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Abstract—Air compressors are crucial in industrial pro-
duction, but issues such as equipment aging and improper
operation can lead to faults, severely impacting efficiency
and safety. Traditional MFCC spectrogram-based diagnostic
methods are challenged by background noise interference,
making accurate fault feature extraction difficult. To address
this, this study proposes an air compressor fault identification
algorithm based on low-rank matrix recovery. By applying
low-rank background modeling to the MFCC spectrogram to
eliminate background noise, the algorithm effectively extracts
primary features. The MobileNetV2 model is then used to
extract features from the MFCC foreground images, followed by
dimensionality reduction using Principal Component Analysis
(PCA). The reduced-dimensional fault features are analyzed
using k-means clustering. Experimental results show that for
Data 2, the VGG19 model achieved an accuracy of 95.90%, an
F1-score of 0.91, and a recall of 0.93, with a processing time
of 1916 seconds. In comparison, the ResNet50 model attained
an accuracy of 94.88%, an F1-score of 0.91, and a recall of
0.93, with a processing time of 826 seconds. These results
demonstrate that the foreground features obtained through low-
rank background modeling exhibit superior performance in
fault identification and clustering, enhancing the accuracy and
stability of fault diagnosis. Thus, the proposed algorithm shows
promising potential for diagnosing and repairing air compressor
faults.

Index Terms—MFCC, Low-rank Background Modeling, K-
means, Fault Recognition.

I. INTRODUCTION

THE operational state of an air compressor holds
paramount importance in industrial production. How-

ever, as the service life of air compressors extends, various
factors such as improper operation, inadequate equipment
maintenance, and aging equipment can lead to frequent
failures. These failures not only diminish production effi-
ciency but also elevate safety risks, thereby compromising
the quality and safety standards of industrial production.
Consequently, the accurate diagnosis of air compressor faults
and the implementation of suitable maintenance measures are
crucial for enhancing efficiency and safety levels in industrial
production[1].

In recent years, deep learning has emerged as a prominent
area of research across various domains, notably in image
recognition [2] and speech processing [3]. With increasing
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interest, scholars have begun exploring its application in
mechanical equipment fault diagnosis [4],[5], thereby ad-
vancing fault diagnosis technology in this domain. A crucial
aspect of utilizing sound signals for air compressor fault
diagnosis lies in effective feature extraction, which involves
isolating valuable information from sound signals while
eliminating interference. Commonly employed methods for
sound feature extraction include Linear Predictive Cepstrum
Coefficient (LPCC) [6], Mel Frequency Cepstrum Coefficient
(MFCC) [7], and Gamma Pass Frequency Cepstrum Coeffi-
cient (GFCC) [8]. In the realm of signal feature training and
recognition, prevalent intelligent algorithms include artificial
neural networks (ANN) [9], hidden Markov models (HMM)
[10], and support vector machines (SVM) [11]. Noteworthy
among existing diagnostic methods based on acoustic signals,
Hoang et al. [12] utilized a diagnostic model employing
adaptive noise cancellation and deep learning for bearing
fault diagnosis. Janssen et al. [13] first transformed time-
domain signals of bearings and gears in gearboxes into
frequency-domain signals, employing convolutional neural
networks for fault diagnosis, demonstrating practical utility
in experimental settings. Kong Xiaojia, Su Yuanhao, and
others [14] proposed a composite gearbox fault diagnosis
method based on a deep adversarial graph convolutional
transfer learning network (DAGCTLN) under a low-label ra-
tio. Specifically, they constructed a novel DAGCTLN model
consisting of a feature extractor, two label classifiers, and
a discriminator, achieving the diagnosis of composite faults
in the transfer domain and unseen faults in the source and
target domains. Although sound signal classification has
been widely applied in natural language processing and
environmental sound processing, there are still technical
bottlenecks in using sound signals for fault diagnosis in air
compressor systems. This is primarily due to the complex
and variable operating conditions of air compressors, as well
as the presence of significant environmental noise.

To address these challenges, we propose an air compressor
fault diagnosis model based on a low-rank matrix recovery
algorithm. This model aims to mitigate the impact of envi-
ronmental noise and complex operating conditions inherent
in air compressors. An overview of the contributions of this
paper is as follows:

1)The low-rank matrix recovery algorithm is utilized to
effectively model the background of the Mel Frequency Cep-
strum Coefficient (MFCC) spectrogram. By distinguishing
foreground features from background noise, this approach
helps in reducing interference and consequently lessens the
computational burden on deep learning neural networks.

2)In the proposed method, the MobileNetV2 model is
employed to extract features from the spectrogram images.
Additionally, Principal Component Analysis (PCA) is ap-
plied to reduce the dimensionality of the extracted features,
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facilitating efficient processing. Subsequently, k-means clus-
tering analysis is conducted on the fault features of the air
compressor to categorize and identify fault patterns. This
integrated approach not only addresses the challenges posed
by environmental noise and variable operating conditions but
also enhances the efficiency and accuracy of fault diagnosis
in air compressors. By leveraging techniques such as low-
rank matrix recovery, feature extraction using MobileNetV2,
dimensionality reduction with PCA, and fault pattern analysis
via k-means clustering, the model offers a promising solution
to the technical bottlenecks encountered in fault diagnosis
based on sound signals in the domain of air compressor
systems.

II. THEORETICAL BACKGROUND

A. Mel frequency cepstrum coefficient

The Mel Frequency Cepstral Coefficient (MFCC) [15] is a
widely used feature extraction algorithm in speech and audio
signal processing. It addresses the nonlinear relationship
between perceived pitch and frequency in the human auditory
system. To achieve this, the algorithm first converts the input
signal into a frequency power spectrum and then applies
cepstral analysis to derive features suitable for auditory
perception. As a result, obtaining an optimal parametric
representation of noisy signals becomes crucial for enhanced
fault detection [16].

The MEL scale, upon which MFCC is based, is a nonlinear
frequency scale that reflects the human ear’s perception of
isometric pitch changes. In this scale, f represents the input
sound frequency, and the transformation relationship between
sound frequency and Mel frequency can be expressed as
follows [17]:

Mel(f) = 2591lg(1 +
f

700
) (1)

Given the input sound frequency f , MFCC consists of
six calculation steps: preprocessing (pre-emphasis, framing,
windowing), fast Fourier transform (FFT), constructing Mel
filter banks, logarithmic operation, discrete cosine transform
(DCT), and dynamic feature extraction. The MFCC feature
extraction process is illustrated in figure 1.

B. Low rank matrix recovery

Low-rank matrix recovery, also known as Robust PCA
[18], [19] or sparse and low-rank matrix factorization [20], is
a technique used to decompose a given matrix into low-rank
and sparse components.

Principal Component Analysis (PCA) is a fundamental
method in data analysis that aims to find and construct
low-dimensional feature spaces from high-dimensional data
samples.

Consider a known observation data matrix M, which can
be decomposed into a low-rank matrix L and a sparse matrix
S, such that M = L + S. Here, L is of low rank, and S is
sparse with potentially large non-zero elements. The goal is
to recover L to obtain S.

To solve for L, we seek the minimum rank of L that
can reconstruct the observed data, while ensuring that the
error term is sparse. This can be formulated as the following
optimization problem:

minL,S rank(L) + δ∥S∥0
s.t. L+ S = M

(2)

Among them, rank(L) represents the rank of matrix L,
and |•|0 represents the norm of L0.

III. FAULT DIAGNOSIS METHODS

A. Overall structure

When an air compressor operates, the high noise en-
vironment and the absence of labeled datasets often pose
significant challenges for fault diagnosis. To address this
issue, a MFCC-based fault diagnosis method employing low-
rank background modeling is proposed, with faults catego-
rized through unsupervised k-means clustering. The overall
method is depicted in figure 2, and the specific steps are as
follows:

1) Preprocess the noise data from the air compressor and
extract its MFCC features.

2) Utilize low-rank background modeling to segregate
background and foreground MFCC features, extracting the
foreground MFCC features.

3) Classify the MFCC foreground features into abnormal
and normal categories. Train the abnormal MFCC foreground
features using the VGG16 model.

4) Identify and predict the foreground features of the
MFCC test set. Extract the identified abnormal category
images for subsequent k-means clustering analysis.

5) Employ the MobileNetV2 model to extract features
from images. Reduce the dimensionality of the extracted
features using PCA (Principal Component Analysis), and
perform k-means clustering analysis on the predicted image
features.

This method integrates MFCC feature extraction, low-rank
background modeling, and unsupervised clustering to enable
robust fault diagnosis in air compressors amidst challenging
environmental conditions.

B. MFCC foreground feature extraction based on low-rank
matrix recovery using IALM

During the process of sample classification, the presence of
significant noise can significantly undermine the classifier’s
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Fig. 2. Overall flowchart

prediction accuracy and increase computational overhead. To
enhance denoising efficacy, improve classification accuracy,
and reduce computation time, this paper introduces a de-
noising method based on low-rank matrix recovery using the
IALM algorithm [21], [22] outlined in Algorithm 1:

Figure 3 depicts the MFCC characteristic spectrum of the
air compressor and the foreground characteristic map after
background modeling. MFCC features are extracted from
the air compressor’s audio noise dataset in WAV format,
resulting in the MFCC feature spectrum. Subsequently, back-
ground modeling is performed to extract foreground features.
As illustrated in figure 3, background modeling identifies

Algorithm 1 IALM algorithm for low rank matrix recovery
1: Initialize Y0, L0 = 0, µ0,K = 0,
2: While Non convergence do
3: Sk+1 = Dλµk−1

[
M − Lk + µk

−1Yk

]
,

4: (U, Sigma, V ) = svd
(
M − Sk+1 + µk

−1Yk

)
,

5: Lk+1 = UAµk−1 [Sigma]V T ,
6: Yk+1 = Yk + µk (M − Lk+1 − Sk+1),
7: Update µk,
8: k = k + 1
9: Output recovery matrix, optimal solution (L, S).

key features in the MFCC spectrum, thereby generating new
features.

C. GFCC feature extraction

GFCC features can be categorized into time-domain and
frequency-domain features. The concept of time-domain
GFCC features was initially introduced in document [23].
The Gammatone filter is a filter bank based on the human
cochlear auditory model, which effectively simulates the
frequency division characteristics of the basilar membrane.
Its time-domain expression is as follows:

gi (t) = Atn−1e−2πbit cos (2πfi + φi) v (t),
t ≥ 0, 1 ≤ i ≤ N

(3)

GFCC feature parameter extraction follows a process sim-
ilar to MFCC. After preprocessing, where the audio signal
is converted to the frequency domain, the energy spectrum
undergoes logarithmic compression via the gammatone filter
bank. Subsequently, the discrete cosine transform is applied
to obtain the GFCC feature parameters. Figure 4 illustrates
the characteristics of the GFCC spectrum of the air compres-
sor.

D. Deep learning noise classification based on vgg16 archi-
tecture

The VGG16 model effectively extracts fine-grained fea-
tures within its receptive field by utilizing numerous 3x3 con-
volutional kernels. Each 3x3 convolution kernel can perceive
information from the smallest receptive field in all directions
- upper, lower, left, right, and center. The combination of two
3x3 convolution kernels results in a receptive field equivalent
to a 5x5 convolution kernel, while three such convolutions
create a receptive field equivalent to a 7x7 convolution kernel
[24]. The model comprises 16 weight layers, including 13
convolution layers and 3 fully connected layers [25]. The
convolution layers extract hierarchical features from input
abnormal and normal foreground images, while the fully
connected layers make final classification decisions.

Data preprocessing is crucial for enhancing the model’s
generalization ability. Images are randomly horizontally
flipped for augmentation and normalized to ensure consistent
input features. The preprocessed images are batch inputted
into the VGG16 model. Stochastic Gradient Descent (SGD)
with momentum is employed to optimize the model. The
cross-entropy loss function calculates the discrepancy be-
tween predicted and actual tags. The training process occurs
over multiple epochs, with model parameters continuously
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updated to enhance performance. Evaluation on an indepen-
dent test set is conducted after each epoch, with accuracy
serving as a metric to gauge the model’s ability to correctly
classify images as noisy or clear.

E. Image clustering based on K-means algorithm

In the absence of labeled training data, unsupervised
clustering, particularly the k-means algorithm, has proven
to be a potent method for grouping similar images based

on extracted features. The MobileNetV2 model is employed
to extract features from the images. To enhance efficiency,
Principal Component Analysis (PCA) is utilized to reduce
the dimensionality of the feature vector to two components.
The reduced-dimension feature vector is then inputted into
the K-means clustering algorithm.

The k-means algorithm iteratively partitions the image into
K clusters, with the value of K determined by evaluation
indices such as the CH index and SC index. Continuously
updating the position of the cluster centers based on the
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TABLE I
DATASET 1 BASIC INFORMATION

operational state serial number quantities(training set/test set)

normal Normal-GFCC 135(45)
abnormal abnormal-GFCC 945(315)

TABLE II
DATASET 2 BASIC INFORMATION

operational state serial number quantities(training set/test set)

normal MFCC- foreground 135(45)
abnormal MFCC- foreground 945(315)

similarity between data objects and cluster centers, the al-
gorithm aims to minimize the sum of squared error (SSE) of
the clusters. When SSE no longer changes or the objective
function converges, the clustering process concludes, and the
final clustering result is obtained.

As illustrated in figure 5, the original dataset comprises
three clusters. The k-means algorithm is applied to cluster
the dataset, and the final clustering result is achieved after
two iterations of the dataset.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Data preprocessing

This dataset comprises data collected through acoustic
recordings from a single-stage reciprocating air compressor,
with a sampling frequency of 16 kHz. It consists of 1,800
audio recordings, encompassing both normal and seven fault
states. The seven fault states include: inlet valve leakage
(LIV) fault, outlet valve leakage (LOV) fault, check valve
(NRV) fault, piston ring fault, flywheel fault, rider belt
fault, and bearing fault, with each fault state containing
225 data samples. These fault states are evenly categorized
into abnormal (Abnormal) types, while the normal state is
classified as Normal.

Dataset 1 contains GFCC spectrograms extracted from
audio data of the Abnormal class. Dataset 2 includes MFCC
foreground images obtained from audio data of the Ab-
normal class after MFCC feature extraction and low-rank
background modeling.

Both dataset 1 and dataset 2 are segmented into training,
testing, and validation sets in a ratio of 0.6:0.2:0.2. Table
1 provides fundamental details regarding the air compressor
noise dataset 1, while table 2 outlines the basic information
concerning dataset 2.

B. Experimental results

In accordance with the structural framework of the air
compressor fault diagnosis method, testing was conducted.
Various networks were trained using single GFCC spectrum
inputs and MFCC foreground noise maps after low-rank
background modeling. Subsequently, the effectiveness of the
low-rank background modeling method for air compressor
fault detection was evaluated using unsupervised k-means
algorithm clustering analysis.

1) Comparative analysis of single GFCC feature and
MFCC foreground feature recognition results: The network
models constructed using VGG16, VGG19, Resnet, Resnet34
and Resnet50 were compared and trained. These 5 models

are evaluated based on accuracy, recall, and F1 score. Table
3 provides a detailed comparison of the performance of
different neural network models on two different datasets.
Comparative indicators include accuracy, F1 score, recall
rate, and calculation time. The results showed that the
VGG19 model achieved the highest accuracy of 100% on
Data 1, followed closely by the VGG16 and Resnet models
with accuracies of 99.70% and 99.36%, respectively. The
VGG16 model also performs well in terms of F1 score and
recall, both reaching full marks. However, the computation
time of VGG16 is significantly higher at 8372 seconds, while
the Resnet model shows faster processing times, with Resnet
at 473 seconds and Resnet34 at 870 seconds.

On data 2, VGG16 once again performed excellently, with
an accuracy of 91.40%, an F1 score of 0.90, and a recall
rate of 0.92. It is worth noting that, the time required to
train the model on dataset 1 is approximately 4.85 times and
2.13 times that of dataset 2. The reason for this difference
is that foreground features are extracted through background
modeling, and eliminating the background can reduce the
image area that needs to be processed by the model, thereby
reducing computational and storage costs.

2) Comparative analysis of single GFCC feature and
background modeling foreground feature clustering results:
In order to realize the clustering of air compressor faults and
verify the effectiveness of the proposed algorithm, a total of
1575 groups of data in 7 abnormal states of air compressor
are used in this paper. Mobilenetv2 model is used to extract
features from single GFCC spectrum and MFCC foreground,
and PCA (principal component analysis) is used to reduce the
dimension of the extracted features, and cluster the features
of the input images. Considering the ch index and SC index,
the number of clusters is obtained, and the number of clusters
is determined as 7. Table 4 shows the partial results of the
two evaluation indicators in the GFCC spectrum diagram,
and table 5 shows the partial results of the two evaluation
indicators in the MFCC prospect diagram.

Table 4 and table 5 demonstrate that the Cluster Calinski
Harabasz (CH) index and Silhouette Coefficient (SC) of the
Mel Frequency Cepstrum Coefficient (MFCC) foreground
map, obtained through low-rank background modeling, gen-
erally surpass those of the Single Gamma Tone Frequency
Cepstrum Coefficient (GFCC) spectrum map. Furthermore,
there is a significant reduction in processing time. No-
tably, figure 6(a) illustrates that during the clustering of
MFCC foreground mapping, as the clustering parameter
k approaches the inherent data categories, the CH index
consistently rises. Conversely, when k surpasses the real data
categories, the CH index experiences sudden fluctuations,
displaying a notable inflection point in the line chart. Analyz-
ing these significant inflection points on the CH index curve
derived from the MFCC prospect map aids in identifying the
data categories.

In contrast, the clustering process of the single GFCC
spectrum witnesses significant fluctuations in both SC and
CH indices, rendering the determination of the optimal
clustering parameter K challenging based solely on these
metrics. Consequently, precise classification of data cate-
gories through evaluation indices becomes problematic.

To further validate the effectiveness of the clustering
method, data experiments with k=4 , and k=5 for the cluster-
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TABLE III
COMPARISON OF GFCC SPECTRUM AND MFCC FOREGROUND MODEL TRAINING RESULT

Neural Network Model Data 1 Accuracy F1-score Recall Time (s) Data 2 Accuracy F1-score Recall Tim (s)

VGG16 99.70% 1.00 1.00 8372 91.40% 0.90 0.92 1727
VGG19 100% 1.00 0.99 4076 95.90% 0.91 0.93 1916
Resnet 99.36% 0.98 0.98 473 85.94% 0.82 0.80 144

Resnet34 99.40% 0.99 1.00 870 94.10% 0.89 0.87 765
Resnet50 97.13% 0.95 0.92 2850 94.88% 0.91 0.93 826

TABLE IV
COMPARISON OF CLUSTERING INDICES FOR DIFFERENT K-VALUES OF GFCC SPECTRUM.

K 2 3 4 5 6 7 8

CH 1513 1621 1329 1681 2075 1464 1504
SC 0.587 0.399 0.385 0.375 0.347 0.377 0.358

Time(s) 34 30 30 31 42 39 35

TABLE V
COMPARISON OF CLUSTERING INDICES FOR DIFFERENT K-VALUES OF MFCC FOREGROUND MAP

K 2 3 4 5 6 7 8

CH 2708 3275 3750 4578 4969 5683 4992
SC 0.572 0.531 0.507 0.515 0.503 0.508 0.443

Time(s) 22 25 26 29 30 31 36

ing algorithm of air compressor faults were conducted. The
experimental results are illustrated in figure 6(b).

Combined with the above experiments and analysis, it
can be concluded that the MFCC foreground map after low
rank background modeling can get more optimized results in
terms of clustering effect, and can be effectively applied to
the clustering of air compressor fault data to meet the needs
of practical application.

V. CONCLUSIONS

The deep learning neural network, employing the IALM
low rank matrix recovery algorithm as proposed in this pa-
per, demonstrates superior performance in both classification
and k-means clustering when compared to traditional single
GFCC spectrum methods. Notably, the MFCC foreground
map generated through the IALM low rank matrix recovery

algorithm exhibits greater stability, facilitating more effective
training of deep learning models and yielding improved
clustering results for air compressor data.

By leveraging the proposed algorithm alongside air com-
pressor data, unlabeled faults within the air compressor sys-
tem can be accurately clustered into seven distinct categories.
This comprehensive approach offers enhanced recognition
and clustering capabilities for fault detection within air
compressor systems, thereby providing a more precise and
thorough fault detection framework.
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