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Abstract—Currently available deep learning methods for
sound source localization encounter the problems of poor
accuracy, high complexity, and susceptibility to environmental
interference. To solve these problems, this paper proposes an
icosahedral feature-based method of sound source localization
that uses hybrid dilated convolutions. The network uses icosa-
hedral convolutional features of the phase-transformed steering
response power as input features. A downsampling module
consisting of the icosahedral convolution, dilated convolution,
and a normalization layer is stacked to form the main structure
of the network. In addition, the hybrid dilated convolution
is used to enhance the receptive field and acquire multi-scale
spatial information for accurate sound source localization. The
proposed method was compared with several state-of-the-art
models of sound source localization on multiple tasks from the
LOCATA database. When tested on audio signals without and
with silent segments, the direction of arrival (DOA) obtained by
the proposed model had root mean-squared angular errors of
6.34° and 7.15°, respectively, at spherical distances. Both these
results were superior to those of advanced models from the
literature, and this shows that the proposed method is more
accurate and robust than currently used techniques.

Index Terms—Sound source localization (SSL), hybrid dilated
convolution (HDC), icosahedral convolution, steered response
power with phase transform (SRP-PHAT).

I. INTRODUCTION

SOUND source localization is an important front-end
technique for intelligent systems based on acoustic signal

processing. Its goal is to estimate the direction of arrival
(DOA) of acoustic signals by analyzing them. With the devel-
opment of intelligent audio processing technology, human–
computer interaction is progressing to cover an increasing
number and variety of aspects of our lives. Compared with
the cumbersome graphical interface, voice interaction is more
convenient for the user for controlling different kinds of
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machines and equipment. This has led to rising demand for
sound source localization technology for sound recognition
and audio enhancement as well as in smart homes. However,
challenges persist in research on sound source localization,
and the accuracy of localization and separation of multiple
sources of sound, processing of environmental noise, rapid
localization of the sources of sound to ensure real-time
performance, and capability of generalization of the relevant
methods under different environmental conditions need to be
improved. Improving the robustness, stability, and real-time
performance of systems for sound source localization is thus
a popular field of research.

Currently available methods of sound source localization
can be roughly divided into two categories: traditional and
machine learning-based methods. Traditional methods of
sound source localization can be further classified into three
kinds. The first kind includes methods based on the time
difference of arrival (TDOA), such as those that use cross-
correlation and inter-correlation. The delay estimation algo-
rithm, which is based on the Generalized Cross Correlation
PHAse Transformation (GCC-PHAT) [1] proposed by Knapp
et al. in 1976, is the most widely used technique owing to
its simple implementation and small number of arithmetical
operations. Moreover, in the context of audio source-based
methods of localization, the fusion favoring the correlation
(FFC) method fuses the outputs of the Filtered Correlation
based method (FCM) and the Energy Differential based
method (EDM) to achieve an accuracy of localization of 88%
[2]. The second class of traditional methods of sound source
localization includes techniques based on beamforming,
which was proposed in 1973 by Hahn et al. Beamforming is a
method of focusing sound signals by adjusting the directivity
of a sensor array. By reasonably designing the directivity of
the transducer array, the source of sound can be precisely
localized. Dibias et al. used this feature to propose the
steered response power with phase transform (SRP-PHAT)
[3] in 2000. This method adaptively estimates the weighting
coefficients of filters according to the characteristics of the
signal and noise to obtain the optimal beamformer. The
third kind of traditional method of sound source localization
is based on high-resolution spectral estimation. This is a
subspace technique based on matrix decomposition that can
describe the spatial characteristics of signals of the sound
source by using vectors, and is best represented by the
multiply signal classification (MUSIC) algorithm proposed
by Schmidt in 1979 [4]. Grounded in research by Schmidt
et al., the ESPRIT algorithm proposed by Roy et al. [5]
can be used to directly locate the source of sound through
eigenvalues. The above-mentioned traditional algorithms for
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sound source localization are based on ideal mathematical
models, are highly reliant on certain assumptions, have
limited adaptability, lack robustness under a low signal-to-
noise ratio, are sensitive to high reverberations in the environ-
ment, and are computationally intensive, often unreliable, and
incapable of delivering real-time performance. Traditional
methods for DOA estimation have also evolved in recent
years. Raghu et al. proposed using intra-block correlations
in the SBL framework to improve DOA estimation [6], and
to provide new ideas for the relevant research.

With the rapid development of artificial intelligence tech-
nology, deep learning algorithms have been applied in many
fields, including sound source localization. Researchers have
begun using deep neural networks for the robust estimation
of the DOA of the source of sound. Xiao et al. constructed
a model by using supervised learning [7] that uses a simple
multi-layer perceptron (MLP) network to learn the mapping
relationship between features and DOA. In 2016, Vesperini
et al. used a DNN model to estimate the 2D coordinates
of a speaker in a multi-room scenario [8]. This model can
significantly reduce the localization error compared with tra-
ditional methods, but its performance needs to be improved
in noisy environments. Ma et al. applied the DNN model
to a robotic binaural system of sound source localization
in 2017 by combining head motion strategies with changes
in the input features to the entire cross-correlation function
(CCF) to solve the problem of localizing multiple sources of
sound [9]. However, DNN networks require many training
parameters and a large amount of computation, while CNN
networks have the advantage of parameter sharing. In 2015,
Hirvonen et al. proposed using the CNN for sound source
localization, but provided classifications of the directions
of the source in only eight spatial domains [10]. In 2017,
Yalta et al. used experiments to reveal that increasing the
number of convolutional layers from 11 to 20 can reduce
the influence of noise on sound source localization, and that
convolutional networks are suitable for dealing with such
problems [11]. In 2018, Zhang et al. proposed a CNN-
based method of area localization [12] that changes the input
features to the mapping of speech signals obtained from a
microphone, and used it to localize a single indoor source
of sound. They showed that the DOA estimated by the CNN
was superior to that obtained by the SVM and MLP. The
convolutional recurrent neural network (CRNN) was used as
the baseline network for the task of sound source localization
in the Challenge on Detection and Classification of Acoustic
Scenes and Events (DCASE) [13], but its accuracy is unsat-
isfactory. In 2021, Bohlender et al. made improvements to
Chakrabartyd’s system [14] by replacing the last dense layer
of the architecture with recursive layers of the long short-
term memory network (LSTM) and temporal convolutional
network (TCN) [15], where this improved the accuracy
of sound source localization. Krause et al. found that 3D
convolutions can better localize the source of sound in highly
reverberant environments than 1D and 2D convolutions [16],
but require a large number of computations that are time
consuming. Diaz-Guerra et al. proposed the Cross3D model
[17], which transforms the input into the SRP-PHAT spatial
spectrum, and used a combination of 1D and 3D convolutions
to track the source of sound. This fully causal model can
localize the source of sound in real time. In 2022, Zhong et

al. proposed a spherical CRNN based on SRP-PHAT [18] that
reduced the number of requisite parameters by 85.5% and the
inference time by 88.6% compared with the Cross3D model.
In 2023, Diaz-Guerra et al. made another improvement to the
spherical RCNN developed by Zhong et al. by using icosa-
hedral CNNs instead of spherical convolutions [19]. This
leads to fewer parameters, and enables the more accurate
localization of the sound source. There is still considerable
room for improving the accuracy, computational efficiency,
and stability of deep learning-based methods of sound source
localization. In light of the above challenges in research on
sound source localization, this paper proposes an icosahedral
features-based network for sound source localization that
uses the hybrid dilated convolution. Its main contributions
of can be summarized as follows:

1) We introduce the dilated convolution to the task of
semantic segmentation and use it to localize the sound source
to expand the receptive field of the network. It comprehen-
sively considers the temporal and spatial information of the
features, and improves the accuracy of localization.

2) We use the hybrid dilated convolution to extract multi-
scale information. This enhances the robustness of the model
and mitigates the gridding effect caused by dilated convolu-
tions.

3) We use icosahedral convolutions to propose a network
for sound source localization. It is formed by stacking
downsampling modules consisting of the icosahedral con-
volution, dilated convolution, and normalization layer. By
appropriately adjusting the number of stacked layers, the
network can accurately localize the source of sound while
using few computations.

II. SRP-PHAT

Steered response power with phase transform (SRP-PHAT)
[3] is a mainstream method of sound source localization that
is based on the phase transform-weighted steered response
power. The algorithm is robust, and requires a short time for
analysis. This, combined with the insensitivity of the phase
transform method to the environment around the signal in
terms of the estimation of the time delay, renders the system
robust to reverberant environments. It can thus localize
the sound source in real environments, but its localization
performance is poor under a low signal-to-noise ratio.

The basic principle of SRP-PHAT is to compute the sum
of functions of the generalized correlation GCC-PHAT that
are weighted by the phase transforms of all microphones of
the system for the received signal, and to traverse the entire
source space to find the point with the largest SRP value as
the estimated location of the source of sound.

We use a frame of the signal received by the microphone
array to localize the source of sound. Let Xm (n) denote
a frame of the data received by the m-th microphone. The
SRP-PHAT function can then be expressed as follows:

p̂(q) =
M∑
l=1

M∑
m=l+1

R̂lm [τlm (q)] (1)

where q is the vector of rectangular coordinates of the
hypothetical source, and R̂lm [τlm (q)] is the GCC-PHAT

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 1950-1959

 
______________________________________________________________________________________ 



function of the signals received from the l-th and m-th
microphones that can be expressed as follows:

R̂lm (τ) =
1

K

K−1∑
K=0

Xl (k)X
∗
m (k)

|Xl (k)X∗
m (k)|

ejωτ (2)

In (2), Xm (k) is the FFT of Xm (n), * represents the
conjugate, K is the number of FFT points, $omega is the
simulated angular frequency, and τlm (q) denotes the FFT
of the hypothetical sound source with respect to the TDOA
of the lth and mth microphones. We use rl and rm as the
vectors of rectangular coordinates denoting the l-th and m-th
primitives, respectively, respectively, and c is as the speed of
sound in air (about 342 m/s). We then obtain the following:

τlm (q) =
∥q − rm∥ − ∥q − rl∥

c
(3)

In (3), ∥∥ denotes the 2-Norm for finding that vector. The
estimated sound source localization can then be expressed
as:

q̂x = argmax
q⊆Q

P̂ (q) (4)

In (4), Q is a predefined search space. The SRP-PHAT
method performs well in terms of sound source localization
in reverberant environments. We thus use it as the origi-
nal feature, and extract its spatial information through the
icosahedral convolution to deal with the issue of rotational
symmetry.

III. ICOSAHEDRAL CONVOLUTION

Because the microphone array is located on a 2D fluid
rather than a regular 2D plane, traditional CNNs struggle
to consider the geometrical properties of the data. We use
the icosahedral convolution to process these data [19]. Com-
pared with the ordinary CNN, the icosahedral convolutional
network can more comprehensively deal with 3D data. It
is a gauge-equivariant convolutional network for processing
signals on the icosahedron, and considers local canonical
symmetry so that the network maintains covariance under
local gauge transformations.

For special geometrical objects with a high degree of
symmetry, such as icosahedra, it is possible to obtain a mesh
of pixels that is almost completely regular and symmetric by
subdividing their surfaces into small triangles and placing
pixels on each triangle. The icosahedral mesh is constructed
from a series of fine triangular meshes. It contains 20
equilateral triangle faces, 30 edges, and 12 vertices. Starting
from the vertices, a new point is introduced on the face of
each equilateral triangle to subdivide the mesh evenly into
four equilateral triangles with smaller faces. By repeating
this process R times, a mesh with 5 × 22r+1 + 2 points is
obtained, as shown in Fig. 1. Five maps are generated in
this process. Finally, the icosahedral mesh is mapped into
a rectangular mesh of size 5 × 2r × 2r+1 . By gradually
subdividing each face of the icosahedron into four equilateral
triangular faces and reprojecting each node to a unit distance
from the origin, a spherical mesh is obtained. This method
of discretization preserves the geometry of the sphere, while
making the geodesic distance between any pair of discretized
nodes nearly constant. This in turn simplifies the learning of
the lifting operator and enables weight sharing.

When implementing the icosahedral convolution, the
icosahedral structure needs to be constructed and mapped
onto the 2D plane by using a set of atlases consisting
of five-coordinate cards to describe the icosahedron, and
G-padding by adding appropriate padding values around
the boundaries of the inputs to extend their shape. This
enables efficient convolutional operations. The convolution
kernel is then expanded so that it can adapt to the shape
of the icosahedral structure by rotating and padding it to
this structure. Following this, a 2D convolution operation
is applied to the 2D plane to obtain the convolved feature
map. Finally, the feature map on the 2D plane is again
mapped back to the icosahedral structure to obtain the final
icosahedral convolution.

Fig. 1. Icosahedral convolution (R=1).

To work directly with off-the-shelf tools, we use the
3 × 3 convolution kernel of the 2D convolution to obtain
the desired convolution kernel by zeroing the upper-left and
lower-right points. This is subsequently canonically equated
with a shape that can be convolved for the 2D convolution
[20].

Fig. 2. Icosahedral power spectra of SRP-PHAT.

Mapping information on the location of the sound source
onto an icosahedral mesh yields the same information at a
lower resolution because no resolution is wasted in oversam-
pling the poles, and the convolution does not need to learn
how to deal with the distortion in the projection. The SRP-
PHAT is first calculated from the input GCCs and the optimal
coefficients of the filters between each pair of microphones.
Its icosahedral mapping is then generated, with the results
shown in Fig. 2. The canvas appears purple at a low output
power, while the maximum output power is shown in yellow.
The result shows that the icosahedral SRP-PHAT map can
accurately calculate the direction of the sound source.

The specific algorithm is as follows:

GConv (f, w) = conv2d (Gpad (f) , expand (w)) (5)

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 1950-1959

 
______________________________________________________________________________________ 



H = 2r + 2, R = 2r+1 + 2 (6)

In (5), the weight w is defined as (Cout, CinRin, 7),
expand(w) is defined as (CoutRout, Cin, Rin, 3, 3), and f
and Gpad(f) are defined as (B,Cin, Rin, 5H,W ). The
output GConv is defined as (B,CoutRout, 5H,W ), where
H and W are the height and width of each local chart,
respectively, C is the number of channels, R is the number
of dimensions of the channels, and B is the batch size.

IV. HYBRID DILATED CONVOLUTION

The dilated convolution is a convolution operation that
increases the resolution of the given image by inserting zero
values into the convolution kernel [21]. This idea of convo-
lution was proposed to solve the problem of a reduced image
resolution and the loss of information due to downsampling
in problems involving the semantic segmentation of images.
We introduce a new parameter, the dilation rate, to the dilated
convolution to enable a larger receptive field to be obtained
for a convolution kernel of the same size. Accordingly, the
number of parameters used in the dilated convolution is
smaller than that of a normal convolution, provided that the
same receptive field is obtained. We assume that the size of
the convolution kernel of the inflated convolution is k and the
number of voids is d. The size of the equivalent convolution
kernel can then be given as:

k′ = k + (k − 1)× (d− 1) (7)

The receptive field is as follows:

RFi+1 = RFi + (k′ − 1)× Si (8)

where RFi denotes the receptive field of the previous layer,
and Si denotes the product of the step lengths of all previous
layers (excluding this layer). It is computed as follows:

Si =

i∏
i=1

Stridei (9)

Although the dilated convolution increases the size of
the receptive field without reducing the size of the feature
map, it introduces a new problem, the gridding effect, that
is mainly reflected in the inputs to the convolution. As the
convolution kernels are spaced apart, this means that not all
inputs are involved in the computation, and a discontinuity
in the centroids of the convolutions is reflected in the overall
feature map, especially when the superimposed convolutional
layers are all used with the same rate of dilation.

A solution called the hybrid dilated convolution (HDC)
was proposed in [22]. It helps the network alleviate the
gridding effect and increase the size of the receptive field
to improve the accuracy of detection of complex objects by
concatenating a series of convolutional kernels with different
dilation rates, so that the final receptive field of the network
covers a square region while avoiding any voids or missing
edges.

However, the problem persists if the rate of expansion is
exponential [22]. We thus set the rate of expansion of the
HDC to [1,2,3], so that it can fully extract information on
the icosahedral features to improve the accuracy of sound
source localization.

Fig. 3 shows the change in the final receptive field of the
network after using the HDC.

Fig. 3. Receptive fields of the network before and after using the HDC.
The shades of color represent the extent to which the network uses the point:
The darker the color is, the higher is the use of the point.

V. PROPOSED METHOD

The structure of the icosahedral feature network based on
the expanded convolutions proposed in this paper is shown
in Fig. 4. The features of SRP-PHAT are used as inputs
to the model after the icosahedral convolution to obtain
the icosahedral features and better extract the 3D spatial
information of the signal of the source of sound.

The ReLU activation function compares only the size
of the inputs and zeros, has a very large gradient over
positive intervals, and helps alleviate the vanishing gradient
problem. Applying the ReLU activation function behind the
icosahedral convolution provides a better fit to the data
and facilitates the learning of complex nonlinear mapping
relationships by the network to improve its performance.

Although the effect of depth downsampling on the reso-
lution of the image was mitigated to some extent in [19] by
combining two convolutions with icosahedral pooling to con-
struct a unit, there is still considerable room for improvement.
To solve this problem, we use the following strategy: The
dilated convolution can be applied to the icosahedral features
to enable the 1D expansion convolution to comprehensively
consider the background temporal information and ensure the
gauge-equivariant properties of the model. This increases the
size of the receptive field through the insertion of zeros to the
original convolution kernel. This model has five convolution
kernels and one step. An HDC framework is used, and the
rate of dilation is set to [1,2,3] to avoid the problem of
meshing.

The normalization layer normalizes the inputs along 32
channels and six directions of the kernel, where this improves
the capability of generalization of the model and enables it
to converge more quickly. We also stack the downsampling
units in the model, but the number of stacked units is
appropriately reduced to avoid model overfitting and reduce
the computational cost. After stacking the downsampling
units, maximum pooling is applied to the six directions of the
kernel of the output, and the resulting icosahedral mapping
is sent to the soft-argmax function to obtain the direction of
the sound source.

Because the traditional fully connected layer incurs a high
computational cost, even using the convolutional and pooling
layers to reduce the number of parameters reaching the fully
connected layer will significantly increase the number of
parameters of the model that need to be trained. We thus use
the soft-argmax function instead of the fully connected layer
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Fig. 4. Structure of the proposed model. D is the dilation rate, B is the batch size, and T is the number of frames.

to significantly reduce the amount of computation required.
This ensures that the entire activation mapping sums to
one by applying a softmax layer on the activation map.
The softmax operation can be viewed as the process of
normalizing positional information:

soft-max (P (x)) =
eP (x)-max(P (x))∑

x∈X

eP (x)-max(P (x))
(10)

where P (x) denotes the output of the final convolutional
layer of the model, and xϵX denotes the coordinates of the
points sampled from the icosahedral grid.

The probability distribution of the output can be expressed
as the relative weights of multiple localizations to ensure that
the output is a probability distribution. Soft-argmax can be
obtained by summing the product of each pixel coordinate
with its probability:

soft-argmax (P (x)) =
∑
x∈X

x · soft-max (P (x)) (11)

The output of the soft-argmax function results in three
time series of length T with elements in the range (-1, 1),
which means that the coordinates of the vectors point in
the direction of the sound source in each time frame. The
soft-argmax function is regarded as a differentiable version
of the argmax function that can interpret the outputs of
the convolutional layers as probability distributions, thus
allowing us to treat DOA estimation as a regression problem.
This reduces the costs of computation and memory while
avoiding the introduction of non-isotropic layers.

VI. EXPERIMENTAL RESULTS

A. Training set and simulation experiments

We used simulated signals for model training. To increase
the diversity of the acoustic conditions of training, each
training sample was generated in real time from a random
combination of parameters, such as the trajectory of the
sound source, position of the microphone, source and noise

signals, reverberation time, and SNR. We chose speech from
the train-clean-100 subset of the LibriSpeech corpus [23]
as the data source. This subset of the corpus contained
100 h of speech extracted from LibriVox audiobooks, for
a total of 6.2 GB of data. The sampling frequency was 16
kHz. One randomly selected audio from the train-clean-100
subset was used as the sample of the source signal. Twenty
seconds of speech were then intercepted from that audio to
obtain the audio data. Although the audiobooks contained
clearer speech signals, some of the audio contained strong
background noise. To prevent the network from learning
inaccurate information, we applied Voice Active Detection
(VAD) to identify the silent parts and remove their signals
to clean the data. The SNR and reverberation time (T60)
were also randomly selected, and ranged from 5 dB to 30
dB, and from 0.2 s to 1.3 s, respectively.

To analyze the performance of the proposed model under
different acoustic conditions, we generated the simulated
signals by using the same method that was used to generate
the training dataset. However, unlike the training data, the
test set used the test-clean subset of the LibriSpeech corpus
as the acoustic source for the simulation. In addition, some
of the test samples contained a short silent section at the
beginning that affected the results of estimation by the model.
Localization errors in the first five frames of each trajectory
were thus not considered.

We performed simulations of static source localization to
evaluate the model. Simulation scenarios corresponding to
several specific reverberation times T60 and SNRs were gen-
erated and tested to analyze the robustness of the proposed
model. Values of the reverberation time T60 were set for six
indoor scenarios, and ranged from zero to 1.5 s at internals
of 0.3 s, while SNR values of 5, 15, and 30 dB were used.
During the generation of the simulation data, the position of
the sound source was fixed, and did not change over time.

Fig. 5 shows the results of comparison of the simulation
data involving static sources of sound in different acoustic
scenarios. The vertical coordinate is the root mean-squared
angular error (RMSAE) of the spherical distance. SELDnet
used a 2D CNN to learn the amplitude and phase spectra of
the sound sources, had the lowest accuracy, was significantly
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(a) SNR=5 dB

(b) SNR=15 dB (c) SNR=30 dB

Fig. 5. Comparative simulations in different acoustic scenarios

affected by the ambient reverberation time, T60, and thus had
the poorest robustness. Cross3D used a 3D CNN, could better
retain the spatial and temporal relationships, and was superior
to SELDnet in terms of both accuracy and robustness. The
developers of icoDOA [19] concluded that when R is set
to two, the input feature map contains all the information
useful for sound source localization, and continuing to further
reduce R does not improve the accuracy of the model.
Therefore, we set R to two in the proposed model. Its
accuracy of localization and robustness were higher than
those of all other models considered in indoor acoustic
scenarios with SNRs of 5 dB and 15 dB. When the SNR was
30 dB, its accuracy was slightly lower than that of icoDOA as
the reverberation time increased. This is because the dilated
convolution extracted more redundant information under high
reverberations, which reduced the accuracy of the model.

B. Model testing on the LOCATA dataset

We also tested the proposed model on the LOCATA
dataset, which is a database of sound signals recorded in
real environments, and was created by the Computational
Laboratory of the Humboldt University of Berlin. The data
were recorded in a laboratory with dimensions of 7.1 × 9.8 ×
3 m3, and a duration of reverberations T60 of 0.55 s. We also
tested the state-of-the-art models of sound source localization
SELDnet [13], Cross3D [17], and icoDOA [19] on the

LOCATA dataset, and compared them with the proposed
model. We used Tasks 1 to 6 from the dataset as well as
Tasks 2, 4, and 6, which involved multiple sound sources.
Because the other models were tested only on tasks involving
a single source of sound, we tested our model on Tasks 1,
3, and 5 as well so that the tests covered most real-world
scenarios of application.

The horizontal and pitch angles are commonly used ex-
perimental metrics to assess performance in terms of sound
source localization. The spherical distance between the pre-
dicted and actual positions of the source of sound is usually
expressed based on its angle. Error in the computed spherical
distance reflects the accuracy of sound source localization.
The smaller this error is, the more accurate is the sound
source localization by the corresponding model. We used the
RMSAEs of the horizontal angle, pitch angle, and spherical
distance angle as indices to evaluate the results. They can be
expressed as:

RMSAEϑ =
180

π

√∑n
i=1(∆ϑi)2

n
(12)

RMSAEϕ =
180

π

√∑n
i=1(∆ϕi)2

n
(13)

RMSAEδ =
180

π

√∑n
i=1(∆δi)2

n
(14)
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where n is the total number of frames of the tested speech
samples, ϑi is the angular difference between the estimated
horizontal angle of the i-th frame and the actual horizontal
angle, ϕi is the angular difference between the estimated
pitch angle of the ith frame and the actual pitch angle, and
δi is the difference between the spherical distances of the
i-th frame.

The audio samples in the LOCATA dataset included clips
with silent segments and those with no silent segments. We
separately tested both kinds of samples, and their results are
shown in Tables I and II, respectively.

TABLE I
RMSAES (°) OF THE DOA OF THE PROPOSED MODEL AND

STATE-OF-THE-ART METHODS OF SOUND SOURCE LOCALIZATION ON
THE LOCATA DATASET (CLIPS CONTAINING SILENT SEGMENTS)

Model Task 1 Task 3 Task 5 Mean

SELDnet [13]
Horizontal angle 8.22 12.78 14.67 10.61

Pitch angle 19.02 22.70 20.34 20.11
Spherical distance 20.84 26.51 25.25 20.84

Cross3D [17]
Horizontal angle 4.66 8.80 10.96 6.93

Pitch angle 3.31 2.52 6.00 3.73
Spherical distance 5.98 9.25 12.06 8.02

icoDOA [19]
Horizontal angle 4.52 8.37 10.25 6.60

Pitch angle 3.41 2.60 5.76 3.75
Spherical distance 5.93 8.87 11.28 7.73

Our model
Horizontal angle 3.91 7.61 9.00 5.78

Pitch angle 2.92 2.27 6.66 3.21
Spherical distance 5.50 8.02 11.37 7.15

TABLE II
RMSAES (°) OF THE DOA OF THE PROPOSED MODEL AND

STATE-OF-THE-ART METHODS OF SOUND SOURCE LOCALIZATION ON
THE LOCATA DATASET (NO SILENT SEGMENTS)

Model Task 1 Task 3 Task 5 Mean

SELDnet [13]
Horizontal angle 7.52 12.08 13.58 9.83

Pitch angle 16.56 20.32 17.61 17.61
Spherical distance 18.35 24.13 22.39 20.49

Cross3D [17]
Horizontal angle 4.15 6.80 8.13 5.59

Pitch angle 3.90 5.25 5.56 4.55
Spherical distance 5.74 8.90 10.25 7.41

icoDOA [19]
Horizontal angle 4.72 6.60 7.43 5.72

Pitch angle 3.41 2.77 5.37 3.70
Spherical distance 6.09 7.20 9.07 6.98

Our model
Horizontal angle 3.61 6.90 3.98 5.06

Pitch angle 2.90 2.12 4.44 3.06
Spherical distance 5.31 7.30 8.04 6.34

The average RMSAEs of the horizontal angle, pitch angle,
and spherical distance determined by the proposed model
were 5.78, 3.21, and 7.15 degrees, respectively, when clips
containing silent segments were considered in the tests.
When such clips were not considered, the average RMSAEs
of our model were 5.06, 3.06, and 6.34 degrees respectively.
It outperformed all the other models in the latter case.

The experimental results show that the RCNN used by
SELDnet was ineffective in mapping the spectral features
of the sound signals back to the location of the source.
Cross3D used a 2D SRP-PHAT map as the input, which had
a low resolution. We considered only the highest accuracy
obtained by this method, the network structure of which
was relatively complex and computationally intensive. In
addition, its RMSAEs of the horizontal angle, pitch angle,
and spherical distance were smaller than those of icoDOA,
and it was more robust.

Fig. 7 visualizes the results of our model of sound source
localization in case of a single source on the LOCATA

Fig. 6. Comparison of errors in the DOA between the proposed model
the state-of-the-art methods of sound source localization. The top graph
represents the results for audio clips containing silent segments while the
bottom graph shows the results for clips that did not contain such segments.

dataset. The solid line represents the true DOA while the
dashed line denotes the estimated DOA. The gray part of the
figure represents the silent segments detected by the VAD.
The model needed to track the source of sound of vocalized
words in between the short silent segments, but its results
might have deviated from the correct DOA values because it
could not receive valid information during the silent period
in each clip. However, its results of estimation were always
close to the actual DOA of the sound source in the audio
containing silent segments, which verifies its robustness.

C. Ablation experiment

Our model uses the HDC framework to solve the grid-
ding effect brought about by the dilated convolution, which
increases the size of the receptive field and helps extract
multi-scale features to improve the robustness of the model.
To test the effectiveness of the HDC framework, we used
the LOCATA dataset to conduct an ablation experiment. The
parameters of the HDC-free model were set as follows: The
rate of dilation D of the dilated convolution was set to one
in all cases, while the rest of the model was kept consistent
with the proposed model that contains the HDC. The ablation
experiment also considered the models Cross3D, SELDnet,
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(a) Task 1

(b) Task 3

(c) Task 5

Fig. 7. Example of DOA estimation on data from the LOCATA dataset

icoDOA, and the proposed model for comparison. All models
were compared only in terms of the RMSAE of the spherical
distance, because this index could comprehensively reflect
their accuracy of sound source localization.

Fig. 8 shows that the RMSAE of the HDC-free model was
close to that of icoDOA and larger than that of the HDC-
containing model. The results show that when the rates of di-
lation D of the dilated convolution in the model were all set to
one, the dilated convolution could not obtain comprehensive
information owing to the gridding effect. Because the rate of
dilation D was always one, multi-scale features could not be
extracted, and this further affected model performance. The
HDC framework improved the performance of the proposed
model from various aspects, and helped it localize the sound

source highly precisely in complex scenarios of application.

D. Evaluation of model computation

The number of floating-point operations per second
(FLOPS) represents the volume of computation (time com-
plexity of computation), and can be used to measure the
complexity of a given algorithm. FLOPS are often used as an
indirect measure of the speed of neural network models. The
number of FLOPS of the convolutional layer is calculated as
follows:

FLOPS = 2HW (CinK
2 + 1)Cout (15)
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Fig. 8. Results of ablation experiment.

where Cin is the number of channels of the input tensor of
the convolutional layer and Cout is that of its output tensor,
while k is the size of the convolutional kernel. Then, the
constant term can be removed to simplify the calculation as
follows:

FLOPS = HW (CinK
2)Cout (16)

From the above equation, it is clear that the number of
FLOPS of the model during computations is proportional
to the square of the size of the convolution kernel in the
convolutional layer. H and W are determined in the proposed
model based on the resolution of the map R, which was
set to two in this study. H and W were thus constant.
The number of FLOPS of our model was thus determined
only by the number of convolutional layers and the size
of the convolutional kernel of each. Because our model
uses dilated convolutions, the increase in the receptive field
implies an increase in the equivalent convolution kernel, and
its number of FLOPS become uncontrollable if the number
of convolutional layers is not limited. Params is the total
number of model parameters to be trained, and represents
indicates the spatial complexity of the computations. It is
widely used to measure the size of the model. We use the
numbers of FLOPS and Params to measure the requisite
numbers of computations and parameters, respectively, of
the proposed model and state-of-the-art models to further
evaluate their performance:

TABLE III
COMPARISON OF THE NUMBER OF COMPUTATIONS AND PARAMETERS

OF DIFFERENT MODELS.

Model FLOPS Params[ M]
SELDnet [13] 0.55G 5.34
Cross3D [17] 7.77G 21.35
icoDOA [19] 74.47M 0.29
Our model 0.88G 0.02

Table III shows that when there were four convolutional
layers, our model had 0.88G FLOPS, between those of
icoDOA and Cross3D, and similar to that of SELDnet.
Further experiments showed that the dilated convolutional
layer in our model had 0.88G FLOPS, which accounted for
99.38% of its total computations. This is because the dilated

convolutional layer had a larger receptive field than the gen-
eral convolutional layer, and collected and used information
more comprehensively. This inevitably increased the number
of computations of the model while improving its accuracy.
The increase in its computational volume affected its real-
time performance in terms of sound source localization, but
it still recorded better results than other models (shown in
Fig. 6). This shows that the number of computations of our
model, 0.88G, was within an acceptable range for the sound
source localization task. The value of Params of our model
was 0.02M, significantly lower than those of other models,
and led to lower requirements of video memory for training
it.

VII. CONCLUSION

This paper proposed a network for sound source local-
ization that takes the icosahedral features of mapping of
the SRP-PHAT as the input. It was formed by stacking
downsampling modules consisting of an icosahedral con-
volution, a dilated convolution, and a normalization layer.
The gridding effect caused by the dilated convolution was
alleviated by introducing the HDC framework, while multi-
scale information was extracted from the data to enhance the
robustness of the model.

The results of experiments showed that the proposed
model delivered better performance and had a higher accu-
racy of source localization than state-of-the-art techniques.
This shows that the expanded convolution can be used in
sound source localization networks to optimize the perfor-
mance of the model. Our model can be applied to real-
time tasks of sound source localization in scenarios involving
mobile sources of sound, and can maintain a small average
RMSAE even on challenging datasets of real recordings.

However, the proposed model cannot currently localize
multiple sources of sound, and we plan to address this
shortcoming in our future work. In addition, we will seek
to enhance the capability of the network for multi-feature
fusion, and to introduce an attention mechanism to it.
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