
 

  

Abstract—Feature selection aims to select an optimal feature 

subset to reduce the dimension of original data, thereby solving 

the “dimension disaster” problem effectively. For feature 

selection, preserving the local manifold structure of the data is 

crucial, so how to learn an excellent local manifold structure has 

always been a research hotspot in this field. In this paper, we 

propose an unsupervised feature selection algorithm based on 

Laplace rank constraint and local structure preservation. First, 

we combine the locally linear embedding method with the 

Laplace rank constraint method to learn an outstanding 

similarity matrix. Secondly, the projection matrix is used to 

select features while preserving the similarity matrix. 

Furthermore, to avoid selecting redundant features, the 

regularization term about the redundancy of the projection 

matrix is used to select features with more discriminant 

information. In addition, the model optimization algorithm is 

proposed, and the model complexity is analyzed. Experiments 

on several public datasets show that our method can learn 

better manifold structural information, and select features with 

more discriminant information. 

 
Index Terms—Feature selection, Laplace rank constraint, 

local structure preservation, sparse learning, unsupervised 

learning 

 

I. INTRODUCTION 

N many fields, the feature dimension of data is 

excessively large, which might lead to poor algorithm 

performance. Because many features in high-dimensional 

data are redundant and noisy. There are two ways to address 

this problem: feature extraction[1] and feature selection[2]. 

Unsupervised feature selection has attracted a lot of attention 

since labeling data is a challenging and time-consuming task. 

Manifold learning[2] is a method for recovering 

low-dimensional manifold structures from high-dimensional 
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data to reduce dimensionality. Nonlinear manifold learning 

algorithms include isometric mapping (Isomap)[3], Laplace 

feature map[4], locally linear embedding (LLE)[5], etc. The 

locally linear embedding assumes that the data is nonlinear 

on the total but linear on the parts. Meanwhile, the local 

geometric structure of the low-dimensional feature space 

should be consistent with the original feature space. As a 

result, many scholars devote themselves to preserving both 

local and global structures. For example, Liu et al.[6] 

combined both global sample similarity and local geometric 

data structure for feature selection. Peng et al.[7] constructed 

the local structure of the original data based on data point 

similarity. They also selected representative features to 

preserve the local structure. Liu et al.[8] obtained the feature 

weight matrix by the locally linear embedding algorithm and 

proposed a robust neighborhood embedding method. 

Considering both global and local structure preservation, 

Zhou et al.[9] proposed an iterative method for unsupervised 

feature selection.  

The papers listed above improve feature selection 

algorithms by preserving local or global manifold structures. 

Furthermore, a good similarity weight matrix is very 

important for manifold structure learning. Based on the 

self-representation of data, Wang et al.[10] proposed the 

algorithm, which regarded the data as a dictionary for sparse 

coding. They also preserved the coefficient matrix in the 

process of dimensional reduction. The unsupervised feature 

selection algorithm combining adaptive manifold and 

embedded learning was proposed by Wu et al.[11], which 

learned a low dimensional embedding to preserve adaptive 

manifold structure. Wen et al.[12] used a loss function to 

capture the true structure of the data while preserving its 

global structure during feature selection. Wang et al.[13] 

proposed an unsupervised feature selection algorithm using 

low-rank approximation and structural learning. The 

Laplacian matrix rank constrained clustering algorithm was 

proposed by Nie et al.[14], which applies graph theory to 

impose rank constraints on the Laplacian matrix. Inspired by 

these results, we discovered a graph with rank restrictions 

with precisely c-linked components (where c represents the 

number of clusters). The linked components are utilized to 

determine the true similarity matrix. The similarity matrix 

exhibits a block diagonal structure.  

Feature selection aims to reduce redundant features. Many 

authors have offered various approaches for dealing with 

feature redundancy. The pairwise dependence-based 

unsupervised feature selection calculates the redundant 

relationship between features using mutual information[15]. 
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Furthermore, Xu et al.[16] successfully discovered redundant 

features from a global perspective of feature redundancy. 

They also suggested a feature selection approach based on 

orthogonal regression to minimize global redundancy. Li et 

al.[17] presented the unsupervised feature selection 

algorithm, which combines local structure preservation with 

redundancy minimization. 

Attribute reduction is a significant study direction for 

rough sets. The goal is to obtain a minimum attribute subset 

that is invariant to the original data information under 

specified conditions. Different attribute reduction strategies 

have been proposed. The paper [18] developed a reduction 

procedure that preserves the distribution of decision areas in 

the rough set model. The paper [19] suggested a heuristic 

technique for attribute reduction that used similarity to 

preserve generalized decisions. Inspired by the rough set 

attribute reduction method, we propose an unsupervised 

feature selection algorithm based on the Laplace rank 

constraint and local structure preservation. The algorithm 

consists of two steps. Firstly, the locally linear embedding 

and rank constraint are merged to create a similarity matrix 

that includes all features. Secondly, our feature selection 

method is based on similarity and projection matrix. Similar 

to the attribute reduction idea in rough sets, our method can 

reveal more discriminative features by preserving the 

similarity matrix. 

In this paper, we propose an unsupervised feature selection 

algorithm based on the Laplace rank constraint and local 

structure preservation (LRLSP). 

The primary contributions of the LRLSP algorithm are as 

follows:  

(1) To learn a similarity matrix with block diagonal 

structure, we combine locally linear embedding with Laplace 

rank constraint and attempt to preserve the local structure. 

(2) To avoid selecting redundant features, we introduce a 

redundant regularization term into the projection matrix, 

guaranteeing that the learned features contain more 

discriminative information.  

(3) The L2,1 norm captures the sparsity of the feature 

projection matrix, reducing the influence of data noise on 

feature selection. 

The rest sections of this paper are organized as follows. In 

the second section, some related works, including traditional 

linear neighborhood reconstruction and Laplace rank 

constraint, are briefly introduced. In the third section, we 

introduce the modeling and iterative algorithm for our model. 

In the fourth section, the experimental results on several 

public datasets are presented, and further relevant analyses 

are conducted. Finally, the conclusion is presented. 

 

II. RELATED WORKS 

A. Notations 

Given 
d nX R  as the data matrix, where n denotes the 

number of samples and d denotes the dimension of features. 
1d

iX R   is denoted as the i-th column of ,X  which means 

i-th sample of .X  Similarly, 
1 n

iX R   is defined as the i-th 

row of ,X  representing the i-th feature of .X d mH R   is a 

projection matrix, where m represents the number of selected 

features, and .m d  
n nW R   denotes the similarity 

matrix of all samples. We define 
n n

nI R  as an identity 

matrix, and 1n1 R   as an all-one vector. 

B. Locally linear embedding 

LLE is a nonlinear dimension reduction algorithm. This 

indicates that a sample can be linearly represented by many 

neighbors in the original space. As a result, the newly 

collected data could precisely preserve the original manifold 

structure while considerably resolving the “dimension 

disaster” problem. Based on the above idea, locally linear 

embedding is set up as follows: 
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where ( )k iN X  means the k nearest neighbor set of 
iX , and 

n nW R   is the weight matrix. To avoid the columns of W  

being all zeros, we further constrain the column of W  

overall to 1.  

C. Laplace rank constraints 

It is obvious that 
n nW R   is not a symmetry matrix in (1). 

Let 
2

TW W
W

+
= , then W  is the symmetric matrix. And 

the new W  is referred to as the similarity matrix. 
n nD R   

is a diagonal matrix whose i-th diagonal element equals the 

sum of i-th row in the similarity matrix W .  

According to [14], the multiplicity c of the zero eigenvalue 

in a Laplacian matrix is the same as the number of connected 

components in the similarity matrix. Denote L D W= − . If 

( )rank L n c= − , then a similarity graph admits c connected 

components. As a result, each of the connected components 

might be regarded as a cluster. 

 

III. THE PROPOSED FRAMEWORK FOR FEATURE SELECTION 

In this section, based on Laplace rank constraint and local 

structure preservation, an unsupervised feature selection 

model LRLSP is proposed. Its main idea is to preserve the 

local structure. Concretely, the model is divided into two 

parts. Firstly, the locally linear embedding and rank 

constraint are merged to generate a similarity matrix that 

includes all features. Secondly, the proposed feature selection 

model is created utilizing the aforementioned similarity 

matrix. Finally, the corresponding algorithm is designed to 

solve the LRLSP. 

 

A. Objective function 

Firstly, based on locally linear embedding and Laplace 

rank constraint, the objective function of the similarity matrix 

is calculated as follows: 
2

1 ( )
2

min
= 

− 
j k i

n

i ji j
W

i X N X
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. . 1, 0, ( ) .
=

=  = −
k

ji ji

j

s t W W rank L n c  (2) 

Since W  is a weight used to evaluate how important jX  

is in reconstructing 
iX , we impose the nonnegative 

constraint 0jiW  . In (2), the rank constraint aims to 

generate a similarity matrix with a c-block diagonal structure. 

Since ( )rank L n c= −  is a nonlinear constraint, (2) must be 

transformed into the following form: 
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where ( )i L  denotes the i-th minimum eigenvalue of L . 

( ) 0i L   indicates that L  is positive semidefinite. ( )i L  

will approach 0 when   is large enough. Thus, the optimal 

solution to (3) may satisfy the requirements of problem (2). In 

addition, according to [14], we have: 

 
,

1

( ) min ( ).
n c T

c

c
T

i
F R F F I

i

L Tr F LF
 =

=

=  (4) 

Therefore, we can further obtain (5) as the following form: 
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where L  is defined in section II.C. The weight matrix W  in 

the original space can be obtained via (5). It differs from the 

LLE method in that it considers block diagonal structures. 

In the following works, based on the weight matrix W , we 

introduce a projection matrix to reduce the dimensions while 

selecting features.  

Given that the original space contains a large amount of 

redundant information, the outcome of feature selection may 

be affected. We decide to learn the feature redundancy matrix 

using the cosine similarity method. After the model has 

removed redundant features, it learns more discriminant 

features and performs better in actual applications.  

According to the LLE assumption, when the original data 

iX  is reduced from the d to m dimensions, the new data can 

still be described as the same linear combination of its k 

nearest neighbors. This means that the weight matrix W  is 

preserved. Here, 
d mH R   is the projection matrix of 

features. The feature selection model is as follows. 
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where   is a regularization parameter, and ( )R H  denotes 

the regularized term.  

To remove redundant data, we define the redundancy 

matrix 
d dQ R   with 

2
T

i j

ij

i j

x x
Q

x x

 
 =
 
 

, where 
ix  and 

jx  are the feature vectors after centralization. 

cosT

i j i jx x x x = , where   is the angle between two 

vectors. When 0 = , the two vectors are linearly correlated, 

and their redundancy ijQ  is high. In contrast, when 90 = , 

the two vectors are linearly independent, with a redundancy 

ijQ  of 0. By introducing a redundant regularization term in 

(6), we can obtain: 
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where 0   is a parameter that controls the redundancy 

regularization term. Finally, we employ L2,1 norm to 

guarantee the sparsity while weakening the performance of 

outliers for projection matrix H . Hence, the sparsity of H  

is helpful for feature selections. Equation (7) can be written 

as: 
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Since the orthogonal constraint ensures that the data in the 

low-dimensional space is statistically irrelevant. Therefore, 

we add an orthogonal constraint to (8), and the LRLSP model 

is as follows:  
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After solving the problem (9), the top m-ranked features 

are selected according to 
2

( 1,2,..., ).iH i d=  From (5) and 

(9), we can observe that the low-dimension space has the 

same self-representation as the original space. Furthermore, 

some features with low redundancy can be selected by .H  

As a result, (9) can be used to select features and acquire 

additional discriminate features. 

 

B. Optimization 

In this section, we propose an optimization algorithm for 

the LRLSP. Since there are many variables in the algorithm, 

it is difficult to solve them together, so we use the alternative 

direction multipliers(ADMM) method to solve them. The 

algorithm solution is divided into two parts. The first step is 

to obtain the weight matrix with a sparse block diagonal 

structure by (5), and the second step is to obtain the 

projection matrix for feature selection by (9). The specific 

steps are as follows. 

1) Solving the weight matrix: There are two variables in 

(5), and we need to simplify them further. So we need to 

simplify the first term of (5): 
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where 
( ) [ , ,..., ]i d k

i i iX X X X R =   is the matrix 

containing the i-th sample, which copies k columns. The k 

nearest neighbors of the i-th sample represent 

1 2

( ) [ , ,..., ] .
k

i d k

j j jN X X X R =   For convenience, we 

denote 
( ) ( ) ( ) ( ) ( )( ) ( )i i i T i i k kA X N X N R = − −  . 

Denote 
2

1 2

n

ji i jj
B f f

=
= −  if the j-th sample belongs to 

the k nearest of the i-th sample, 0jiB =  otherwise. Thus, the 

(5) is equivalent to 
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Based on the aforementioned formulation, we can update 

W  and F  in an alternating method. 

a) update W , fix F  

Firstly, we need to solve the problem, which may be 

simplified as: 
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For the i-th sample, we have: 

 

( )

1

1
min

2

. . 1, 0.

T i T

i i i i
W

k

ji ji

j

W A W B W

s t W W



=

+

= 
 (13) 

Here, we solve (13) by quadratic programming[20]. 

b) update F , fix W  

We need to solve the problem, which may be summarized 

as: 

 
min ( )

. . , .

T

F

n c T

Tr F LF

s t F R F F I =
 (14) 

The optimal solution of F  is composed of the 

eigenvectors corresponding to the c minimum eigenvalues of 

L . Each optimization variable of the objective function (11) 

is handled using alternative strategies. The proposed iterative 

algorithm is shown in Algorithm 1. 

 

Algorithm 1 Optimization Algorithm for Problem (11) 

Input: Data matrix d nX R  , the number of the nearest 

neighbor k 

Output: The weight matrix 
n nW R   

1: Initialize the weight matrix 
n nW R  , pseudo label 

matrix n cF R   

2: Calculate the k nearest neighbor 
( )iN  of the i-th 

sample 

3: for 1 i = to n  do 

4:      update 
( ) ( ) ( ) ( ) ( )( ) ( )i i i T i i k kA X N X N R = − −   

5: end for 

6: while not converged, do 

7:      for 1 i = to n  do 

8:              update jiW  by quadratic programming 

9:      end for 

10: Calculate the eigenvectors corresponding to  

      eigenvalues of L  and update the pseudo label  

      matrix F by (14) 

11: end while 

 

2) Solving the projection matrix: To solve H , we simplify 

the first term of (9). 
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where ( ).nP X I W= −  According to [21],[22], we have 

2,1
( ),T

HH Tr H D H=   where 

2

1
( )H

i

D diag
H 

=
+

. 

Therefore, we have the following minimization objective 

function: 

 
min ( ( ) )

. . .

T T

H
H

T

m

Tr H P P D Q H

s t H H I

 + +

=
 (16) 

Therefore, the final objective function is as follows: 

 
min ( )

. . ,

T

H

T

m

Tr H MH

s t H H I=
 (17) 

where .T

HM P P D Q = + +  Similar to ,F  we can 

update H  and propose an additional efficient algorithm. 

Based on the above problem formulation, the proposed the 

LRLSP algorithm procedure is summarized in Algorithm 2. 
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C. Time complexity analysis 

When optimizing the objective function of LRLSP, the 

computational complexity of each parameter is as follows. 

The algorithm for solving 
( )iA  has a time complexity of 

2( )O dk . The F  is updated by the eigenvalue 

decomposition and its time complexity is 
3( )O n . The time 

complexity of M  is
2( ).O n d H has a time complexity of 

3( ).O d  So, the total computational complexity of the LRLSP 

algorithm is 
3 3 2 2( )O d n n d dk+ + + . Here d is the feature 

number of samples, k is the number of the nearest neighbor, 

and n represents the number of samples. 

 

D. Convergence of Algorithm 2 

In this part, we demonstrate the convergence of the 

Algorithm 2. The convergence is demonstrated by ensuring 

that the objective function decreases under the update 

procedures for each variable. Equations (11) and (17) have 

three separate variables, so we utilize the alternate iteration 

approach to solve them. The optimization approach is 

separated into two parts: updating F  and W  when H is 

fixed, and updating H  once F  and W  are fixed. Equation 

(13) is a constrained quadratic programming problem about 

iW , and 
( )iA  is a positive semi-definite matrix, therefore (13) 

can find the optimal solution. The approach for proving the 

monotonicity of the goal function is described in full below. 

Proof: Denote the objective value in the t-th iteration as 
( ) ( ) ( )( , , )t t tW F H . Algorithm 1 updates ,  ,  W F H with the 

optimal solution in each iteration, hence for the (t+1)-th 

iteration, it must hold: 

 
( 1) ( 1) ( 1) ( ) ( ) ( )( , , ) ( , , ).t t t t t tW F H W F H+ + +   (18) 

According to (13), we have: 

 
( 1) ( ) ( ) ( ) ( ) ( )( , , ) ( , , ).t t t t t tW F H W F H+   (19) 

According to (14), we have: 
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So, we have: 

 
( 1) ( 1) ( ) ( 1) ( ) ( )( , , ) ( , , ).t t t t t tW F H W F H+ + +    (21) 

According to (17), we have: 
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So, we have: 

 
( 1) ( 1) ( 1) ( 1) ( 1) ( )( , , ) ( , , ).t t t t t tW F H W F H+ + + + +  (23) 

Therefore, we can obtain: 

 
( 1) ( 1) ( 1) ( ) ( ) ( )( , , ) ( , , ).t t t t t tW F H W F H+ + +   (24) 

The above demonstrates how the objective function 

shrinks with each iteration. Furthermore, since functions (5) 

and (9) are convex in all variables, the algorithm converges. 

 

IV. EXPERIMENTS 

In this section, we will assess the effectiveness of the 

LRLSP approach on numerous public datasets. Additionally, 

the proposed algorithm is compared to other advanced 

unsupervised feature selection methods. Furthermore, the 

sensitivity influence of factors is investigated in depth. 

 

A. Datasets 

In the following experiments, six publicly available 

datasets are used to evaluate the performance of the LRLSP 

method. The detailed information on the datasets is 

summarized in Table I. 

 

 
 

B. Experimental setting 

To verify the effectiveness of the LRLSP algorithm, we 

compare it with eight advanced unsupervised feature 

selection methods, which include Laplacian score (LS)[23], 

multi-cluster feature selection method (MCFS)[24], 

unsupervised discriminant feature selection method 

(UDFS)[25], nonnegative discriminant feature selection 

method (NDFS)[26], feature selection method via low-rank 

approximation and structural learning (LRSL)[13], robust 

neighborhood embedded unsupervised feature selection 

algorithm (RNE)[8], unsupervised feature selection 

algorithm based on feature dependency (DUFS)[15], 

unsupervised feature selection method based on adaptive 

graph learning and constraint (EGCFS)[27], and all features 

selected (baseline).  

Algorithm 2 LRLSP unsupervised feature selection 

algorithm 

Input: Data matrix d nX R  , the number of cluster c, 

the hyper-parameters ,    , and the number of selected 

features m 

Output: Select the top m features according to the order 

1: Initialize the projection matrix d mH R   

2: Update W  by Algorithm (1) and calculate the 

redundancy matrix Q  

3: while not converged, do 

4:      update 

2

1
( )H

i

D diag
H 

=
+

 

5:    calculate the eigenvectors corresponding to the first 

m minimum eigenvalues of M  and update the 

projection matrix H by (17) 

6: end while 

 

TABLE I 
DATA DESCRIPTION 

Datasets #Instances #Features #Classes Data types  

COIL20 1440 1024 20 Face image 

ORL 400 1024 40 Face image 

Yale 165 1024 15 Face image 

Isolet 1560 617 26 Speech signal 

warpAR10P 130 2400 10 Face image 

Jaffe 213 676 10 Face image 
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Clustering accuracy (ACC) and normalized mutual 

information (NMI) are used to verify the effectiveness of the 

LRLSP algorithm. They fall within the range of [0,1]. The 

larger the value is, the better the algorithm is. 

Similar to the majority of published studies, the number of 

k nearest neighbors is set to 5 in all algorithms. Except for the 

baseline, the number of selected features ranges 

{50, 100,  ..., 300}  for all datasets. A grid search approach is 

used to fix the searching regions of   and   as {1 6, e −  

...,  1 5,  1 6}e e . In the LRLSP algorithm, the parameter   has 

an initial value of 0.1, and it is adjusted adaptively during the 

iteration to satisfy the rank constraint. Due to the 

initialization sensitivity of k-means clustering, we randomly 

generate initial values 20 times as an epoch. For calculating 

the mean and standard deviations, the experiments need to be 

repeated 10 times. 

 

C. Experimental results and analysis 

Firstly, the experimental results of ACC and NMI of all 

methods are shown in Table II and Table III. The ACC and 

corresponding standard deviations of 9 feature selection 

methods are displayed in Table II under the ideal dimensions. 

Likewise, Table III displays the NMI results for feature 

selection. The best results are highlighted in bold. The values 

in parentheses represent the number of features selected. It is 

easy to find that the performance of the LRLSP algorithm is 

superior to other advanced methods in most cases. For 

instance, as shown in Table I, our method achieved the 

highest accuracy on COIL20 datasets with the least number 

of selected features. This outcome highlights that excessive 

feature selection not only leads to redundancy but also 

compromises interpretability. Compared with other methods, 

the LRLSP algorithm improves the clustering accuracy by 

6.48%, and mutual information by 4.42%. This result 

suggests that we may select more discriminating features. 

Because our model obtains superior local geometry of the 

data, our method is superior to RNE in terms of results. In 

addition, the learned similarity matrix has a block diagonal 

structure, which makes it possible to accurately determine the 

relationship between the original samples. The Jaffe 

similarity matrix generated by the RNE method is shown in 

Figure 1(a), while the Jaffe similarity matrix generated by our 

method is shown in Fig. 1(b). 

At the same time, we can see that ACC does not increase 

with the increase of feature dimension. The most likely 

reason is that there is a lot of redundant information in the 

original data, and when the number of selected features 

reaches a certain number, adding more features will introduce 

a lot of redundant information. For example, in the dataset 

warpAR10P, when we select 250 features, the clustering 

accuracy of the algorithm is very high. However, as the 

number of features increases, the clustering accuracy of the 

algorithm decreases. It’s indicated that many redundant 

features are introduced. Overall, our algorithm achieves 

relatively optimistic clustering accuracy when selecting a few 

features in most cases.  

Secondly, as shown in Fig. 2, the results of ACC on 

different datasets are also displayed as curves. According to 

the graphic, the LRLSP algorithm is superior to other 

algorithms in most cases, especially when using the Yale 

datasets. However, in the Isolet datasets, the results of the 

LRLSP algorithm were lower than the baseline. One possible 

explanation is that the LRLSP algorithm selects 200 features 

out of 617, which means that the selected features are too few 

to express the data information well, resulting in poor 

clustering accuracy. 

 

 
Fig. 1. Block diagonal comparison diagram of the similarity 

matrix 

 

Finally, Fig. 3 shows the sensitivity of the two parameters 

(   and  ) when our algorithm selects 300 features. As 

shown in Fig. 3, our algorithm is insensitive in most cases. 

Unfortunately, we need to find the grid search strategy to 

better select the parameters. Therefore, for the datasets 

COIL20, Isolet, and Jaffe, the searching regions of   and   

are fixed as {1 6, ...,  1 1,  1}e e− −  and {1, ...,  1 5,e 1e6} , 

respectively. Concretely, datasets COIL20 have the best 

performance when 1 4,e = − 1 1.e =  Datasets Isolet have 

the best when 1 4e = − , 1 6e = , and Jaffe have the best 

when 1 3e = − , 1 4e = . Similarly, for datasets ORL, 

warpAR10P, and Yale, the searching regions of   and   

are all fixed as {1 6, ...,1 1,  1}.e e− −  Concretely, ORL 

datasets have the best performance when 

1 6,e = − 1 4.e = −  Datasets warpAR10P have the best 

when 1 2,  1 4,e e = − = −  and Yale has the best when  

1 6,  1 4.e e = − = −  

 
(a) similarity matrix obtained by RNE method 

 
 

(b) similarity matrix obtained by our method 
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TABLE II 
CLUSTERING ACCURACY OF DIFFERENT FEATURE SELECTION ALGORITHMS ON DIFFERENT DATASETS (ACC%±STD %) 

Datasets COIL20 Isolet Jaffe ORL warpAR10P Yale 

LS 60.01±2.76(250) 58.85±1.72(300) 95.31±7.71(250) 44.90±2.38(300) 21.00±0.00(300) 38.67±1.91(100) 

MCFS 62.87±1.64(200) 61.19±3.69(300) 90.94±5.13(200) 51.95±3.51(150) 22.77±2.06(250) 41.58±3.75(150) 

UDFS 61.11±2.33(300) 58.29±2.21(300) 82.39±4.56(300) 47.82±2.95(300) 40.92±3.05(250) 40.06±1.77(200) 

NDFS 57.73±2.17(300) 57.76±1.67(250) 81.97±1.98(250) 49.33±2.29(300) 30.77±1.54(200) 35.76±2.08(250) 

LRSL 57.89±2.42(300) 61.25±2.41(300) 81.88±4.00(150) 47.55±2.06(300) 30.15±2.29(150) 35.52±2.04(200) 

DUFS 56.51±3.42(300) 58.74±3.38(150) 82.91±4.63(300) 44.65±2.30(300) 34.38±6.62(250) 35.70±2.07(300) 

RNE 61.47±2.28(300) 49.44±2.72(250) 87.93±3.76(300) 51.25±2.35(250) 35.62±4.44(250) 43.52±2.88(250) 

EGCFS 52.15±1.40(300) 46.24±1.01(300) 88.87±4.85(250) 51.43±2.44(250) 31.85±3.25(50) 34.48±1.79(150) 

Baseline 62.70±3.27(1024) 63.55±2.52(617) 88.54±5.63(676) 51.57±1.46(1024) 25.31±2.47(2400) 40.55±1.68(1024) 

LRLSP 63.77±4.25(200) 61.50±3.96(200) 94.08±3.94(300) 52.20±1.83(200) 39.31±2.96(300) 50.00±2.71(150) 

 

               
 (a) COIL20 (b) Isolet 

                
 (c) Jaffe (d) ORL 

                  
 

 (e) warpAR10P (f) Yale 

 
Fig. 2. Clustering accuracy of different algorithms when the number of features takes different values 
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TABLE III 

NORMALIZED MUTUAL INFORMATION OF DIFFERENT FEATURE SELECTION ALGORITHMS ON DIFFERENT DATASETS (NMI ± STD%) 

Datasets COIL20 Isolet Jaffe ORL warpAR10P Yale 

LS 71.88±1.34(250) 74.35±0.63(300) 91.62±6.68(150) 67.58±0.89(300) 22.09±1.72(300) 44.02±1.03(100) 

MCFS 73.30±1.75(150) 75.14±1.28(300) 93.17±3.30(250) 74.76±1.55(250) 20.15±2.79(300) 47.79±2.93(150) 

UDFS 72.17±1.66(300) 74.21±2.21(300) 82.13±2.98(300) 69.81±1.10(300) 47.13±2.59(250) 47.82±2.17(250) 

NDFS 72.13±1.49(300) 70.98±1.49(250) 85.54±2.47(150) 71.07±1.11(300) 29.91±2.23(200) 43.48±1.64(200) 

LRSL 72.51±1.50(300) 75.67±0.86(300) 82.83±1.75(250) 70.19±0.73(300) 28.06±2.90(200) 42.50±1.52(200) 

DUFS 69.67±1.34(300) 74.98±1.37(150) 82.56±2.28(300) 67.83±1.17(300) 36.80±9.32(250) 43.13±1.32(300) 

RNE 73.48±0.92(300) 66.83±1.12(250) 87.75±5.20(250) 72.62±1.04(250) 38.30±3.64(250) 50.71±2.84(250) 

EGCFS 68.32±1.39(300) 63.83±1.32(300) 91.92±3.05(300) 73.04±1.22(250) 28.86±3.76(50) 41.53±1.37(150) 

Baseline 75.56±1.43(1024) 77.70±0.77(617) 89.28±3.91(676) 72.96±0.97(1024) 24.12±1.79(2400) 46.47±2.05(1024) 

LRLSP 74.84±0.70(250) 74.96±1.60(250) 94.13±2.33(300) 73.34±1.58(300) 45.62±2.48(250) 55.13±1.25(150) 

 

          
 (a) COIL20 (b) Isolet  

            
 (c) Jaffe  (d) ORL 

           
 (e) warpAR10P (f) Yale 

Fig. 3. Clustering accuracy of proposed algorithm in different parameters value when 300 features are selected 
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D. Convergence analysis 

In this section, we present the convergence analysis of 

Algorithm 2 based on the value of objective function across 

iterations. Fig. 4 illustrates the convergence curve of the 

LRLSP algorithm, where the COIL20 and Isolet datasets are 

displayed due to significant variations in initial objective 

function values. From Fig. 4, we can see that the objective 

function initially exhibits a sharp decline followed by a 

gradual decrease, ultimately stabilizing within the first six 

iterations. These results demonstrate that our algorithm 

achieves effective and rapid convergence. 

 

 
Fig. 4. Algorithm convergence curves of LRLSP 

E. Visualization of experiments 

In this section, the visualization experiments on the Swiss 

Roll datasets are presented in Fig.  5. The primary purpose is 

to demonstrate that LRLSP has effectively captured a more 

refined local manifold structure of the data. In Fig. 5(a), we 

have identified four points from the original Swiss Roll 

datasets and highlighted them with circles. Additionally, their 

corresponding three nearest neighbors are marked with 

asterisks. By comparing both figures, it is evident that the 

local manifold structure of the datasets remains unchanged 

when projected into the low-dimensional space. 

V. CONCLUSION 

In this paper, a novel robust method LRLSP based on 

Laplace rank constraint and local structure preservation is 

proposed for unsupervised feature selection. A weight matrix 

with a block diagonal structure is obtained by combining 

locally linear embedding and Laplace rank constraint. And 

then based on the local manifold and the above weight matrix, 

the projection matrix is obtained for feature selection. 

Moreover, a redundancy regularization term of the projection 

matrix is introduced to learn the redundancy from features, to 

select more discriminative features. Finally, we add the L2,1 

norm constraint to the projection matrix to avoid the 

influence of noise and improve the robustness of the 

algorithm. A series of experiments demonstrate that the 

LRLSP algorithm effectively selects more discriminative 

features. 

 

 
Fig. 5. Visualization of experiments on the Swiss Roll 
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