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Abstract—Portfolio optimization often faces computational
challenges due to the complexity of risk minimization and
the increasing number of constraints. Swarm intelligence (SI)
algorithms, inspired by nature, have emerged as a promis-
ing approach to address this NP-hard problem. This study
investigates the integration of cluster analysis (k-means++
and k-medoids) in stock selection for portfolio optimization,
aiming to enhance the performance of SI methods. We employ
three diverse SI algorithms—Firefly Algorithm (FA), Grey
Wolf Optimization (GWO), and Whale Optimization Algorithm
(WOA)—representing air, land, and sea domains. Our empirical
analysis demonstrates that the performance of these SI models,
when combined with clustering pre-selection, is comparable
to the traditional mean variance (MV) model in terms of
returns. Notably, the combination of k-means++ clustering
with GWO achieves the highest return (1.55094) and Sharpe
ratio (3.40573). Additionally, in short-term market scenarios
(7 days), the k-medoids clustering strategy coupled with SI
algorithms minimizes losses, with an average loss of -0.23%.
These findings suggest that integrating clustering techniques
with SI algorithms offers a promising avenue for optimizing
portfolio performance, particularly in long-term investment
horizons.

Index Terms—Portfolio Optimization, Swarm Intelligence,
Clustering, Grey Wolf Optimization (GWQO), k-medoids.

I. INTRODUCTION

ORTFOLIO optimization, the intricate process of se-

lecting assets to balance risk and return, remains a
central challenge in financial decision-making [1], [2]. The
dynamic nature of markets and the increasing complexity of
investment instruments necessitate innovative approaches to
address this NP-hard problem. While traditional models like
Markowitz’s mean-variance approach offer a foundational
framework, their reliance on parameter estimation and as-
set pre-selection can limit their effectiveness in real-world
scenarios [3], [4], [S]. The integration of machine learning
techniques, particularly clustering, has shown promise in en-
hancing portfolio optimization by revealing underlying price
dynamics and enabling more informed asset selection [6],
[7], [8]. However, the selection of optimal assets and their
allocation within a portfolio remains a complex optimization
task.
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To address this challenge, Swarm Intelligence (SI) algo-
rithms, inspired by the self-organizing behavior of natural
systems, have emerged as powerful tools. Unlike traditional
evolutionary approaches, SI algorithms mimic the collective
intelligence observed in nature, such as bird flocks or ant
colonies, to effectively navigate the complex search space of
portfolio optimization [9]. While prior research has explored
the application of various SI algorithms to portfolio opti-
mization, the potential of strategically combining diverse SI
models, representing different natural domains (air, land, and
sea), with clustering techniques remains largely untapped.
This integration holds significant promise for enhancing
the adaptability and robustness of portfolio optimization
strategies, particularly in dynamic market environments.

This study makes a significant contribution by systemati-
cally investigating the synergy between cluster analysis (k-
means++ and k-medoids) and three distinct SI algorithms
(Firefly Algorithm (FA), Grey Wolf Optimization (GWO),
and Whale Optimization Algorithm (WOA)) in the context
of portfolio optimization. The novelty of our approach lies in
the combination of diverse SI models with clustering-based
asset pre-selection, aiming to enhance the identification of
optimal portfolios. By evaluating the performance of these
combinations against the traditional mean-variance model,
we provide valuable insights into the potential benefits and
limitations of integrating clustering and SI for portfolio
optimization.

The significance of this research extends beyond algo-
rithmic comparisons. We aim to address the limitations of
existing portfolio optimization methods by incorporating a
data-driven asset pre-selection step, potentially improving the
robustness and adaptability of SI-based approaches. Further-
more, our findings have practical implications for investors
and portfolio managers, offering insights into the selection of
appropriate SI models and clustering techniques for different
market scenarios and investment horizons. By demonstrating
the potential of this integrated approach, we contribute to
the development of more effective and resilient portfolio
optimization strategies in an increasingly complex financial
landscape. In addition, clustering analysis will be utilized
for selecting the appropriate stocks before optimization. This
paper is organized as follows: Section 2 presents a literature
review related to portfolio optimization using IS. Section 3
describes the applied methodology by showing the algorithm
and workflow. Section 4 shows the results and discussion
regarding portfolio optimization. Finally, Section 5 draws
relevant conclusions.
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II. LITERATURE REVIEW
A. Clustering Analysis

Cluster analysis allows searching for correlations between
financial time series data. Tolun [6] developed a cluster
algorithm based on Euclidean distance which has superior
performance compared to other cluster algorithms based on
different datasets, back testing cycles, and time. Bnouachir
and Mkhadri [10] used hierarchical clustering to estimate
errors in stability and reduce the associated risks. Bjerring et
al. [11] obtained a fixed number of clusters before running
the portfolio optimization model. It can be concluded that
integrating clustering methods into dimensionality reduction
tools or preprocessing of portfolio models can improve the
performance of optimization models. This research uses two
types of cluster methods at the portfolio pre-selection stage,
namely K-means++ [12] and K-medoids [13].

1) K-means++: The K-Means++ method is an extension
of the K-Means algorithm that spreads cluster centers while
iteratively selecting them with the assumption that data points
that are far apart tend to come from different clusters by
defining D(z) as the object point’s closest distance to the
nearest center point or centroid that has been determined. The
centroid is calculated by selecting x € x; with probability.

D(z)*
ZJL’EZL’ j D (.T) 2
Then carry out the K-means algorithm which is generally de-

fined as minimizing the objective function with the following
equation:
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C} is the number of clusters formed from the K-means
method, x; is the j-th variable.

2) K-medoids: The K-medoids algorithm itself is similar
to K-means in that it minimizes a predetermined objective
function. However, K-medoids minimizes the absolute error
criterion compared to the sum of squared errors (SSE) used
in K-means. This means that K-medoids focuses on mini-
mizing the distance between data points and their respective

medoids. L
S = Z Z |z — med;| 3)
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() is the number of clusters formed from the K-medoids
method.

B. Portfolio Optimization

A portfolio is a collection of investment assets in the form
of property, shares, gold, bonds, deposits, options and other
investment instruments in order to minimize risk. Portfolio
formation is intended to diversify investment capital so that
it has as little risk as possible. Therefore, when an investor
wants to form a portfolio, he must know the characteristics of
the assets and be able to calculate the possibility of loss from
these assets so that he can determine the optimum weight for
each asset that can minimize the risk of loss. Selecting the
optimum portfolio or portfolio optimization can be different
for each investor depending on their individual preferences,
whether risk seeker, risk averse or risk neutrality.

C. Swarm Intelligence (SI) on portfolio optimization

Swarm Intelligence (SI), which is based on population
metaheuristics, is an interesting field of artificial intelligence
[14]. This term was introduced and coined by Jing Wang
and Gerardo Beni in 1989 while they were working on a
mobile robotic system. SI-based algorithms typically mimic
the behavior of population-based agents and are inspired by
nature, especially biological systems. In their environment,
these agents interact with each other. However, there is
no central control system that controls how agents behave
locally. The unpredictability of agents’ behavior leads to the
disclosure of intelligence that each agent is not aware of.
Microbial intelligence and bacterial growth, flocks of birds,
ant colonies, animal herding, eagle hunting, and schools of
fish are some of the well-known inspirations. Several SI
algorithms are used to complete various variants of portfolio
optimization. Some of them [9] are particle swarm opti-
mization (PSO), ant colony optimization (ACO), bacterial
foraging optimization (BFO), artificial bee colony (ABC), cat
swarm optimization (CSO), firefly algorithm (FA), invasive
weed optimization (IWQO), bat algorithm (BA) and fireworks
algorithm (FA). This research uses a type of SI method that
comes from air or can fly FA [15], land GWO [16], and sea
WOA [17].

1) Firefly Algorithm (FA): One of the SI algorithms used
for optimization is the Firefly Algorithm (FA). FA was
first introduced in 2007 by Yang et al. This algorithm is
derived from the natural behavior of fireflies which relies on
the bioluminescence phenomenon. Moreover, FA is also a
kind of stochastic, nature-inspired meta-heuristic algorithm,
which can be applied to solve the most difficult optimization
problems (also NP-hard problems) [18]. Heuristic means
’discover’ or ’find a solution by trial and error’ [19]. In fact,
there is no guarantee that an optimal solution will be found
within a reasonable timeframe. Finally, meta-heuristic means
“higher level’, where the search process used in the algorithm
is influenced by certain trade-offs between randomization and
local search [20]. The most important thing in FA design is
Light Intensity and Attractiveness Function. Attractiveness
is influenced by the level of light intensity. In the simple
case related to maximum optimization, if y is a firefly then
I(y) = f(y), where I is the level of light intensity propor-
tional to the solution of the objective function f(y) in the
optimization problem. Meanwhile, the 3 firefly attractiveness
function has the equation:

B = Boe " 4)

Where r is the distance between two fireflies ¢ and j
at y; and y; respectively which is the Cartesian distance.
i = llvi — il = /27—, (Wir — y;k)?. So the movement
of fireflies that are attracted to the brighter ones is determined
by equation [18]:

ey
yi = Y5 + Boe” i (yi — ;) + e )

Where ¢; is a random number taken from a Gaussian
distribution.

2) Grey Wolf Optimization (GWO): The Grey Wolf Op-
timization (GWO) algorithm was developed based on social
hierarchy and cooperation in wolf packs and is inspired
by grey wolves’ social behavior when foraging for prey
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[21]. Wolf groups are assumed to be omega, delta, beta,
and alpha in a pyramid order. This hierarchy contains dis-
tinct roles and functions inside the group. The method of
systematically pursuing organized groups of grey wolves
serves as the foundation for developing a GWO algorithm,
with alpha, beta, and delta indicating the best solution and
omega representing the other solutions. The mathematical
model for GWO identifies the best-fit solution as alpha («),
the second and third best solutions as beta () and delta
(6), and the other potential solutions as omega (w) [22].
In other words, the optimal solution is determined based
on adjusting the strategy and dynamics of the wolf pack.
Social ranking and hunting tactics motivate mathematical
model optimization techniques. Grey wolves will surround
their prey in an ambush (prey-encircling), which can be
mathematically expressed as follows [23]:

d = | (t) — (1) ©)

W(t+1) = w,(t) — Ad (7)
where A and ¢ are vector coefficients, ¢ indicates the current
iteration, ), is the position of the prey in vector form,
and « indicates the position of the grey wolf in the vector

around the prey. Vectors A and ¢ can be calculated using the
following equation.

A=2ar —a (®)

oy

= 2713 )]

d is decreased linearly from 2 to O during iteration, while
71 and 75 are random vectors between [0,1]. While the
hunting mode mathematical model is structured based on the
assumption that the top three agents have good knowledge of
potential prey locations, the other wolves (i.e. omega wolves)
are required to update their locations based on the positions

of the alpha wolf w,(t), beta wolf wg(t), and delta wolf
wg(t) using the position update equation below.

W (t) + wh(t) + wi(t)
3

where the calculation of w(t),ws(t),ws(t) follows the
equation

W(t+1) = (10)

W (t) = wa(t) — di(da)
@ (t) = s (t) — d3(dp) (1
05 (t) = wi(t) — a3(ds)

and
do = |Clwa(t) — w(t)] (12)
dg = |ciwp(t) — w(t)| (13)
ds = |Gy (t) — w(t)] (14)

3) Whale Optimization Algorithms (WOA): The Whale
Optimization (WOA) algorithm is an optimization algorithm
inspired by the hunting behavior of humpback whales [24].
This algorithm was inspired by a hunting method used by
humpback whales called bubble-net feeding. The bubble-
net feeding method used by humpback whales involves two
main movements, namely upward-spirals and double loops.
The double loops process consists of coral loop, lobtail, and
capture loop which are used as the basis for mathematical
modeling as an optimization process. WOA assumes that the

target prey location is the best solution. Identical to the GWO
algorithm, the WOA phase circling the prey can be expressed
as follows [23]:

d = |&w," (t) — w(t)] (15)

@(t+1) =, (t) — Ad (16)
w," is the temporary best solution vector, and w is the
position vector. Vectors A and ¢ can be calculated using the
following equation.

A=2ar—a A7)

— oF

(18)

oL

where 7 is random vectors between [0, 1], while @ is de-
creased linearly from 2 to O during iteration. Afterward, the
prey attack acknowledged as the Bubble-Net Attack consists
of shrinking encircling and spiral updating position. The
probability that a humpback whale swims around its prey
in decreasing circles and along a spiral path is 50%. The
mathematical model is as follows:

—

B(t1) o (t) — A it p<0.5
w =
(wW* (t) — w(t))ed cos 2ml + wW*(t) otherwise
19)

where p is a random number between [0,1], b is a
constant to describe logarithmic spiral, otherwise [ is random
number betwen [—1, 1]. The similar tactics based on vector
A variations might be used to look for other potential prey
throughout the exploration phase of a global search. The
mathematical model is as follows.

(20)

d = |Cwyana — W

W(t+ 1) = wrang — Ad (21)
where w,4nqis a vector of random positions or whales
selected at random from the existing whale population.

III. PROPOSED METHODOLOGY

A. Approach

The approach employed in this research consists of four
main elements. The experimental data to be assessed using
the SI models is identified in the first phase. Data pre-
processing with standardization is also executed . In the
second stage, mean and standard deviation are calculated to
identify portfolio pre-selection by clustering analysis, such as
K-means++ and K-medoids. The Silhouette score determines
the number of groups in each approach. Following that, rep-
resentative shares from each cluster are found using Sharpe
Ratio profiling. The next phase is optimizing each SI method
to produce representative share weights. Finally, in the fourth
stage, the findings from the various models are compared
and assessed. The main measures for comparison include
return, standard deviation, and Sharpe ratio and simulation
of portfolio performance on the Stock Market. These four
steps are explained in more detail in the flow diagram Fig.1.
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Fig. 1: An approach to comparing Swarm Intelligence models
(FA, GWO, WOA)

B. Data Standardization

Data standardization is implemented while the pre-
processing step to equalize the scale of variables, making
comparisons easier and preventing big-scale variables from
having more of an effect on the analysis or model. This
method, also known as normalization, involves decreasing
the variable by the mean and dividing it by the standard
deviation to ensure that the variable values range from 0
to 1. The data standardization equation can be expressed as
follows.

(22)

where x is the data value, % is the average value, and s is
the data’s standard deviation. This standardization or normal-
ization method is not affecting the distribution structure of
the existing data. Standardization is unable to transform data
which was not previously normally distributed [25].

C. Experiment Data

This experiment analyzes closing stock prices to evalu-
ate the algorithm. The observation period was from January
1, 2023, to January 3, 2024. The 45 shares utilized in this
study are from the LQ-45 index list for the period August
2023 to January 2024. Cluster analysis examines returns
and standard deviations for each stock over a given time.
Portfolio performance is also calculated using a reference
interest rate, specifically the Bank Indonesia (BI) 7-Days
Reverse Repo Rate, which is 6% per year as of January 2024.

IV. EXPERIMENTAL RESULTS
A. Determination of Optimal Clusters and Cluster Profiling.

The optimal number of clusters for k-means++ and k-
medoids was determined using the silhouette score as the
evaluation metric. The silhouette analysis (Figure 2) revealed
that the optimal number of clusters for k-means++ is two,
with a silhouette value of 0.684, and for k-medoids, it’s
three, with a silhouette value of 0.538. The higher silhouette
score for k-means++ suggests that it forms more distinct and
well-separated clusters compared to k-medoids. However, the
presence of an additional cluster in k-medoids indicates its
potential to capture more subtle patterns or subgroups within
the data, which could be advantageous in achieving a more
diversified portfolio.

TABLE I: Cluster Profiling Based on Return and Standard
Deviation

Methods C frequency return s
5 0.00076  0.04171
K-means 2
40 -0.00029  0.02034
17 -0.00038  0.02425
K-medoids 3 5 0.00325  0.04006
23 -0.00041  0.01670

C' : Number of Clusters
s : standard deviation

The optimal number of clusters identified in the silhouette
analysis was used to cluster 45 stocks based on their return
and standard deviation using k-means++ and k-medoids. The
characteristics of the resulting clusters were then analyzed by
examining their centroids, which represent the average return
and standard deviation of the stocks within each cluster. The
centroid values for each cluster, as presented in Table I,
provide insights into the risk-return profiles of the clusters.

The cluster profiles, summarized in Table I, reveal dis-
tinct risk-return characteristics for both k-means++ and k-
medoids clustering methods. In the case of k-means++, two
clusters were identified. Cluster 1 exhibits a high-risk, high-
reward profile, characterized by a higher average return
(0.00076) but also accompanied by a higher standard de-
viation (0.04171). In contrast, Cluster 2 displays a low-risk,
low-reward profile with a lower average return (-0.00029)
and a lower standard deviation (0.02034).

The k-medoids approach, on the other hand, results in
three clusters. Cluster 2 stands out with the highest average
return (0.00325) and a relatively high standard deviation
(0.04006), mirroring the high-risk, high-reward profile ob-
served in k-means++’s Cluster 1. The remaining two clusters,
1 and 3, both exhibit lower average returns (-0.00038 and -
0.00041, respectively) and lower average standard deviations
(0.02425 and 0.01670, respectively), aligning with lower-risk
profiles. Notably, Cluster 1 demonstrates a slightly higher
average standard deviation compared to Cluster 3, suggesting
a marginally elevated risk level for a similar return. The
presence of this additional moderate-risk, moderate-reward
cluster in k-medoids highlights its potential to uncover a
broader spectrum of investment opportunities compared to
k-means++.

B. Portfolio Optimization

1) Representative Shares: To select representative stocks
for each cluster, we employed a data-driven approach based
on the Sharpe ratio, a widely recognized measure of risk-
adjusted return that considers both the potential profit and
volatility of an investment. Our analysis identified two dis-
tinct clusters using both k-means++ and k-medoids clustering
algorithms. Notably, the two algorithms consistently selected
the same representative stocks for the high-risk, high-reward
and low-risk, low-reward clusters, reinforcing the robustness
of our findings.

As illustrated in Figure 3, the high-risk, high-reward
cluster is represented by BRPT.JK (Sharpe ratio = 0.07540),
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Fig. 2: Comparison of silhouette scores

while the low-risk, low-reward cluster is represented by
TPIA.JK (Sharpe ratio = 0.12386). The k-medoids clustering
algorithm additionally identified a third cluster corresponding
to a moderate-risk, moderate-reward profile, represented by
BMRIJK (Sharpe ratio = 0.05206). This highlights the
potential of k-medoids to uncover a wider range of invest-
ment options, enabling the construction of more diversified
portfolios. Subsequently, we employed portfolio optimiza-
tion techniques to determine the optimal weights for each
representative stock, aiming to minimize portfolio risk (as
reflected in the objective function: min fitness = Jf,, where
2

o, represents the portfolio variance) and maximize risk-

adjusted returns.

2) Portfolio Weighting: The analysis of investment
weights, as presented in Table II, provides insights into the
allocation strategies of the three SI models (FA, GWO, and
WOA) in comparison to the Mean Variance (MV) model. The
average absolute difference in weight assignments was used
to quantify the alignment between the SI models and MV.
Within the k-means++ clusters, FA and GWO exhibited the
closest alignment with MV, with an average absolute differ-
ence of only 0.003. This suggests that these two SI models,
particularly when combined with k-means++ clustering, tend
to produce portfolio allocations that are remarkably similar
to those derived from the traditional MV model. In contrast,
WOA displayed a larger average absolute difference from

K-means++ Clustering: Representative Stocks
(based on Sharpe Ratio)

° .
g 0.041 BRPT.JI5
= o .
<
z
2 0.031 N A TPIAJI
= A DN
-g Aa A A A
= A A
g 0.021 2 , 4 A f‘AAA . “ ®  Cluster |
‘ “ 4 4 Cluster2
A A A
A A A
0011 - ‘ '
0.002 0.000 0.002 0.004

Mean Return

(a) Figure 3a

MYV within the k-means++ clusters, indicating a more distinct
allocation strategy.

Similarly, for the k-medoids clusters, GWO once again
demonstrated the closest alignment with MV, showcasing
an average absolute difference of 0.005. This further sup-
ports the notion that GWO, when coupled with k-medoids
clustering, may serve as a viable alternative to the MV
model in terms of weight allocation. Overall, these find-
ings highlight that while the SI models employ distinct
optimization mechanisms, their resulting weight allocations
remain broadly comparable to those of the MV model. The
observed variations in weight assignments across different
SI models underscore their unique approaches to balancing
risk and return, as well as their sensitivity to the underlying
cluster structures generated by k-means++ and k-medoids.
The choice between different SI models ultimately hinges on
factors such as computational efficiency, specific investment
goals, and individual risk preferences.

C. Portfolio Performance and Comparison

The evaluation of portfolio performance, encompassing
key metrics such as return, standard deviation, and Sharpe
ratio (Table II), offers a comprehensive assessment of the
various clustering and optimization combinations. The KMP
GWO (K-means++ - Grey Wolf Optimization) combination
stands out, exhibiting the highest return (1.55094) and Sharpe

K-medoids Clustering: Representative Stocks

(based on Sharpe Ratio)
. L]
g 0.04 BRPT.JI@
= ° °
=
%
a 1
o 0.03 TPlA.J@
=
=
E ® Cluster 1
% 0.021 = LI - " .’ - . Cluster 2
L
- WRI.J@ = Cluster3
. n
0.014 i . . ;
-0.002 0.000 0.002 0.004

Mean Return

(b) Figure 3b

Fig. 3: Representative Shares
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TABLE II: Stock Weighting

C Stock MV FA GWO WOA
K-means

BRPTJK 0.801 0.798 0.804 0.74

2 TPIAJK 0.199 0.202 0.196 0.26
K-medoids

1  TPIAJK 0.775 0.766 0.775 0.742

BRPTJK 0.054 0.07 0.046 0.076

3 BMRILJK 0.171 0.164 0.178 0.182

TABLE III: Portfolio Performance Comparison

Portfolio Return  Std. Deviation  Sharpe Ratio
(C-0)

KMP MV 1.54949 0.43846 3.40279
KMP FA 1.54872 0.43848 3.40086
KMP GWO 1.55094 0.43851 3.40573
KMP WOA 1.52680 0.43974 3.34131
KMD MV 0.50322 0.20472 217717
KMD FA 0.50862 0.20498 2.20084
KMD GWO 0.50429 0.20477 2.18188
KMD WOA 0.53318 0.20557 2.31398

KMP is indicated as the K-Means++ clustering

KMD is indicated as the K-Medoids clustering.

ratio (3.40573). This suggests that the synergy between k-
means++ clustering and the GWO algorithm effectively cap-
tures the market’s risk-return dynamics, leading to superior
portfolio performance in terms of both absolute gains and
risk-adjusted returns. However, it’s important to acknowledge
the trade-off between risk and return. The KMP GWO
portfolio also demonstrates the highest standard deviation,
indicating greater volatility compared to other models. The
choice of the optimal model, therefore, hinges on investors’
risk tolerance and investment objectives.

In contrast, k-medoids-based portfolios generally exhibited
lower performance compared to k-means++, potentially due
to the inclusion of the moderate-risk cluster. While this
cluster offers diversification benefits, it might also dampen
overall returns, particularly in a bullish market. Notably, the
KMD WOA (K-medoids - Whale Optimization Algorithm)
combination emerged as the top performer within the k-
medoids category, achieving a commendable Sharpe ratio
of 2.31398. This suggests that WOA’s optimization strategy
might be particularly adept at handling the complexities of
a three-cluster structure.

D. Portfolio Performance in the Stock Market

To further evaluate the real-world implications of our
optimized portfolios, we simulated their performance in the
stock market by calculating profit/loss based on the closing
prices of the selected stocks. We assumed a hypothetical
investment of Rp 1,000,000,000.00 on January 3, 2024, and
observed the portfolio performance over a seven-day period
from January 4 to January 12, 2024.

TABLE IV: Daily Portfolio Performance in the Stock Market
(in Rupiah)

K-Means++
Date MV FA GWO WOA
04/01/24 9049000 9105570 9143290 9203370
05/01/24 -17847400 -17756375 -17804875 -16771050
08/01/24 -83860000 -83642855 -84001435 -79450680
09/01/24  -263560480  -263344740 -263730580 -258955400
10/01/24  -288533300  -288168935 -288911195 -280068685
11/01/24  -336317040  -335933850 -336728850 -327305980
12/01/24  -356116540  -355665045  -356,625,265  -345320975
Average  -191026537 -190772319 -191236987 -185524200
K-Medoids
Date MV FA GWO WOA
04/01/24 33823940 33893970 33864560 32824720
05/01/24 37435225 37401900 37387375 35407200
08/01/24 19896215 20133620 19483085 16738895
09/01/24 -23694260 -24861150 -24035180 -32501145
10/01/24 -22390820 -22922585 -23175230 -31254610
11/01/24 -29888090 -30718480 -30709430 -40291940
12/01/24 -18199780 -18937675 -19211890 -29440210
Average -431081 -858629 -913816 -6931013

To further evaluate the practical implications of our opti-
mized portfolios, we simulated their performance in the stock
market by calculating profit/loss based on the closing prices
of selected stocks over a seven-day period from January 4
to January 12, 2024. We assumed a hypothetical investment
of Rp 1,000,000,000.00 on January 3, 2024.

The daily performance of each portfolio combination is
presented in Table IV. This detailed view allows us to assess
the fluctuations and trends experienced by each strategy over
time, providing a more comprehensive understanding of their
strengths and weaknesses under various market conditions.

Interestingly, the k-means++ portfolio paired with the
Whale Optimization Algorithm (WOA) consistently gen-
erated the highest returns on days with positive market
movements and the lowest losses on days with negative
market movements. This suggests that WOA, when combined
with k-means++, may be particularly adept at capturing
upside potential while mitigating downside risk. However,
it’s important to note that this strategy also exhibited higher
volatility overall, as evidenced by its larger fluctuations in
daily profit/loss.

On the other hand, the k-medoids-based portfolios demon-
strated greater resilience, incurring a lower average loss (-
0.23%) compared to the k-means++ portfolios (-18.96%).
This superior performance can likely be attributed to the in-
clusion of the stable stock BMRILJK in the k-medoids cluster,
highlighting the critical role of diversification in mitigating
downside risk, particularly in volatile market conditions.

In summary, the performance analysis underscores the
trade-offs between risk and return inherent in different
clustering and optimization combinations. The k-means++
portfolio with WOA excels in capturing market upside and
mitigating downside, but with higher volatility. Conversely,
k-medoids-based portfolios, particularly KMD WOA, prior-
itize stability and downside protection. The selection of the
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optimal approach ultimately hinges on the investor’s specific
investment goals, risk tolerance, and time horizon.

The integration of clustering techniques with SI algorithms
presents a promising avenue for enhancing portfolio opti-
mization. However, our findings emphasize that the choice
of the most suitable approach necessitates a careful balance
between risk and return, tailored to the individual investor’s
financial objectives and risk appetite.

V. CONCLUSION

This study investigated the potential of integrating clus-
tering analysis with swarm intelligence (SI) algorithms for
enhancing portfolio optimization. Our findings reveal that
combining k-means++ clustering with the Grey Wolf Op-
timization (GWO) algorithm yields the highest return and
Sharpe ratio, outperforming other SI and traditional Mean
Variance (MV) models. However, the simulation of portfolio
performance in the stock market highlighted the inherent
volatility and potential for short-term losses, even with
optimized portfolios.

Importantly, we observed that k-medoids-based strategies,
particularly when combined with the Whale Optimization
Algorithm (WOA), demonstrated greater resilience and min-
imized losses in a short-term market scenario. This under-
scores the importance of diversification and risk management
in volatile market conditions.

Our research contributes to the field by providing a com-
prehensive analysis of the synergy between clustering tech-
niques and diverse SI algorithms in the context of portfolio
optimization. The findings have practical implications for
investors and portfolio managers, offering insights into the
selection of appropriate SI models and clustering techniques
for balancing risk and return in different investment hori-
Zons.

Future research should explore the impact of different clus-
tering methods and parameter settings on the performance
of SI-based portfolio optimization strategies. Additionally,
investigating the robustness of these strategies across various
market conditions and timeframes would further enhance
their practical applicability.
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