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Abstract—In real-world scenarios, Deep Neural Network
(DNN)-powered Keyword Spotting (KWS) systems are typi-
cally engineered as lightweight architectures, optimizing for
superior performance and low computational complexity in
resource-limited devices. However, such lightweight designs
often encounter limitations in generalization, particularly when
it comes to customizing keywords. This paper presents a two-
stage method to customize a Mandarin KWS system rapidly.
First, we propose an embedding model to learn the embedding
representations of general Mandarin keywords. Subsequently,
we facilitate keyword customization with the generalization
capability of embedding models through few-shot transfer
learning. To improve performance further, in the embedding
model, we introduce two scale blocks to fuse acoustic features
and employ an Enhanced Extended Long Short-Term Memory
(ExLSTM) as the backbone. Experimental results on both En-
glish and Mandarin keyword datasets highlight the advantages
of the proposed embedding model. In addition, we conduct
keyword customization on a self-recorded dataset containing
10 Mandarin keywords. The impressive average accuracy of
97.45% with merely five target samples demonstrates the
effectiveness of our method.

Index Terms—keyword spotting, extended long short-term
memory, feature fusion, embedding representations, transfer
learning

I. INTRODUCTION

KEYWORD Spotting (KWS) currently stands as a focus
within speech signal processing research. One of its

notable applications is in voice wake-up systems, which
have been widely integrated into various products in human-
machine interaction scenarios. In recent years, the voice-
control functions in mobile phones and smart speakers have
sparked significant interest among Chinese consumers. The
huge market propels extensive research efforts in the domain
of Mandarin KWS [1], [2].

Thanks to the rapid advancements in Deep Learning
(DL) technologies, the Deep Neural Network (DNN) has
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made remarkable improvements in enhancing the perfor-
mance of KWS systems [3], [4], [5]. Consequently, numerous
lightweight KWS systems, characterized by high accuracy,
low false alarm rate [6], and low latency [7], have been
successfully deployed in resource-limited devices.

Despite these significant advancements, a common lim-
itation of many KWS systems lies in their reliance on
predefined keywords, thereby preventing users from defining
personalized keywords of their preference. This constraint
not only raises privacy concerns, as unauthorized users
may inadvertently activate personal devices [5], [8], but
also brings challenges for users with accents, potentially
diminishing their overall user experience due to the difficulty
of a standard pronunciation.

Even though keyword customization has garnered growing
attention in the KWS field [4], [9], the generalization capa-
bility of DNN is often limited to its lightweight architectures
[10], [11], which will compromise the performance of cus-
tomization. To address this challenge, this paper introduces
a two-stage method to rapidly customize a Mandarin KWS
system. In the first stage, a novel embedding model is
proposed to effectively learn embedding representations from
a large-vocabulary dataset. Subsequently, the second stage
leverages few-shot transfer learning to efficiently perform the
keyword customization process. Our main contributions are
listed as follows:

1) To enhance the robustness of the embedding model, we
design two simple scale blocks based on Convolutional
Neural Networks (CNN) to fuse acoustic features.

2) An Enhanced Extended Long Short-Term Memory
(ExLSTM) is proposed as the backbone of the em-
bedding model for efficient feature extraction.

3) We compile a real-life dataset to evaluate the perfor-
mance of our customized KWS systems. The promis-
ing outcomes demonstrate the effectiveness of our
approach.

The rest of this paper is organized as follows: Section
II discusses related work, Section III details our proposed
framework, Section IV presents experimental details and
results, and Section V concludes the paper.

II. RELATED WORK

In the field of DL, KWS is conventionally formulated as
an audio classification task. This process involves extracting
acoustic features, which represent the intrinsic characteristics
of the audio signal, from raw data for subsequent analy-
sis by DNN models. The traditional acoustic features are
often derived from Short-Time Fourier Transform (STFT)
methods, including Mel-spectrogram and Mel-Frequency
Cepstral Coefficients (MFCC). These handcrafted features
effectively capture both the temporal and spectral content
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of audio signals, exhibiting robustness to background noise
[12]. Consequently, they have been widely adopted in KWS
applications [7], [13].

However, it has been observed that STFT-based features
inherently suffer from the loss of large-scale information
owing to their fixed resolution. Furthermore, these features
exhibit a lack of translation invariance, thereby reducing their
robustness in real-world environments [14]. To address these
shortcomings, wavelet scattering was proposed as a more
effective transformation for audio signals, demonstrating
promising outcomes in audio classification tasks [15], [16].
This advancement offers a solution to the limitations of
traditional acoustic features, enhancing the performance of
KWS systems in diverse and challenging conditions.

Meanwhile, significant efforts have been directed towards
designing novel DNN architectures to improve KWS perfor-
mance. For instance, the lightweight models like DFSMN
[3], MatchboxNet [17], and AdderNet [18] were developed
specifically for real-life applications, catering to the demands
of efficiency and practicality. Additionally, attention mecha-
nisms and Transformer-based structures have shown success
in handling the challenges of KWS, as evidenced by studies
like [7] and [19]. Nevertheless, their quadratic complexity
concerning the length of input sequences limits their scala-
bility and applicability in resource-limited scenarios.

Several studies have delved into exploring efficient model
optimization techniques to advance the field [20]. One
promising approach is the utilization of low-rank approxi-
mation, which has demonstrated advantages in significantly
reducing model size, as seen in [21]. Furthermore, techniques
such as broadcasted residual learning [22] and advanced con-
volutional methods (e.g., 1-dimensional convolution, depth-
wise convolution, dilated convolution) were employed to
enhance computational efficiency [23], [24].

As previously noted, keyword customization has emerged
as a hot topic in KWS applications. When it comes to
traditional DL approaches, the development of a user-defined
KWS system requires a substantial collection of target sam-
ples and entails retraining an end-to-end DNN model, which
will be time-consuming. Recently, the Query-by-Example
(QbyE) method has garnered significant attention due to
its ability to facilitate keyword customization on resource-
limited devices [4], [8]. However, ensuring the robustness of
QbyE in real-world applications remains a challenge [9].

Researchers also approached KWS as a subset of Large
Vocabulary Continuous Speech Recognition (LVCSR), where
keyword customization revolves around identifying target
phonemes [2]. Nevertheless, these LVCSR-based models of-
ten consume significant computing resources. Alternatively,
transfer learning has emerged as a practical solution for cus-
tomized KWS, offering advantages in customization across
different languages with minimal effort and resources [25].

III. PROPOSED METHOD

Our proposed method is illustrated in Fig. 1. It consists of
two stages, namely, the training of the embedding model and
few-shot transfer learning, which will be described in detail
next.

A. Embedding Model

The embedding model is trained to learn embedding
representations of diverse keywords from a large-vocabulary
dataset encompassing general keyword patterns. The objec-
tive of this training is to enhance the model’s generalization
capability for its effectiveness in keyword customization. The
model architecture consists of three main components:

1) Feature Extractor: The feature extractor com-
putes a 128-dimensional Mel-spectrogram and a 32-
dimensional MFCC feature, leveraging a Hann window
of 32 milliseconds with a 16-millisecond overlap. This
integrated functionality within the embedding model
streamlines the process, facilitating an end-to-end ar-
chitecture for future deployment.

2) Scale Blocks: The scale blocks comprise two con-
volutional blocks designed to scale the frequency di-
mensions and merge the channel dimensions of the
extracted features. Each block uses a CNN structure
to enhance the model’s ability to capture higher-level
abstractions of the acoustic features.
Specifically, the Mel-spectrogram and MFCC features
are scaled to 32-dimensional feature maps and subse-
quently concatenated, forming an 8-channel input for
the backbone network. Within the two scale blocks,
the convolutional layers use a kernel size of (5,5) and
a stride of (1,1), ensuring that the input size is main-
tained through the implementation of same-padding.
The number of output channels for these convolutional
layers is set to 4, which is then followed by batch
normalization, ReLU activation function, and a dropout
layer with a dropping rate of 0.5. Notably, “Scale
Block 1” incorporates an additional max-pooling layer
with a pooling size of (1,2) to downsample the Mel-
spectrogram.

3) Backbone: The backbone network aims to capture
more comprehensive patterns from the fused acoustic
features. For comparison, various DNN structures were
deployed as backbone candidates in the experiment,
with their specific details outlined in Appendix A.
Within this study, our primary focus lies in refining
and enhancing the Extended Long Short-Term Mem-
ory (xLSTM) model, as described in the subsequent
section. The output layer of the backbone is a dense
layer equipped with a softmax activation function for
a multi-category audio classification task.

B. Extended Long Short-Term Memory

1) Vanilla LSTM: The Long Short-Term Memory (LSTM)
network was introduced to mitigate the training chal-
lenges commonly associated with Recurrent Neural Net-
works (RNNs). LSTM incorporates the idea of the constant
error carousel and gating mechanisms that allow for better
retention of long-term dependencies, leading to numerous
successful applications across the domain of DL [26], [27].
Given input features xt at the current frame t and the hidden
state ht−1 from the previous frame t − 1, the update rules
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Fig. 1. The diagram of the proposed method. The left panel illustrates the embedding model with scale blocks. In the ablation experiments, the Mel-
spectrogram or MFCC features are directly fed into the backbone, bypassing ”Scale Block 1” and ”Scale Block 2”. The right panel depicts the few-shot
transfer learning process for customizing KWS models.

of a vanilla LSTM memory cell can be formulated as [28]:

input gate : it = σ (W ixt +Riht−1 + bi) (1)
forget gate : f t = σ (W fxt +Rfht−1 + bf ) (2)
output gate : ot = σ (W oxt +Roht−1 + bo) (3)
cell input : zt = φ (W zxt +Rzht−1 + bz) (4)
cell state : ct = f t ⊙ ct−1 + it ⊙ zt (5)

hidden state : ht = ot ⊙ ψ (ct) (6)

For the input gate, forget gate, output gate, and cell input in
Eqs. (1)-(4), there are respective input weight matrices W
applied to the inputs xt, and recurrent weight matrices R ap-
plied to the hidden state ht−1, along with corresponding bias
vectors b. σ represents the Sigmoid function. The symbol ⊙
in Eqs. (5) and (6) denotes the point-wise multiplication of
two vectors. φ and ψ are the activation functions (typically
Tanh).

However, when handling very long sequences or requiring
higher-dimensional features, LSTM exhibits several limita-
tions, which can be categorized into three main aspects [29]:

• Inability to revise storage decisions. LSTM encounters
difficulties in efficiently updating stored values when
confronted with similar information, potentially com-
promising its performance in tasks that require dynamic
updating of stored information.

• Limited storage capacity. LSTM compresses informa-
tion into scalar values, inherently limiting its capacity
to effectively store and retrieve complex data patterns,
especially in scenarios involving rare labels or long-
range dependencies.

• Lack of parallelizability due to memory mixing. The
memory mixing mechanism in LSTM involves depen-
dencies between hidden states across temporal frames,
thereby enforcing sequential processing and hindering
computation parallelization.

To address these limitations, the xLSTM was proposed to
enhance the capabilities of the vanilla LSTM by introduc-
ing new gating mechanisms and storage structures [29]. It
includes two types of modules: Scalar LSTM (sLSTM) and
Matrix LSTM (mLSTM).

2) Scalar LSTM: sLSTM innovatively adopts exponential
activation functions for both its input and forget gates,
deviating from the conventional Sigmoid functions utilized
in vanilla LSTM architectures, as shown in Eqs. (7)-(8). This
exponential gating empowers the model to dynamically adapt
to changes, facilitating rapid integration of new information
and more efficient updating of stored memories. Additionally,
sLSTM introduces a normalizer state to enhance model sta-
bility during the processing of long sequences, as illustrated
in Eqs. (9)-(10). The combination of exponential gating and
the normalizer state enables the model to make more adaptive
storage decisions, enhancing its overall performance.

input gate : it = exp (W ixt +Riht−1 + bi) (7)
forget gate : f t = exp (W fxt +Rfht−1 + bf )

(8)
normalizer state : nt = f t ⊙ nt−1 + it (9)

hidden state : ht = ot ⊙
(
ct ⊙ n−1

t

)
(10)

3) Matrix LSTM: In line with sLSTM, mLSTM utilizes
the same activation functions for its input, forget, and output
gates, with the exclusion of the recurrent weight matrix
R to facilitate parallelization, as shown in Eqs. (11)-(13).
Drawing from Transformer terminology, mLSTM introduces
query, key, and value vectors through linear projections of the
input xt, as specified in Eqs. (14)-(16), where d denotes the
dimensionality of these vectors. In mLSTM, the forget gate
f t and the input gate it corresponds to the decay rate and
the learning rate of the covariance update rule respectively
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[29], as formulated in Eq. (17).
Notably, the cell state of mLSTM transitions from a vector

c ∈ Rd, as seen in the vanilla LSTM (Eq. (5)), to a matrix
C ∈ Rd×d, significantly enhancing the storage capacity of
models. Furthermore, the normalizer state nt is computed
as a weighted sum of the key vectors (Eq. (18)), while the
output state scales the retrieved vector to yield the hidden
state ht (Eq. (19)).

input gate : it = exp (W ixt + bi) (11)
forget gate : f t = exp (W fxt + bf ) (12)
output gate : ot = σ (W oxt + bo) (13)
query input : qt = W qxt + bq (14)

key input : kt =
1√
d
W kxt + bk (15)

value input : vt = W vxt + bv (16)

cell state : Ct = f t ⊙Ct−1 + it

(
vtk

⊤
t

)
(17)

normalizer state : nt = f t ⊙ nt−1 + it ⊙ kt (18)

hidden state : ht = ot ⊙
qtCt

max
(∣∣ntq⊤

t

∣∣ , 1) (19)

In summary, the exponential gating mechanism and nor-
malization significantly enhance LSTM’s capacity to dy-
namically update stored information. The introduction of a
high-dimensional cell state and parallel computing further
boosts LSTM’s storage capability and accelerates the training
process. Moreover, xLSTM incorporates multi-head mech-
anisms and stabilization techniques, resulting in improved
performance across a wide range of applications [30]. The
architectures of sLSTM and mLSTM are depicted in Fig.
2. For further details, readers are encouraged to refer to the
original paper [29].

4) Enhanced xLSTM: The original xLSTM, depicted in
grey in Fig. 2, leverages historical information and ensures
low latency in real-world applications. Convinced that incor-
porating future information has the potential to significantly

boost performance, we introduce a memory block to both
sLSTM and mLSTM, as highlighted in yellow in Fig. 2. This
integration of both historical and future information signifi-
cantly enhances the models’ capabilities, as demonstrated in
numerous sequential tasks [3], [31]. Consequently, we call
the proposed structure Enhanced xLSTM, or ExLSTM for
short.

The design of the memory block is inspired by DFSMN,
a framework renowned for its low computational complexity
and high efficacy in the field of speech recognition [31].
The computational process within this memory block is
formulated as follows:

pt = V xt + bv (20)

p̃t = pt +

N1∑
i=0

ai ⊙ pt−i +

N2∑
j=1

cj ⊙ pt+j (21)

mt = Up̃t + bu. (22)

Here, Eq. (20) represents a linear projection that transforms
the input xt into a higher-dimensional space, denoted as
z. Subsequently, the encoding of both historical and future
information is carried out using Eq. (21), where the sym-
bol ⊙ means element-wise multiplication. Specifically, N1

represents the look-back order, referring to the number of
historical items considered from the past, and N2 is the look-
ahead order, representing the size of the look-ahead window
into the future. Finally, the encoded result p̃t is projected
back to the original space using Eq. (22).

For clarity, a comparison between the causal convolution
utilized in xLSTM and the memory blocks integrated into
ExLSTM is presented in Fig. 3. Notably, the overall latency τ
of ExLSTM is dependent on the look-ahead order N2 within
each memory block, which can be computed using Eq. (23).
Here, L denotes the total number of memory blocks, and N l

2

represents the look-ahead order of the l-th memory block. In
real-time applications, the look-ahead order can be flexibly
adjusted to meet specific latency requirements. As shown in
Appendix A, our experimental setup featured N2 = 4 and
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Fig. 2. The blocks of sLSTM and mLSTM, as shown in the left panel and right panel, respectively. The original design is colored in grey. The integration
of memory blocks that are colored in yellow results in the proposed Enhanced xLSTM.
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N2 = 2 for mLSTM and sLSTM respectively, resulting in a
latency of 6 frames.

τ =
L∑

l=1

N l
2 (23)

Output frameInput frame Padding frame Future frame

Memory sizeConvolution Kernel Memory block

Causal Convolution Memory Network

Fig. 3. Left panel: the causal convolution with a kernel size of three frames.
Right panel: the memory block with N1 = N2 = 2.

C. Few-Shot Transfer Learning

Upon completion of training, the parameters of the embed-
ding model are frozen to extract embedding representations
that serve as the foundation for customizing a KWS system
using few-shot transfer learning. To this end, we append a
trainable dense layer (”Dense t” in the right panel of Fig. 1),
consisting of 128 units with a Tanh activation function, to
the head of the embedding model to compile a KWS model.
The output layer utilizes a softmax activation function and
is optimized using the cross-entropy loss function, which
is widely employed for multi-category audio classification
tasks.

To facilitate the training of KWS models through few-
shot transfer learning, we structure three categories of input
data: samples of the target keyword, samples of non-target
keywords, and background noise. Consequently, this setup
translates into a 3-category audio classification task. The
preparation and utilization of the datasets are critical for this
stage, and further details are provided in the experimental
section IV-C.

IV. EXPERIMENTS

Our experiment involves two types of datasets. The first
type comprises open-source keyword datasets used to train
embedding models, including the public Google Speech

Commands (GSC) dataset and a collected Mandarin keyword
dataset for investigating English and Mandarin keywords,
respectively. The second type is a compact self-recorded
Mandarin dataset designed specifically for few-shot transfer
learning.

All audio samples within the datasets have been converted
to WAV format, ensuring a standardized sampling rate of
16,000 Hz and a mono-channel configuration. We conducted
all experiments using TensorFlow 2.9, except for the xLSTM
and ExLSTM backbones, which utilized PyTorch 2.3. The
training efficiency was significantly enhanced by an NVIDIA
GeForce RTX 3060 GPU.

The structures of the backbones are detailed in Appendix
A. In the Appendix section, the parameters not listed were
configured to the default values as specified in the code
references for Tensorflow 2.9 or PyTorch 2.3. The “-” denotes
that the parameters were set to be the same as those for the
GSC dataset. The code references are partly borrowed from
GitHub: kws streaming (https://github.com/google-research/
google-research/tree/master/kws streaming), DFSMN
(https://github.com/yangxueruivs/DFSMN), MatchboxNet
(https://github.com/dominickrei/MatchboxNet), NX-AI
(https://github.com/NX-AI/xlstm).

A. Datasets

1) Google Speech Commands Dataset: The English
speech commands dataset, provided by Google and widely
adopted in the KWS field, was utilized in our experiments in
its V2 version [32]. This dataset consists of 105,829 audio
recordings, each containing one of 35 keywords and lasting
one second. To ensure consistency and comparability with
prior work, we followed the same data split ratio of 8:1:1
as outlined in [33], resulting in training, validation, and
testing sets comprising 84,843, 9,981, and 11,005 samples,
respectively.

2) Mandarin Keyword Dataset: We extensively re-
viewed several open-source Mandarin keyword datasets,
including the Multilingual Spoken Words Corpus [34],
aidatatang 200zh (http://www.openslr.org/62/), AISHELL-3
[35], and SHALCAS22A (http://www.openslr.org/138/). To
enhance the model’s generalization capability while consider-
ing the characteristics of Mandarin keywords, we selected the
keywords consisting of 2 to 4 Chinese characters, ensuring
that each keyword has at least 10 samples.

Furthermore, we selected samples with durations ranging
from 0.9 to 2.5 seconds and volume levels between -40 dB
and -10 dB to facilitate effective data augmentation. This
approach allowed us to compile a comprehensive Mandarin
dataset of 191 keywords, with a total of 7,690 samples. The
distribution of these samples across individual keywords is
depicted in Fig. 4.

Another important consideration was the duration con-
straint imposed on the Mandarin keyword samples, which
was set to 2.5 seconds. Samples shorter than 2.5 seconds
were padded with zeros to meet this duration requirement.
Following this pre-processing step, the dataset was then
randomly split into three sets with a ratio of 7:2:1 for
training, validation, and testing, respectively.

3) Background Noise Dataset: We employed the TUT
Acoustic Scenes 2017 dataset (TAS) [36] as a source of
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Fig. 4. The distribution of samples in the Mandarin keyword dataset.

background noise, leveraging its diversity of various acoustic
environments. Specifically, we selected noise samples with
volume levels ranging from -50 dB to -20 dB, ensuring a
comprehensive representation of environmental disturbances.
This selection process resulted in a collection of 4,266 back-
ground noise samples, each with a duration of 10 seconds.

In the classification task for English keywords, the TAS
samples were segmented into 1-second clips, and 75% of
these clips were randomly assigned to training, validation,
and testing sets in an 8:1:1 ratio. These TAS clips were
combined with the GSC dataset to create a 36-category
classification task (35 English keywords and 1 background
noise category) on the embedding models. The remaining
25% of TAS clips were reserved for data augmentation
purposes. This splitting strategy is illustrated in the top panel
of Fig. 5.

Regarding another task, the TAS samples were segmented
into 2.5-second clips, and 70% of these clips were randomly
divided for classification and data augmentation in a 3:1
ratio. Subsequently, the clips designated for classification
were split randomly into training, validation, and testing sets
with a ratio of 7:2:1, as illustrated in the middle panel of
Fig. 5. These clips were then combined with the Mandarin
keyword dataset to form a 192-category classification task
(191 Mandarin keywords and 1 background noise category)
on the embedding models. Meanwhile, the remaining 30%
of TAS clips were reserved for transfer learning, following
a similar splitting strategy as for the embedding models.

B. Training Embedding Model

For each classification task, the training dataset served
as the foundation for training the embedding models over
25,000 batch steps, using a linearly decaying learning rate
and the Adam optimizer. The initial learning rate was set
to 0.01, and the batch size was fixed at 128. To enhance
the robustness of the models, data augmentation techniques,

including SpecAugment [37] and Cutout [38], were strategi-
cally employed.

Throughout the training process, we evaluated the perfor-
mance of the embedding models by utilizing the validation
dataset at every 200 steps. Upon completing training, the
model that demonstrated the highest validation accuracy was
selected for further evaluation on the testing dataset. The
test accuracy scores achieved by different acoustic features
and various backbones are compared in Fig. 6. More details
are recorded in Tab. I. In the table, the number of model
parameters is recorded in thousands. “Fusion” means that
we used the proposed scale blocks, i.e., fusing the Mel-
spectrogram and MFCC features.

Upon comparing the acoustic features, it can be found
that the utilization of scale blocks contributes to improving
accuracy while maintaining a relatively small model size in
most cases. Specifically, for the GSC dataset, the “Inception-
ResNet” and “xLSTM” backbones performed better when
fed with MFCC features. Similarly, this trend was also
observed with the “CNN” and “Xception” backbones when
working with the Mandarin keyword dataset. However, it is
noteworthy that the Mel-spectrogram feature consistently led
to the largest volumes of model size.

Regarding the backbones, the original “xLSTM” has
achieved high accuracy scores in some cases, with a model
size of fewer than 25,000 parameters when using MFCC or
fused features. Our proposed “ExLSTM” enhanced the per-
formance further and showed the best results in all cases. An
interesting observation is that, despite the increased duration
of samples in the Mandarin keyword dataset, the number of
“ExLSTM” parameters did not increase significantly. This
advantage can be largely attributed to its Maxpool layer, as
detailed in Appendix A. More potentialities of ExLSTM are
to be discovered in the future.

C. Transfer Learning for Customized Keywords
To establish an evaluation dataset for keyword customiza-

tion, we recruited 15 participants (9 males and 6 females)
aged between 18 and 32 years to record 10 famous Mandarin
wake-up words. These words served as the keywords for
our study, each consisting of 4 Chinese characters in pinyin
format, as depicted in Tab. II. To ensure the authenticity of
the recordings, we developed a dedicated Android applica-
tion, allowing us to gather the data under realistic conditions.
Each participant was tasked with reading all keywords and
repeating each keyword at least 20 times for sample diversity.

For the set of 10 wake-up words, we successively desig-
nated one as the target keyword and carried out 10 trials for
each. In each trial, we randomly selected K target samples
and applied the same augmentation strategies outlined in
section IV-B to generate 2,000 augmented target samples.
Here, K varied from 1 to 5 for comparative purposes. Simul-
taneously, we randomly chose 2,000 non-target samples from
the remaining 9 keywords and 2,000 background noise clips
from the specified TAS described in section IV-A3. These
samples were combined with the 2,000 augmented target
samples to construct the training dataset. The remaining
samples were randomly divided into validation and testing
sets using a 7:3 ratio. The preparation of the self-recorded
dataset for transfer learning is illustrated in the bottom panel
of Fig. 5.

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 1933-1942

 
______________________________________________________________________________________ 



TAS
(1s)

GSC
Train: 80%

Test: 10%
Validation: 10%

Train: 80%

Test: 10%
Validation: 10%Classification: 75%

Data Augmentaiton: 25%

Train: 70%

Test: 10%
Validation: 20%

TAS
(2.5s)

Embedding 
Model: 70%

Transfer Learning: 
30% Train: 70%

Test: 10%
Validation: 20%

Test: 10%

Train: 70%
Validation: 20%

Self-
recorded

Target 
Word

non-Target 
Word

Few-shot: #K

Remaining
Randomly
Choose

2000

Remaining Test: 30%
Validation: 70%

Test: 30%
Validation: 70%

Augmented: 2000

2000

Train: 
6000

Mandarin

Classification Task 1

Classification Task 2

Transfer Learning

Data Augmentation: 25%

Classification: 75%

Classification: 75%

Data Augmentation: 25% Randomly Choose

Fig. 5. The dataset splitting strategies in each experimental step.

TABLE I
RESULTS OF THE EMBEDDING MODELS FOR TWO DATASETS, BASED ON DIFFERENT ACOUSTIC FEATURES AND BACKBONES.

Backbones
Google Speech Commands Mandarin Keyword Dataset

Mel-spectrogram MFCC Fusion Mel-spectrogram MFCC Fusion
Acc. #Param. Acc. #Param. Acc. #Param. Acc. #Param. Acc. #Param. Acc. #Param.

CNN [39] 15.72% 205.3 72.68% 45.5 78.16% 47.1 71.44% 823.2 76.76% 165.8 76.56% 167.3
Xception [40] 92.49% 67.1 89.54% 51.7 92.26% 52.8 88.72% 194.2 89.60% 163.5 89.21% 164.6
Inception-ResNet [41] 93.75% 65.6 93.21% 50.2 92.23% 51.3 63.48% 168.3 81.49% 152.9 91.26% 154.0
GRU [39] 75.43% 82.0 80.13% 53.2 92.46% 54.3 72.27% 198.0 77.05% 161.1 86.57% 162.2
DFSMN [31] 86.08% 73.1 85.73% 48.5 93.44% 51.6 86.23% 213.8 84.67% 164.7 88.13% 167.8
MatchboxNet [17] 81.69% 88.7 81.33% 54.9 84.31% 56.0 71.92% 292.5 79.79% 157.3 86.52% 158.4

xLSTM [29] 91.74% 316.3 93.31% 23.8 92.23% 24.9 88.64% 231.5 91.28% 21.2 91.96% 22.2
ExLSTM (proposed) 94.2% 416.2 94.54% 51.4 95.31% 52.4 88.87% 436.3 92.36% 56.5 94.48% 57.6

In this step, we leveraged the embedding models equipped
with scale blocks. Different backbones were compared to
extract embedding representations. As mentioned in section
III-C, a dense layer was appended to the head of the
embedding model to construct the KWS model. The hyper-
parameters for training the KWS models were configured
identically to those employed for the embedding models,
except for reducing the training steps to 1,000 and setting an
initial learning rate of 0.005 to stabilize the training process.

As depicted in Fig. 7, we averaged the test accuracy scores
of all customized KWS models and conducted a comparative

analysis across varying K values. It can be found that the
performance of all backbones presented a roughly upward
trend as K increased. Specifically, the ExLSTM backbone
achieved the best performance with an overall average ac-
curacy of 97.45% when K = 5. For this specific scenario,
the detailed average accuracy scores corresponding to each
target keyword are presented in Tab. II.

V. CONCLUSIONS

KWS applications require high performance and low com-
putational complexity. We introduce a two-stage method for
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Fig. 6. The test accuracy scores and model sizes of the embedding models with various backbones for two datasets.

TABLE II
THE MANDARIN WAKE-UP WORDS DEFINED BY CHINESE COMPANIES.
THE THIRD COLUMN DISPLAYS THE TEST ACCURACY SCORE OF THE
KWS MODEL AVERAGED OVER 10 TRIALS. EACH KWS MODEL WAS

CUSTOMIZED BY THE CORRESPONDING WAKE-UP WORD, WITH
EXLSTM AS THE BACKBONE, UNDER THE SETTING OF K = 5.

Wake-up Word Company Acc. #Samples

ding1 dong1 ding1 dong1 JD 98.57% 346
ni3 hao3 wen4 wen4 Mobvoi 99.84% 377
tian1 mao1 jing1 ling2 Alibaba 97.03% 355
xiao3 ai4 tong2 xue2 Xiao mi 98.22% 342
xiao3 bu4 xiao3 bu4 OPPO 96.62% 351
xiao3 di2 xiao3 di2 BYD 96.08% 346
xiao3 du4 xiao3 du4 Baidu 96.29% 341
xiao3 mei3 xiao3 mei3 Midea 98.21% 335
xiao3 ya3 xiao3 ya3 Ximalaya 97.16% 371
xiao3 yi4 xiao3 yi4 Huawei 96.46% 333

Avg. 97.45% Total 3497

rapid customization of KWS systems. In the first stage, we
demonstrate the efficacy of scale blocks and lightweight
ExLSTM backbone in learning embedding representations
from large-vocabulary datasets. In the second stage, we
leverage few-shot transfer learning to effectively transfer
these embedding representations to target keywords. The en-
couraging outcomes from our self-recorded Mandarin dataset
indicate the practical significance of our approach in this
field. Moving forward, our future work will concentrate on
developing keyword customization applications for micro-
controllers like STM32.
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Fig. 7. Average test accuracy scores of the customized KWS models with
different K values.
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THE STRUCTURES OF THE BACKBONES FOR TWO
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Backbones Parameters Google Speech Commands Mandarin Keyword Dataset

CNN [39]
(Code Ref.: kws streaming)

Conv filters
Conv activation functions

Flatten drop rate
Dense units

Dense activation functions

[8, 8, 8, 8, 16, 8, 16]
[ReLU]× 7
0.5
[8, 16]
[Linear,ReLU]

[8]× 7
-
-
-
-

Xception [40]
(Code Ref.: kws streaming)

Conv filters
Conv kernels

Conv activation functions
MaxPooling strides

Dense units
Dense activation functions

[32, 32, 64, 128]
[(5, 5)]× 4
[ReLU]× 4
[(2, 1)]× 4
[128]
[ReLU]

[64, 64, 128, 256]
-
-
-
-
-

Inception-ResNet [41]
(Code Ref.: kws streaming)

Conv filters 1
Conv kernels 1

Conv activation functions 1
Conv filters 2 - branch 0
Conv filters 2 - branch 1
Conv filters 2 - branch 2

Conv kernels 2
Conv activation functions 2

Conv residual scale 2
MaxPooling strides 2

[32]
[(5, 1)]
[ReLU]
[32, 32, 32]
[32, 32, 32]
[32, 32, 32]
[(3, 1), (5, 1), (5, 1)]
[ReLU]× 3
[0.2, 0.5, 1.0]
[(2, 1), (2, 1), (1, 1)]

-
-
-
-
-
[64, 64, 64]
[64, 64, 128]
-
-
-
-

GRU [39]
(Code Ref.: kws streaming)

GRU units
Flatten drop rate

Dense units
Dense activation functions

[100]
0.1
[64, 64]
[Linear,ReLU]

[128]
-
[128, 256]
-

DFSMN [31]
(Code Ref.: DFSMN)

Conv filters
Conv kernels

Conv activation functions
Conv drop rate

AveragePooling size
DFSMN input size

DFSMN hidden size
DFSMN output size

DFSMN left memory
DFSMN right memory

DFSMN strides
DFSMN activation functions

DFSMN drop rate

[32, 32, 64]
[(3, 3)]× 3
[ReLU]× 3
0.5
[(1, 2)]× 3
[32, 32]
[64, 64]
[32, 32]
[15, 15]
[5, 5]
[1, 1]
[ReLU]× 2
0.5

[32, 64, 128]
-
-
-
-
[32, 32, 32]
[128, 128, 128]
[32, 32, 32]
[15, 15, 15]
[5, 5, 5]
[1, 1, 1]
[ReLU]× 3
-

MatchboxNet [17]
(Code Ref.: MatchboxNet)

Prologue conv filters
Prologue conv kernels
Prologue conv strides

Prologue conv activation functions
Intermediate block channels (C)

Intermediate block kernels
Repeat sub-blocks (R)

Epilogue conv filters
Epilogue conv kernels

Epilogue conv dilations
Epilogue conv activation functions

32
11
2
ReLU
32
[13, 15, 17, 19, 21, 23]
2
[16, 16]
[29, 1]
[2, 1]
[ReLU]× 2

128
-
-
-
-
-
-
[64, 64]
-
-
-

xLSTM [29]
(Code Ref.: NX-AI)

Structure
mLSTM: Conv1D kernel
sLSTM: Conv1D kernel

Number of heads

mLSTM→sLSTM→AvgPool
11
11
1

mLSTM→mLSTM→MaxPool
7

%
-

ExLSTM (proposed)
(Code Ref.: DFSMN,NX-AI)

Structure
mLSTM: Conv1D kernel

mLSTM: Look-back order N1

mLSTM: Look-ahead order N2

sLSTM: Conv1D kernel
sLSTM: Look-back order N1

sLSTM: Look-ahead order N2

sLSTM: Up-projection activation
Number of heads

Dimension of memory block: z

mLSTM→sLSTM→MaxPool
4
3
4
7
10
2
ReLU
1
128

-
-
-
-
-
-
-
-
-
-
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