilities with consistent operations, 

minimal fluctuations in product demand, and low variance 

in production processes. Solving the Static Facility Layout 

Problem entails finding the optimal arrangement of 
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resources within a facility to maximize efficiency and 

minimize costs, assuming a static layout. Rosenblatt’s [3] 

approach to the FLP was innovative in its consideration of 

both quantitative factors, focusing on cost minimization, and 

qualitative factors, aiming to maximize the closeness ratio, 

thus addressing the multifaceted goals inherent in facility 

layout planning. Shang [4] emphasizes the necessity of a 

balanced approach in facility layout planning, suggesting 

that quantitative aspects require objective and analytical 

methods, while qualitative considerations benefit from a 

more subjective and systematic approach. Koopmans and 

Beckmann [5], in their pioneering work, laid the foundation 

for recognizing the static facility layout problem as a 

significant industrial challenge, with the primary objective 

of reducing material handling costs within production units 

in the context of production cell layout.  

 

B.  Dynamic Facility Layout Problems (DFLP) 

The Dynamic Facility Layout Problem (DFLP) involves 

strategically determining department locations within a 

facility across multiple planning intervals. DFLP poses a 

fundamental challenge, requiring a delicate balance between 

minimizing material handling costs and the associated 

rearrangement costs incurred as the facility layout adjusts to 

changing conditions. Material handling costs within a 

facility are heavily influenced by factors such as consumer 

demand, technological parameters, and the specific layout of 

the facility. In dynamic operational environments, strategic 

layout adaptation and limited adjustments can help alleviate 

variability in material handling costs, ultimately minimizing 

them [6]. In the realm of operations management, DFLP 

poses a significant challenge, demanding continual 

adjustments to the facility’s layout over time to optimize 

operations. Dynamic facility layout problems necessitate 

flexible layout solutions capable of accommodating changes 

from one production period to the next in response to 

constantly shifting demand in a volatile environment. To 

maintain operational efficiency in such dynamic 

environments, facilities must swiftly adapt to shifting 

production requirements. When confronting layout 

challenges, addressing the DFLP becomes increasingly 

evident. The Dynamic Facility Layout Problem is 

recognized as a computationally complex combinatorial 

optimization problem [7]. Flexibility to adjust to varying 

time scales, such as weeks, months, or years, is crucial in 

tackling dynamic layout problems, accounting for shifting 

material handling flow over these defined periods. 

Dynamic layout problems often utilize a discrete 

representation of the layout, typically based on equal-size 

facilities, and bear similarities to the Quadratic Assignment 

problem (QAP). DFLP involves optimizing department 

arrangements within a facility across multiple planning 

periods, aiming primarily to minimize total material 

handling costs [8]. Within the context of DFLP, these costs 

include not only material handling costs, often computed 

using the Quadratic Assignment Problem (QAP) 

formulation, but also expenses associated with rearranging 

the layout at different time intervals within the planning 

horizon. Facility layout planning is a common practice, 

where the optimization problem is frequently framed as a 

Quadratic Assignment Problem (QAP), focusing on 

assigning n departments to n locations to minimize material 

handling costs. 

 

C. Quadratic Assignment Problem (QAP) 

Many formulations for the Dynamic Facility Layout 

Problem are built upon extensions of the Quadratic 

Assignment Problem (QAP), a common framework used for 

the static facility layout problem. In the QAP, the challenge 

lies in determining the most efficient allocation of facilities 

to specific locations, aiming to minimize overall cost or 

distance. The primary objective in the QAP is to identify the 

optimal arrangement of facilities to locations, considering 

the limitations of assigning one facility to one location and 

vice versa, all while minimizing total cost or distance. The 

QAP poses a challenging computational task due to its NP-

hard nature and is utilized in various domains such as 

operations research, facility layout design, 

telecommunication network planning, and logistics, where 

the aim is to optimize resource assignments for cost 

reduction or efficiency improvement. A variety of 

algorithms, including linear programming, branch and 

bound, and heuristics, are employed to tackle this complex 

optimization problem. The problem serves as a 

mathematical representation of real-world scenarios, where 

there are n facilities and n locations, with distances defined 

between each pair of locations and weights or flows 

associated with each pair of facilities. The primary objective 

is to allocate all facilities to distinct locations in a way that 

minimizes total cost, computed as the sum of distances 

multiplied by their corresponding flows. 

The quadratic assignment model, introduced by 

Koopmans and Beckman in 1957 [5], provides a 

mathematical framework for addressing the challenge of 

determining optimal facility locations in scenarios requiring 

efficient material flow between these facilities. The QAP 

incorporates the consideration of material flow between 

departments, although it simplifies by assuming all 

department areas are of equal size, which may not always 

hold true in practical situations. The Adaptive Dynamic 

Facility Layout Model aims to optimize overall material 

handling costs (MHC) and relocation expenses across the 

planning horizon. This intricate process involves allocating  

n facilities to n candidate locations on the layout grid while 

considering the associated rearrangement costs. Represented 

mathematically as a quadratic assignment model, this 

adaptive approach allows for the consideration of dynamic 

changes in the system over time. Many researchers have 

proposed their versions of adaptive DFLP models, 

employing various optimization techniques to minimize 

both MHC and relocation costs. The ultimate objective is to 

design an ideal layout that meets requirements throughout 

the entire planning horizon while minimizing costs  

 

II. LITERATURE REVIEW 

Facility layout problems constitute a pivotal aspect of 

optimizing manufacturing and service operations across 

various industries. Researchers have long pursued solutions 

to efficiently arrange workstations, departments, and 
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resources within facilities, aiming to enhance productivity 

and reduce operational costs. Heuristic methods like 

simulated annealing and genetic algorithms have been 

extensively utilized to address facility layout problems, 

often yielding practical and efficient solutions. Moreover, 

metaheuristic approaches such as ant colony optimization 

and particle swarm optimization have gained recognition for 

their adaptability and effectiveness in optimizing intricate 

layouts. Beyond static facility layout problems, the 

exploration of dynamic facility layout problems has 

emerged as a significant research domain. Dynamic Facility 

Layout problems (DFLP) acknowledge the evolving nature 

of facilities due to changes in demand, production processes, 

or other factors, necessitating flexible layouts to uphold 

operational efficiency. Consequently, evolutionary 

computation methods tailored to DFLPs have garnered 

attention, aiming to offer dynamic solutions capable of 

adapting to evolving requirements. This focus on 

personalized solutions caters to real-world operational 

challenges, promoting long-term efficiency and resilience. 

The vast body of literature on facility layout problems 

emphasizes the ongoing necessity for efficient layout 

optimization solutions across diverse industries. Researchers 

persist in exploring innovative methodologies to tackle the 

evolving complexities of modern facilities, aiding 

organizations in maximizing their resources, cutting 

operational costs and enhancing overall productivity. Given 

the dynamic and multifaceted nature of facility layout 

problems, this research field is poised to remain dynamic, 

offering valuable insights and practical applications that can 

result in more efficient facility designs and operational 

processes, benefiting a broad range of sectors. 

The Facility Layout Problem (FLP) presents numerous 

challenges, encompassing its combinatorial complexity, the 

necessity to balance multiple conflicting objectives such as 

minimizing transportation costs and maximizing space 

utilization, and adaptability to dynamic changes in demand 

and production processes. Factors like space constraints, 

material handling costs and the presence of irregularly 

shaped or heterogeneous departments further complicate the 

task of designing optimal layouts. Moreover, constraints 

related to equipment, resource availability, budget 

limitations, and safety and compliance considerations 

demand careful consideration. Additionally, scalability for 

future expansion and the growing emphasis on 

environmental sustainability introduce further layers of 

complexity to FLP. Successfully addressing these issues 

necessitates a diverse set of optimizations  

 

A.  Method for solving Facility Layout Problems 

Within the field of facility layout planning, experts have 

proposed a plethora of approaches to address the challenges 

inherent in this task. These factors encompass material, 

product, machinery, labor, location, managerial policies, and 

industry type, among others. To tackle the complexity of 

facility layout problems, experts have suggested a diverse 

array of methods and strategies. These aim to optimize the 

arrangement of facilities, workstations, and resources within 

a physical space, with the overarching goals of enhancing 

operational efficiency, minimizing costs, and streamlining 

workflow. These approaches span a wide range of 

techniques, including traditional methods like Systematic 

Layout Planning (SLP), grid-based methods, mathematical 

programming, and heuristic algorithms. Additionally, more 

advanced approaches such as genetic algorithms, machine 

learning, and simulation have been proposed. The objective 

of these methods is to identify the most suitable layout 

configuration that aligns with specific objectives while 

meeting various constraints and requirements. The selection 

of methods depends on the unique characteristics of the 

facility, including its size, complexity, industry, and 

operational objectives. The diversity of these methods 

underscores the complexity and importance of facility layout 

planning across various industries. It also highlights the 

ongoing efforts of experts to develop innovative solutions 

that optimize spatial arrangements to facilitate operational 

excellence. (Table 1 below summarizes solution 

methodologies for facility layout problems) 

B.  Optimizing Dynamic Facility Layouts: Evolutionary, 

Heuristic, Metaheuristic and Hybrid Strategies 

Research in this field typically focuses on addressing the 

dynamic nature of facility layout problems, where the layout 

of a facility needs adaptation or optimization in response to 

changing conditions or requirements. Evolutionary 

computation, a subfield of artificial intelligence and 

optimization, derives inspiration from biological evolution 

to solve complex problems and optimize solutions. It 

employs algorithms and computational techniques that 

mimic the principles of natural selection, genetic variation, 

and survival of the fittest. The fundamental concept behind 

evolutionary computation is to iteratively evolve a 

population of candidate solutions, gradually improving their 

quality over generations. These methods are applicable to a 

wide range of optimization and search problems, including 

function optimization, machine learning model parameter 

tuning, scheduling, routing and complex real-world 

challenges. The strength of this approach lies in its 

capability to handle complex and nonlinear optimization 

problems, as well as its adaptability to various domains. It 

proves particularly useful when the search space is large, 

poorly understood, or when there is a necessity to find 

global optima in multi-model search spaces.  

A number of researchers, including Kochhar and Heragu 

[10], Balakrishnan and Cheng [9], Baykasoglu and Gindy 

[11], Corry and Kozan [12], Baykasoglu, et al. [7], and 

Norman and Smith [14], have applied meta-heuristics like 

simulated annealing, genetic algorithms and ant colony 

optimization to address dynamic facility layout problems 

(DFLPs). 

 Yang and Peters [13] proposed a flexible machine layout 

model that includes both material handling and machine 

rearrangement costs. Hybrid approaches have also been 

explored by Balakrishnan and Cheng [9], Balakrishnan et al. 

[15], Dunker et al. [16], Mckendall and Shang [17] and 

Mckendall et al. [18]. Evolutionary computation methods, 

metaheuristics and hybrid algorithms encompass a wide 

range of techniques used for optimization and problem 

solving. 
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TABLE I 

SUMMARY OF SOLUTION METHODOLOGIES FOR FACILITY LAYOUT PROBLEMS 

 

Method Description 

Systematic Layout Planning (SLP) 

 

A structured approach involving data collection, relationship diagramming, space allocation, 

and layout evaluation. 

Grid Method 

 

Facilities are represented as blocks on a grid for easy manipulation to find an optimal 

arrangement. 

CRAFT (Computerized Relative 

Allocation of Facilities Technique) 

Computer-based optimization method considering factors like distance, adjacency, and material 

flow. 

Genetic Algorithms 

 

Optimization technique inspired by natural selection, used to find near-optimal layouts through 

evolutionary processes. 

Mathematical Programming 

 

Formulating facility layout problems as mathematical optimization models using techniques 

like linear, integer, or mixed-integer programming. 

Simulation 

 

Modeling the flow of materials, people, or products within the facility to evaluate layout 

alternatives and their impact. 

Graph Theory 

 

Utilizing graph theory techniques to optimize connectivity, adjacency, and accessibility in 

layouts. 

Heuristic Methods 

 

Problem-solving approaches that may not guarantee optimality but can quickly find good 

solutions, such as Crossover Genetic Algorithm, Ant Colony Optimization, and Sweep 

Algorithm. 

Layout Evaluation Tools 

 

Software tools and packages that use optimization algorithms and provide visualization and 

reporting capabilities to assess layout options. 

Expert Knowledge 

 

Utilizing the experience and insights of professionals with expertise in similar industries or 

scenarios to guide the layout design process. 

Evolutionary Computation 

 

Leveraging evolutionary algorithms like genetic algorithms and genetic programming to 

optimize facility layouts based on principles of natural selection and evolution. It is particularly 

useful for large and complex facilities. 

Machine Learning 

 

Employing machine learning algorithms to analyze historical data, predict layout performance, 

and optimize facility layouts based on learned patterns and trends. Machine learning models 

can adapt to changing conditions and data. 

Fuzzy Logic 

 

Using fuzzy logic to handle imprecise or uncertain information in facility layout design, 

allowing for flexibility and adaptability in layout decisions, especially when dealing with vague 

or ambiguous constraints. 

Expert Systems 

 

Developing rule-based expert systems that incorporate domain-specific knowledge and 

heuristics to assist in making layout decisions based on expert-level reasoning and decision 

rules. 

    

 

 

 
TABLE- II. 

VARIOUS EVOLUTIONARY COMPUTATION METHODS 

 

Method     Description 

Genetic Algorithms (GAs) 

Population-based approach inspired by natural selection, used 

for evolving potential solutions. 

Genetic Programming (GP) 

Extends GAs to evolve computer programs, making it suitable 

for symbolic regression and program synthesis. 

Genetic Programming for Symbolic Regression 

(GPSR) A specific variant of GP used for symbolic regression tasks. 

Evolutionary Strategies (ES) 

Population-based optimization method, often used in numerical 

optimization problems. 

Differential Evolution (DE) 

Global optimization algorithm using differences between 

population members to generate new solutions. 

Evolutionary Neural Networks Used for evolving neural network architectures and parameters. 
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Estimation of Distribution Algorithms (EDAs) Use probabilistic models to guide the search process. 

Memetic Algorithms (MAs) Combine evolutionary algorithms with local search procedures. 

Coevolutionary Algorithms 

Involve the simultaneous evolution of multiple populations that 

compete or cooperate with each other. 

Particle Swarm Optimization (PSO) 

Inspired by the social behavior of birds or fish, optimizes 

solutions by adjusting the positions of particles in a search 

space. 

 

 
 

 

 
 

 

    TABLE- III.  

VARIOUS HEURISTIC METHODS 

 

Method Description 

Greedy Algorithms 

Make locally optimal choices at each step without 

guaranteeing a globally optimal solution. 

Nearest Neighbor 

Select the nearest neighbor to the current solution iteratively 

to construct a solution. 

Insertion Heuristics 

Build a solution iteratively by inserting elements into a 

partial solution. 

Randomized Heuristics 

Incorporate randomness in the search process to balance 

exploration and exploitation of the solution space 

 

 
 

 
TABLE- IV. 

 VARIOUS METAHEURISTIC METHODS 

 

Method Description 

Simulated Annealing (SA) 

SA is inspired by the annealing process in metallurgy and is used for global 

optimization. 

Tabu Search (TS) 

TS maintains a memory structure to avoid revisiting previously explored 

solutions. 

Ant Colony Optimization (ACO) 

ACO is inspired by the foraging behavior of ants and is often used for 

combinatorial optimization problems. 

Simulated Kalman Filter (SKF) 

SKF is a metaheuristic method that combines elements of simulated 

annealing and the Kalman filter. 

Harmony Search (HS) 

HS is inspired by the process of musical improvisation and is used for 

optimization in continuous spaces. 

Firefly Algorithm 

This algorithm models the flashing behavior of fireflies and is applied to 

optimization problems. 

Bee Colony Optimization (BCO) 

BCO mimics the foraging behavior of honeybees to solve optimization 

problems. 

Grey Wolf Optimizer (GWO) 

GWO is inspired by the social hierarchy and hunting behavior of grey 

wolves. 

Whale Optimization Algorithm (WOA) WOA is based on the hunting behavior of whales. 

Cuckoo Search (CS) 

CS is inspired by the brood parasitism of some cuckoo species and is used for 

optimization tasks. 
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   TABLE- V. 
 VARIOUS HYBRID METHODS 

 

Method Description 

Genetic Algorithm with Simulated 

Annealing (GA-SA) 

Combines the global search capabilities of a Genetic Algorithm (GA) with the 

local search and optimization capabilities of Simulated Annealing (SA). Useful 

for optimizing complex search spaces. 

Particle Swarm Optimization with 

Differential Evolution (PSO-DE) 

Integrates the particle swarm optimization (PSO) approach with Differential 

Evolution (DE) to enhance exploration and exploitation of solution spaces. 

Ant Colony Optimization with 

Tabu Search (ACO-TS) 

Combines Ant Colony Optimization (ACO) for exploration with Tabu Search 

(TS) for intensification, resulting in improved solution quality and efficiency. 

Genetic Algorithm with Local 

Search (GA-LS) 

Integrates a Genetic Algorithm (GA) with local search techniques to refine 

solutions. This hybrid approach enhances both exploration and exploitation of 

the search space. 

Simulated Annealing with Tabu 

Search (SA-TS) 

Combines the probabilistic search of Simulated Annealing (SA) with Tabu 

Search (TS) to balance exploration and intensification, leading to better 

optimization outcomes. 

Genetic Algorithm with Particle 

Swarm Optimization (GA-PSO) 

Combines the population-based evolution of a Genetic Algorithm (GA) with the 

swarm-based optimization of Particle Swarm Optimization (PSO) for improved 

solution quality. 

Genetic Algorithm with Ant 

Colony Optimization (GA-ACO) 

Integrates the exploration capabilities of a Genetic Algorithm (GA) with the 

foraging behavior of Ant Colony Optimization (ACO), aiming to find better 

solutions. 

Simulated Annealing with Genetic 

Programming (SA-GP) 

Combines the global search strategy of Simulated Annealing (SA) with the 

symbolic program evolution capabilities of Genetic Programming (GP) for 

complex problem-solving. 

Particle Swarm Optimization with 

Simulated Annealing (PSO-SA) 

Combines the swarm intelligence of Particle Swarm Optimization (PSO) with 

the probabilistic search of Simulated Annealing (SA) for enhanced optimization 

in diverse problem domains. 

 

 
      

TABLE- VI 
ASSOCIATION OF LITERATURE REVIEW OF DFLP 

 

Algorithm Paper Method Explanation 

Exact 

Algorithms 
Ballou (1968)[24] Dynamic Programming 

Utilizes dynamic programming techniques 

to precisely solve the multirow facility 
layout problem. 

 Rosenblatt (1986)[25] Dynamic Programming 
Applies dynamic programming for exact 

solutions to layout optimization. 

 
Lacksonen & Enscore 
[26](1993) 

Exchange, Branch and Bound, 

Dynamic Programming, Cut 

Tree, Cutting Plane Algorithms 

Combines various exact methods including 

branch and bound for comprehensive 

problem-solving. 

 
Pérez-Gosende et al. 
(2024)[27] 

Mixed Integer Non-linear 
Programming 

Incorporates mixed integer non-linear 

programming for precise optimization under 

multiple objectives. 
Heuristic/ 

Metaheuristic 

Algorithms 

Rosenblatt (1986)[25] 

Generating Random Layouts 

using CRAFT or COFAD in 

each period 

Uses heuristics to generate layouts by 

randomized allocation techniques for 

efficient solutions. 

 Urban (1993)[28] 
Steepest Descent Pairwise 
Interchange 

Utilizes pairwise interchange techniques in 

a steepest descent manner for layout 

refinement. 

 

Conway & 

Venkataramanan 

(1994)[6] 

Genetic Algorithm 

Implements genetic algorithms for layout 

optimization considering evolutionary 

principles. 

 
Kaku & Mazzola 
(1997)[29] 

Tabu Search 

Utilizes tabu search methods for effective 

exploration of solution space in layout 

design. 

 
Balakrishnan & Cheng 
(2000)[9] 

Genetic Algorithm 

Applies genetic algorithms for layout 

optimization, inspired by biological 

evolution. 

 
Baykasoğlu & Gindy 
(2001)[11] 

Simulated Annealing 

Utilizes simulated annealing for layout 

optimization, mimicking annealing 

processes in materials. 
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McKendall, Shang & 

Kuppusamy (2006)[18] 
Simulated Annealing 

Implements simulated annealing to optimize 
layout configurations, inspired by 

metallurgical processes. 

 
Rezazadeh et al. 

(2009)[30] 
Discrete Particle Swarm 

Utilizes discrete particle swarm 
optimization for layout design inspired by 

collective behavior. 

 
Nahas, Ait-Kadi & 

Nourelfath (2010)[31] 
Iterated Great Deluge 

Applies iterated great deluge algorithm for 
layout optimization, mimicking 

hydrological processes. 

 
Yang, Chuang & Hsu 

(2011)[32] 
Genetic Algorithm 

Implements genetic algorithms for layout 
optimization, inspired by natural selection 

principles. 

 
Pillai, Hunagund & 

Krishnan (2011)[19] 
Simulated Annealing 

Utilizes simulated annealing for layout 
optimization, inspired by annealing 

processes in materials. 

 
Molla, Naznin & 
Rafiqul Islam 

(2020)[33] 

Chemical Reaction Optimization 
Applies chemical reaction optimization for 
layout design, inspired by chemical 

reactions in nature. 

 
Zouein & Kattan 

(2021)[34] 

Improved Construction 
Approach Using Ant Colony 

Optimization 

Implements ant colony optimization for 
layout design, mimicking foraging behavior 

of ants. 

 
Palubeckis et al. 

(2022)[35] 

Variable Neighbourhood Search 
(VNS) and Fast Local Search 

(LS) Procedure 

Utilizes VNS and LS for efficient 

exploration of layout solution space. 

 
Koosha, Mirsaeedi & 
Assadi (2024)[36] 

Genetic Algorithm 
Implements genetic algorithms for layout 
optimization, leveraging principles of 

genetic evolution. 

Hybrid 
Algorithms 

Balakrishnan et al. 
(2003)[15] 

Genetic Algorithm 

Utilizes genetic algorithms for layout 

optimization, combining principles of 

evolutionary computation. 

 
McKendall & Shang 
(2006)[17] 

Ant Systems 

Combines ant systems with layout 

optimization, inspired by ant colony 

foraging behavior. 

 
Azimi & Saberi 
(2013)[37] 

Discrete Particle Swarm and 
Simulation 

Combines discrete particle swarm and 

simulation for layout optimization, 

leveraging collective behavior. 

 
Pourvaziri & Naderi 

(2014)[38] 

Multi-Population Genetic 

Algorithm 

Utilizes multi-population genetic algorithms 

for layout optimization, combining diverse 

populations. 

 
Hosseini, Khaled & 

Vadlamani (2014)[39] 

Imperialist Competitive 

Algorithms, Variable 

Neighbourhood Search, 
Simulated Annealing 

Combines multiple optimization techniques 
for layout design, optimizing diverse 

objectives. 

 Chen (2013)[40] Ant Colony Algorithm 

Applies ant colony algorithm for layout 

optimization, mimicking foraging behavior 
of ants. 

 

T. G. Pradeepmon, 

Panicker & Sridharan 
(2018)[41] 

Estimation of Distribution 

Algorithm (EDA) 

Utilizes EDA for layout optimization, 

estimating probability distributions of 
solutions. 

 
Khajemahalle, Emami 

& Keshteli (2020)[42] 

Hybrid Nested Partitions and 

Simulated Annealing Algorithm 

Combines nested partitions with simulated 

annealing for layout optimization, 
optimizing nested structures. 

 
Hosseini et al. 

(2021)[43] 

Modified Genetic Algorithm and 

Cloud-based Simulated 
Annealing Algorithm 

Combines modified genetic algorithms with 

cloud-based simulated annealing for layout 
optimization. 

 Guan et al. (2022)[44] 
Dynamic Extended Row Facility 

Layout Problem (DERFLP) 

Addresses dynamic extended row facility 

layout problem using innovative techniques. 

 Zeng et al. (2023)[45] 
Genetic Simulated Annealing 
Algorithm 

Utilizes genetic simulated annealing for 

layout optimization, combining genetic 

algorithms with annealing. 

 
Sotamba et al. 
(2014)[46] 

Mixed Solution Methodologies 

Employs mixed solution methodologies for 

layout optimization, combining diverse 

techniques. 

In the realm of evolutionary computation, metaheuristics 

and hybrid algorithms, a wide range of techniques are 

employed to address optimization challenges and complex 

problem-solving tasks. Heuristic algorithms, relying on 

domain-specific knowledge and rules, offer efficient but not 

necessarily optimal solutions. Metaheuristic algorithms, on 

the other hand, are high-level, general-purpose optimization 

techniques that explore search spaces without guarantees of 

global optimality. Hybrid algorithms combine elements of 

multiple optimization techniques to leverage their respective 

strengths, improving solution quality and efficiency. Table 

II provides a summary of various evolutionary computation 

methods along with their descriptions. Additionally, Tables 

III, IV and V offer descriptions and various approaches for 

heuristic, metaheuristic, and hybrid methods for 

optimization. Table VI presents a comprehensive overview 

of various algorithms and methods employed to address the 

multi-row facility layout problem, categorized into exact 

algorithms, heuristic/metaheuristic algorithms, and hybrid 

algorithms. Each entry in the table outlines the specific 
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algorithm utilized, the corresponding paper where it was 

introduced, and the method or technique employed. From 

dynamic programming and genetic algorithms to simulated 

annealing and ant colony optimization, a diverse array of 

approaches is showcased, highlighting the breadth of 

techniques used in tackling this complex optimization 

problem. This table serves as a valuable resource for 

researchers and practitioners seeking to explore different 

strategies for optimizing facility layout configurations in 

real-world managerial scenarios. 

III PROBLEM DESCRIPTION AND FORMULATION FOR DFLP  

Efficient plant layouts play a crucial role not only in 

enhancing productivity during the initial setup but also in 

exerting a lasting impact on the competitiveness and 

profitability of the organization. They serve as the 

foundation for streamlined processes, reduced costs, and 

improved customer satisfaction throughout operations. 

Maximizing profit while minimizing costs is the primary 

aim of all manufacturing industries. Pillai et al. [19] 

emphasize that efficient plant layout influences various 

operational facets, including productivity, work in progress, 

manufacturing lead times, material handling costs, and 

several other critical areas. The plant layout problem 

primarily focuses on minimizing material flow and handling 

costs, given that these costs constitute a significant portion 

of overall production expenses, ranging from 20% to 50% of 

total operating costs, as highlighted by Chan et al. [20]. 

In the realm of Facility Layout Planning (FLP), various 

methodologies have been addressing the dynamic facility 

layout problem, which can broadly be categorized into two 

distinct approaches: Adaptive (agile/flexible approach) and 

the Robust approach. The adaptive approach involves 

continuously adapting the layout to changing circumstances, 

seeking to strike a balance between material handling costs 

and facility rearrangement costs over time. Researchers such 

as Baykasoglu et al. [7] and Mckendall et al. [18] have 

employed the adaptive approach in their work to tackle 

DFLP. In contrast, the Robust approach aims to create a 

single, flexible layout that can accommodate demand 

fluctuations throughout the planning horizon without 

causing production interruptions or machine relocations. 

Pillai and Subbaro [21] and Pillai et al [19] have applied the 

robust approach in the context of cellular manufacturing 

systems and process layouts. Braglia et al [22] have 

advocated the use of indices to determine whether a robust 

or adaptive strategy is more suitable, emphasizing instances 

where layout rearrangements between periods can be 

economically justified. It’s important to note that while 

layouts generated through these approaches may not be 

optimal for individual periods, they prove to be efficient 

over the entire planning horizon. 

The Facility Layout Problem (FLP) is commonly 

represented as a Quadratic Assignment Problem (QAP), 

which entails assigning n departments to n locations while 

minimizing material handling costs. However, the QAP is a 

known NP-complete problem, posing significant 

computational challenges. Achieving optimal solutions often 

demands substantial memory and computational resources, 

with the largest problem optimally solved being limited to 

just fifteen facilities, as illustrated by Kusiak and Heragu 

[23]. 

 

A. QAP formulation for DFLP 

The Quadratic Assignment Problem formulation for the 

DLP presents a sophisticated optimization framework 

tailored to accommodate the dynamic and evolving nature of 

facility layouts over time. Resembling the assignment 

problem, the QAP is distinguished by defining the cost 

function through quadratic inequalities. In this setup, the 

objective is to ascertain the optimal assignment of 

departments or facilities to specific locations across multiple 

time periods. The problem is characterized by fluctuating 

product demand, material handling costs, and facility 

rearrangement costs that vary from one time period to 

another. The aim is to minimize the total cost over the entire 

planning horizon, encompassing both the movement costs 

associated with material handling and the expenses incurred 

from rearranging facilities. Utilizing binary decision 

variables to denote department-location assignments, the 

formulation incorporates dynamic constraints to ensure that 

production capacities align with the changing demand 

requirements in each time period. 

 

B. Adaptive Formulation for QAP in DFLP 

 The Adaptive formulation for the Quadratic Assignment 

Problem within the context of the DFLP presents a 

sophisticated strategy to address the challenge of 

continuously evolving facility layouts. This formulation 

allows the layout to adjust to changing conditions by 

permitting the relocation of departments or facilities at 

specific time intervals, while considering associated costs. 

The primary goal is to minimize overall costs, encompassing 

both material handling costs and facility rearrangement costs 

over multiple time periods. Decision variables represent the 

assignment of departments to locations during each period, 

offering flexibility for rearrangement. The formulation often 

includes dynamic constraints, ensuring that the adapted 

layout optimally utilizes available space and satisfies 

changing production demands and capacity constraints. The 

adaptive QAP in DFLP offers a robust framework for 

efficiently managing facility layouts over time, adapting to 

shifts in demand, and minimizing costs through adaptive 

spatial reconfigurations. The adaptive approach model has 

been developed by various researchers, with the adaptive 

approach by Balakrishnan and Cheng [9] being considered 

here.  

Function (1) aims to minimize overall costs by optimizing 

the arrangement of departments and material flow. 

Constraints (2) ensure each location is assigned to a single 

department in each time period, while constraints (3) 

guarantee exclusive allocation of each location to one 

department. Constraints (4) consider rearrangement costs 

when departments move between locations in consecutive 

time periods, combining them with material flow costs. 

Constraints (5) and (6) establish necessary limitations on 

decision variables. 
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Below is a common mathematical representation of the adaptive approach 

 

Minimize 

 

 
 

Subject to 

 

 

 
 

 

 
 

Were, 
n = Number of departments and locations. 

T = Number of periods. 

  Athqs = Cost of shifting department h from location q to s in period t (where Athqq= 0). 

  Cthqrs = Cost of material flow between department h located at location (site) q and r located at s in period t. 

 

    

 

 

C. Robust Formulation for QAP in DFLP 

 The robust formulation for the Quadratic Assignment 

Problem (QAP) within the DFLP aims to create a single, 

adaptable layout capable of accommodating changing 

demands and constraints across multiple time periods. In 

this approach, a fixed layout is devised to manage 

fluctuations in production requirements, eliminating the 

need for frequent rearrangement and minimizing associated 

costs. The goal is to establish a layout that maintains 

efficiency over the entire planning horizon without 

production interruptions or departmental relocations. Robust 

QAP formulations underscore the resilience of the layout, 

enabling it to endure various scenarios, such as demand 

variations, while upholding operational efficiency. This 

approach is particularly valuable in industries where 

stability and continuity in production processes are crucial, 

ensuring that the facility layout can adapt to unexpected 

changes without incurring extensive costs or disruptions. 

The resilient layout approach is grounded in the premise 

that the costs associated with rearrangement and production 

interruptions are prohibitively high, thus prioritizing the 

optimization of material handling costs over time by 

maintaining a consistent layout. This strategy involves 

deploying a single layout capable of accommodating diverse 

scenarios across multiple time periods, ensuring stability 

and cost-effectiveness throughout an extended planning  

horizon. The resilient layout strategy achieves a solution 

quality nearly equivalent to that of the adaptive layout 

strategy while ensuring uninterrupted operations without 

production interruptions or facility relocations. 

Resilient layouts excel in effectively managing 

fluctuations in product demand over diverse planning 

horizon periods. The model for the resilient approach has 

been developed by numerous researchers, with the work of 

Pillai et al. [19] specifically considered in this context. The 

formulation of a robust quadratic assignment model is 

demonstrated through Equations (7)-(15). In this model, the 

optimized layout for an average scenario remains constant 

throughout the planning horizon, obviating the need for 

facility relocation in any given period. 

Notably, the computational effort required to address 

dynamic layout problems in this model is equivalent to that 

of static layout problems. While the adaptive approach 

demands a computational effort of (n!)P for dynamic layout 

problems, the proposed resilient approach significantly 

reduces this complexity to a more efficient n! computational 

effort. The model's inputs encompass the quantity of parts 

for production, the demand for parts across different 

periods, the machine sequence or route sheet for parts, part-

handling factors, and distances between locations. Equation 

(11) predicts parts demand over the planning horizon, while 

Equation (12) is employed in the formulation to compute the 

anticipated flow between facilities, considering the demand 

for parts, part-handling factors, and the number of parts 

moving per batch from one facility to another. 
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Below is a mathematical representation for Robust approach 

Minimize 

 
 

Subject to 

 
 

 
 

     

 

 

The formula for calculating Material Handling Costs (MHC) in the Robust layout is 

 

 

 
Were, 

V= The objective function for robust design is determined by the total traveling score under average demand conditions. 

The handling factor for part i during transport from facility h to facility r 

n = Number of departments (facilities). 

= the measurement of the distance between locations q and s is expressed as the rectilinear distance. 

From facility h to facility q, the weight of part flow is averaged. 

Assign 1 if facility h is designated to location q, and 0 otherwise 

 = Assign 1 if facility r is designated for location s; otherwise, assign 0. 

The average part i demand is calculated for each i ranging from 1 to N. 

The demand for part i during period p is considered, with p ranging from 1 to P. 

The count of parts i per transportation when moving from facility h to facility r. 

N =The overall quantity of parts 

P= The count of periods within the planning horizon. 

u = cost of unit travelling score 

  

= The material handling cost incurred when utilizing the specified layout during period p. 

TMHC = The cumulative material handling cost over the entire planning horizon. 

Within a given layout, the distance between facilities j and k 
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IV. OPTIMIZING DYNAMIC FACILITY LAYOUTS: GENETIC 

ALGORITHM APPROACHES 

Genetic Algorithms (GAs) are robust optimization 

techniques inspired by natural evolution processes. They are 

part of the evolutionary algorithms family and are utilized to 

solve complex problems by mimicking the principles of 

selection, recombination, and mutation observed in 

biological evolution. GAs is particularly suitable for 

resolving problems where traditional mathematical or 

heuristic methods may be impractical or inefficient. The 

fundamental idea behind GAs is to evolve a population of 

potential solutions (often represented as chromosomes or 

individuals) over successive generations to enhance their 

quality with respect to a given objective or fitness function. 

These algorithms exhibit significant versatility and can be 

effectively applied across a wide range of optimization and 

search problems in various fields such as engineering, 

finance, biology, and computer science. 

The key components of a GA include the population, 

fitness function, selection, crossover (recombination), 

mutation, and termination criteria. GAs excels in exploring 

complex, high-dimensional search spaces and can find 

optimal or near-optimal solutions in scenarios where 

traditional methods encounter challenges. Additionally, GAs 

have given rise to a family of related techniques, including 

Genetic Programming (GP), Evolution Strategies (ES), and 

Differential Evolution (DE), each tailored to specific 

problem domains and objectives. 

Conway and Venkataramanan's study [24] explored the 

applicability of genetic algorithms in addressing the 

dynamic layout problem, highlighting the capability of GAs 

to adapt facility layouts to changing requirements and 

environments. Genetic Algorithms are well-suited for the 

DFLP due to their capacity to handle complex, dynamic 

environments and provide optimal or near-optimal solutions 

by evolving layouts over time. They offer a flexible 

(adaptive) and robust approach to facility layout 

optimization in scenarios where layouts need to adjust to 

changing operational demands. 

This paper primarily focuses on the application of Genetic 

Algorithms to tackle the Dynamic Facility Layout Problem 

(DFLP). It specifically delves into three main approaches: 

employing a Simple Genetic Algorithm (SGA) for DFLP, 

combining Genetic Algorithm with Local Search (LS-GA) 

techniques to enhance DFLP solutions, and integrating 

Machine Learning to improve the performance and 

adaptability of GA (ML-GA) in addressing the challenges of 

DFLP. Through a comprehensive analysis and comparison 

of these approaches, the study offers insights into the 

effectiveness of each method. Particularly noteworthy are 

the results indicating that the Machine Learning-Enhanced 

GA emerges as a promising solution for robust layout 

optimization amidst changing operational demands and 

dynamic environments. 

In the performance evaluation section, data from 

Balakrishnan and Cheng [9] is utilized to assess the 

effectiveness of the proposed models in solving the 

Dynamic Facility Layout Problem (DFLP). The dataset 

comprises a total of 48 test instances, classified into six 

different sizes: 6 departments over 5 periods (6d x 5p), 6 

departments over 10 periods (6d x 10p), 15 departments 

over 5 periods (15d x 5p), 15 departments over 10 periods 

(15d x 10p), 30 departments over 5 periods (30d x 5p), and 

30 departments over 10 periods (30d x 10p). Each problem 

size is further subdivided into 8 different scenarios. To 

address the challenges posed by DFLP, this study employs 

SGA, LS-GA, and ML-GA approaches. The evaluation 

process involves 10 replications for each scenario, enabling 

a comprehensive analysis and evaluation of the performance 

of these approaches in tackling the DFLP across a diverse 

range of problem instances. 

 

A. A Simple Genetic Algorithm for Dynamic Facility 

Layout Problems 

This work introduces a simple genetic algorithm as a 

solution method for addressing Dynamic Facility Layout 

Problems (DFLPs). The SGA employs basic genetic 

operators, including roulette wheel selection, single-point 

crossover, and swap mutation, with a maximum number of 

generations as its termination condition. The method 

undergoes evaluation across 48 test instances of varying 

problem sizes. While the results do not meet the 

expectations set by existing literature, this work marks an 

initial step in the development of GA-based hybrid 

approaches with potential for enhanced performance. The 

performance evaluation reveals that the SGA falls short of 

achieving the best-known solutions for the 48 test instances. 

The relatively rapid termination times suggest opportunities 

for improvement, potentially through hybridization with 

other algorithms or the incorporation of advanced search 

strategies within the genetic algorithm framework. While 

the SGA alone may not yield near-optimal results, this study 

lays the groundwork for future research aimed at enhancing 

DFLP solutions by integrating SGA with other techniques or 

employing advanced strategies. The various operations and 

parameters utilized for SGA are outlined in Table VII. 

 

B. Optimizing Dynamic Facility Layout Problems: 

Genetic Algorithm with Local Search Integration 

The dynamic facility layout problem presents a highly 

intricate combinatorial optimization challenge, often 

demanding considerable time and computational resources 

to attain optimal solutions using exact methods. To tackle 

this complexity, the paper proposes a genetic algorithm 

enriched with a local search procedure, referred to as hGA, 

designed specifically for solving DFLPs. This algorithm 

integrates genetic operators such as roulette wheel selection, 

single-point crossover, and swap mutation, along with 2opt 

neighbourhood search as the local search component. The 

termination criterion for the algorithm is based on reaching 

the maximum number of generations. Through a 

comprehensive evaluation, the study assesses the 

performance of hGA across 48 diverse problem instances of 

varying sizes, sourced from prior research. The results are 

compared with existing literature and benchmarked against 

the best-known solutions, demonstrating the significant 

potential of the hGA algorithm in addressing DFLPs. 

Overall, hGA emerges as an efficient and effective approach 

for solving DFLPs, with opportunities for future 

enhancements such as hybridization with other algorithms 

and integration of advanced search techniques. Table VIII 
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offers an overview of the various operations and parameters 

utilized in hGA. 

 
 

TABLE- VII. 

SELECTED OPERATIONS AND PARAMETERS FOR SGA 

 
Sl. 

No. 
Parameter/ Operator Value 

1 Population Size (d × p) / 2 

2 Mutation Probability 0.04 

3 Crossover Probability 0.9 

4 Termination Criterion Number of Generations = 10 × d × p 

5 Selection Procedure Roulette wheel selection 

6 Crossover Operator Single point crossover 

7 Mutation Operator Swap mutation 

8 Offspring Insertion 

Strategy 

Parent replacement strategy 

 

d signifies the count of departments and p corresponds to 

the count of periods 

 
TABLE- VIII. 

SELECTED OPERATIONS AND PARAMETERS FOR HGA 

 
Sl. 

No. 
Parameter / Operator Value 

1 Population Size (d × p) / 2 

2 Mutation Probability 0.04 

3 Crossover Probability 0.9 

4 Termination Criterion Number of Generations = 10 × d × p 

5 Selection Procedure Roulette wheel selection 

6 Crossover Operator Single point crossover 

7 Mutation Operator Swap mutation 

8 Offspring Insertion 

Strategy 

Parent replacement strategy 

9 Local Search Method Pair-wise Exchange Local Search 

10 Fitness value The inverse of the cost associated with 

the solution 

 

d signifies the count of departments and p corresponds to the 

count of periods 

 

C. Robust Genetic Algorithm for Layout Design in 

Dynamic Facility Layout Problems with Machine 

Learning Enhancements 

This research paper presents a novel approach to tackle 

dynamic facility layout problems (DFLP) by enhancing a 

genetic algorithm (ML-GA) with machine learning 

techniques, specifically clustering algorithms. The aim is 

to develop a robust layout that remains consistent across 

different planning periods, contrasting with the adaptive 

approach where layouts change between periods. While 

the genetic algorithm (GA) generates solutions, machine 

learning techniques cluster these solutions and select 

candidates for local search, with k-means clustering 

utilized in this study. Through evaluation using benchmark 

instances, the approach demonstrates superior 

performance in solution quality, robustness, and 

computational efficiency compared to existing methods. 

Integrating local search techniques can enhance the 

performance of GAs in addressing DFLP. Local search 

algorithms refine solutions by making small adjustments 

to the current solution, leveraging the local 

neighbourhood. When combined with GAs, local search 

aids in refining the solutions generated by the genetic 

algorithm, leading to improved convergence speed and 

solution quality. 

The proposed algorithm proves effective in solving 

complex layout formation problems by providing optimal 

or near-optimal solutions across various test instances. It 

also performs well when applied to robust versions of 

DFLP instances, consistently offering solutions with 

minimal deviation from optimal results. Despite 

potentially higher material handling costs, the robust 

approach remains viable due to reduced facility relocation 

costs and simplified problem complexity. This work 

underscores the potential of machine learning-enhanced 

genetic algorithms for tackling dynamic facility layout 

challenges and suggests avenues for further research in 

more intricate layout problems and real-world 

applications. Table IX provides an overview of the 

operations and parameters utilized in ML-GA. 
 

TABLE- IX. 

SELECTED OPERATIONS AND PARAMETERS FOR ML-GA 

 
Sl. 

No. 

Parameter/ 

Operator 
Value 

1 Population Size d × p / 2 

2 Mutation 

Probability 

0.04 

3 Crossover 

Probability 

0.9 

4 Termination 

Criterion 

Number of Generations = 10 × d × p 

5 Selection 

Procedure 

Roulette wheel selection 

6 Crossover 

Operator 

Single point crossover 

7 Mutation Operator Swap mutation 

8 Offspring 

Insertion Strategy 

Parent replacement strategy 

9 Clustering 

Method 

K-means clustering 

10 Number of 

Clusters (K) 

d 

11 Local Search 

Method 

Pair-wise Exchange Local Search 

12 Fitness value The inverse of the cost associated 

with the solution 

 

d signifies the count of departments and p corresponds to the 

count of periods 

 

 

D. Analysis of Results of Dynamic Facility Layout 

Problem 

The analysis of results concerning the Dynamic Facility 

Layout Problem (DFLP) using three distinct approaches 

presents a compelling narrative. Initially, the Simple 

Genetic Algorithm (SGA) struggles to yield satisfactory 

outcomes, exhibiting suboptimal solutions and 

computational inefficiencies, common in complex 

optimization problems. However, a significant shift occurs 

with the introduction of the Hybrid Genetic Algorithm 

with Local Search (hGA), particularly in the adaptive 

context, where it consistently outperforms other methods 

documented in the literature, signaling a remarkable 

transition towards optimal results. The pivotal 

advancement, however, emerges with the meticulously 
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crafted Machine Learning-enhanced Genetic Algorithm 

(MLGA), explicitly designed to achieve robust layout 

solutions. MLGA consistently surpasses both SGA and 

hGA, offering not only superior solution quality but also 

demonstrating remarkable adaptability and stability when 

faced with fluctuations in input parameters over planning 

periods. This comparative analysis spans 48 benchmark 

instances sourced from Balakrishnan and Cheng [9], with 

cost serving as the primary metric of evaluation. The 

outcomes conclusively underscore the pivotal role of 

machine learning techniques, with MLGA emerging as an 

exemplary choice for generating robust layouts compared 

to adaptive methods, further highlighting the significance 

of innovative algorithms in addressing intricate 

optimization problems. The results of these replications 

are summarized in Tables X-XV. 
 

 

 

TABLE-X. 

COMPARING ADAPTIVE AND ROBUST APPROACHES WITH BEST-KNOWN SOLUTIONS (BKS) FOR THE 6D5P DFLP DATASET 

 
Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 

SGA 

(Adaptive) 

1,16,485 1,13,061 1,11,989 1,18,608 1,14,450 1,14,642 1,16,045 1,14,686 

hGA 

(Adaptive) 
1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 

ML-GA 

(Robust) 
1,06,419 1,05,731 1,07,650 1,08,260 1,08,188 1,07,765 1,08,114 1,07,248 

BKS 

(Adaptive) 
1,06,419 1,03,507 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 

BKS 

  (Robust) 
1,06,419 1,05,731 1,07,650 1,08,260 1,08,188 1,07,765 1,08,114 1,07,248 

 

 

 

 

TABLE-XI. 

COMPARING ADAPTIVE AND ROBUST APPROACHES WITH BEST-KNOWN SOLUTIONS (BKS) FOR THE 6D10P DFLP DATASET 

 
Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 

SGA 

(Adaptive) 

2,42,166 2,36,601 2,38,773 2,45,369 2,42,769 2,40,554 2,44,123 2,43,187 

hGA 

(Adaptive) 
2,15,143 2,12,402 2,08,605 2,13,858 2,11,242 2,10,707 2,15,045 2,13,900 

ML-GA 

(Robust) 
2,20,776 2,17,412 2,19,024 2,17,350 2,17,142 2,17,397 2,19,788 2,20,144 

BKS 

(Adaptive) 
2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 

BKS 

(Robust) 
2,20,776 2,17,412 2,19,024 2,17,350 2,17,142 2,17,397 2,19,788 2,20,144 

 

 

 

 

 

TABLE-XII.  

COMPARING ADAPTIVE AND ROBUST APPROACHES WITH BEST-KNOWN SOLUTIONS (BKS) FOR THE 15D5P DFLP DATASET 

 
Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 

SGA 

(Adaptive) 

5,52,377 5,53,215 5,57,421 5,53,667 5,52,013 5,52,713 5,53,560 5,58,456 

hGA 

(Adaptive) 
4,83,473 4,90,757 4,96,085 4,89,459 4,91,444 4,92,129 4,91,214 4,96,601 

ML-GA 

(Robust) 
5,06,847 5,00,284 5,08,011 5,03,699 5,02,622 4,99,891 5,02,919 5,07,970 

BKS 

(Adaptive) 
4,80,453 4,78,310 4,86,987 4,83,813 4,84,968 4,86,493 4,85,384 4,89,150 

BKS 

(Robust) 
5,06,847 5,00,284 5,08,011 5,03,699 5,02,622 4,99,891 5,02,919 5,07,970 
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TABLE-XIII. 

   COMPARING ADAPTIVE AND ROBUST APPROACHES WITH BEST-KNOWN SOLUTIONS (BKS) FOR THE 15D10P DFLP DATASET 

 
Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 

SGA 
(Adaptive) 

11,42,206 11,38,465 11,47,048 11,39,578 11,44,124 11,31,681 11,30,856 11,32,656 

hGA 

(Adaptive) 9,96,130 9,90,136 9,97,860 9,88,390 9,91,279 9,85,221 9,92,281 9,95,096 

ML-GA 

(Robust) 10,59,100 10,22,447 10,68,402 10,54,997 10,51,395 10,57,543 10,37,066 10,40,450 

BKS 

(Adaptive) 9,78,588 9,76,208 9,78,027 9,71,720 9,76,119 9,67,617 9,78,519 9,82,880 

BKS 

(Robust) 10,59,100 10,22,447 10,68,402 10,54,997 10,51,395 10,57,543 10,37,066 10,40,450 

 

 

 

TABLE-XIV. 

    COMPARING ADAPTIVE AND ROBUST APPROACHES WITH BEST-KNOWN SOLUTIONS (BKS) FOR THE 30D5P DFLP DATASET 

 
Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 

SGA 

(Adaptive) 

6,80,790 6,83,892 6,78,446 6,76,468 6,73,117 6,79,331 6,86,388 6,85,919 

hGA 

(Adaptive) 
5,88,103 5,82,605 5,86,718 5,77,715 5,67,854 5,77,964 5,80,421 5,86,862 

ML-GA 

(Robust) 
5,79,704 5,76,350 5,86,831 5,84,264 5,70,492 5,72,782 5,71,703 5,96,744 

BKS 

(Adaptive)  
5,73,722 5,66,776 5,65,411 5,64,171 5,54,281 5,64,110 5,64,682 5,72,207 

BKS 

(Robust) 
5,79,704 5,76,350 5,86,831 5,84,318 5,70,492 5,72,782 5,71,703 5,96,835 

 

 

 

TABLE-XV. 

       COMPARING ADAPTIVE AND ROBUST APPROACHES WITH BEST-KNOWN SOLUTIONS (BKS) FOR THE 30D10P DFLP DATASET 

 
Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 

SGA 

(Adaptive) 

14,06,557 14,09,617 13,99,763 14,03,826 13,98,035 14,02,854 14,11,010 14,01,967 

hGA 

(Adaptive) 
11,97,060 11,93,757 11,85,609 11,71,244 11,57,242 11,73,757 11,79,738 11,92,914 

ML-GA 

(Robust) 
11,72,691 11,82,286 11,88,620 11,98,487 11,98,674 12,02,033 12,10,573 12,09,088 

BKS 

(Adaptive)  
11,57,703 11,56,900 11,52,546 11,40,395 11,19,496 11,40,723 11,40,744 11,06,651 

BKS 

(Robust) 
11,72,691 11,82,286 11,88,620 11,98,487 11,98,674 12,02,033 12,10,573 12,09,088 

 

V. CONCLUSION 

In this extensive study, two genetic algorithm approaches, 

namely the Simple Genetic Algorithm (SGA) and the 

Hybrid Genetic Algorithm (hGA), are proposed to tackle 

Dynamic Facility Layout Problems (DFLPs). Despite its 

faster termination, the SGA falls short in achieving the best-

known solutions for the 48 test instances, underscoring the 

need for hybridization or advanced techniques. In contrast, 

the hGA, integrating local search procedures, proves 

effective by providing solutions within four percentage 

points of the best-known solutions for all instances. The 

study advocates future research focusing on hybridizing 

algorithms and integrating advanced search techniques. 

Additionally, a novel genetic algorithm meta-heuristic 

based on machine learning is introduced to address layout 

challenges and handle dynamic facility layout problems with 

a robust layout approach. Results indicate that the proposed 

robust approach performs well, offering near-optimal 

solutions without significant computational difficulty, and 

even outperforming existing robust approaches in two 

instances. The authors suggest potential applications in 

solving more complex layout problems and real-world 

scenarios, emphasizing the efficacy of the recommended 
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machine learning-based genetic algorithm compared to other 

genetic algorithm implementations. 

The comparison with other genetic algorithm (GA)-based 

works in this study highlights a fundamental difference in 

approach, specifically between adaptive and robust 

strategies. The robust approach, characterized by a constant 

layout over different periods, incurs higher material 

handling costs but mitigates facility relocation costs. This 

suggests that the ML-GA algorithm may be a promising 

solution for addressing dynamic facility layout problems, 

showcasing its competitiveness in scenarios where layout 

adjustments are required over time 
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