
PCB Surface Defect Detection based on YOLOv8n
Rui You, Zhifeng Wang ∗

Abstract—In the electronic manufacturing industry, accurate
detection of PCB defects is crucial as it directly impacts
product quality and reliability. The primary challenges in PCB
defect detection include missed detections and false alarms,
particularly concerning micro-defects. This study proposes an
enhanced PCB defect detection algorithm based on YOLOv8,
which incorporates the Global Attention Module (GAM), Par-
tial Convolution Layer (PConv3), and a multi-head detection
strategy. The GAM improves the model’s sensitivity to micro-
defects by capturing and weighting global context information
through spatial and channel attention mechanisms applied to
the input feature map. The PConv3 optimizes feature extraction,
minimizing false alarms due to information loss. The multi-head
detection strategy identifies defects at varying scales, preserving
detailed information and enhancing the detection of small-sized
defects. Experimental results demonstrate that the improved
algorithm achieves a 3.6% increase in average precision while
meeting real-time detection requirements.

Index Terms—Deep Learning, PCB Defect Detection,
YOLOv8, Global Attention Module, PConv3, Multi-head De-
tection

I. INTRODUCTION

IN the modern electronics manufacturing field, printed
circuit boards (PCBs) are ubiquitous components in

electronic devices[1]. As electronic devices evolve towards
higher performance, smaller sizes, and more complex de-
signs, the manufacturing quality of PCBs directly impacts
the reliability and performance of the entire product[2].
Therefore, ensuring defect-free PCBs during the production
process is crucial. However, with the miniaturization of PCBs
and the increase in component density, traditional defect
detection methods face significant challenges, particularly
in detecting micro-defects. In recent years, numerous re-
searchers and engineers have sought to enhance the automa-
tion and accuracy of defect detection by introducing ad-
vanced computer vision and machine learning techniques[3].
In this research area, various object detection models have
been developed and optimized to meet the specific require-
ments of PCB manufacturing.

Since the introduction of the R-CNN network into the
object detection field by Girshick et al. in 2014, convolutional
neural networks (CNNs) have been widely applied for their
exceptional feature extraction and representation capabilities,
enabling high-precision detection through automatic feature
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extraction. Among these, the evolved version of region-
based convolutional neural networks (R-CNN), Faster R-
CNN, has been extensively studied for its superior feature
extraction capability. Junhao Niu[4] and colleagues proposed
an improved PCB defect detection algorithm based on Faster
R-CNN, which outperforms current mainstream algorithms
in detecting micro-objects by 9.2%, achieving better accuracy
for micro-defect detection. Dan Li[5] and colleagues pro-
posed an improved PCB defect detector based on the Feature
Pyramid Network (FPN). This detector, which combines
Faster R-CNN and FPN as its foundation, achieved higher
accuracy and enhanced defect detection and classification
performance. Huang C.Y.[6] and colleagues discussed and
compared the target detection networks of YOLOv3 and
Faster R-CNN, aiming to establish an automatic defect
detection system capable of quickly identifying defects on
PCBs. These models first identify regions in the image that
may contain defects through region proposal networks, and
then analyze these regions in-depth to achieve high-precision
defect detection. However, despite their excellent perfor-
mance in accuracy, these models are significantly limited
in real-time detection due to the time-consuming processes
involved in region proposal and feature extraction.

On the other hand, YOLO series models such as YOLOv3,
YOLOv5[7] and YOLOv7[8] have gained attention for their
fast detection speed and well-balanced performance. The
YOLO model approaches defect detection as a single regres-
sion problem, directly predicting the position and category
of defects in an image, thereby significantly improving pro-
cessing speed. Specifically, YOLOv5, while maintaining high
speed, further enhances detection accuracy and robustness by
incorporating multi-scale training and more complex network
structures. However, existing object recognition algorithms
still struggle with detecting defects in PCBs with complex
circuit layouts.

To address this issue, Stephen Yang[9] and colleagues
proposed a novel YOLOv3-DenseNet model for PCB defect
detection. They made key improvements to YOLOv3, and
comparative results showed that the proposed YOLOv3-
DenseNet outperforms other commonly used YOLOv3 mod-
els in terms of recognition accuracy, while also having a
smaller model size. Li J[10] and colleagues proposed a class-
balanced Train/Val (training/validation) segmentation method
for YOLOv3, addressing the problem of object detection
imbalance in PCB assembly scenes using a feature fusion
strategy to balance multi-scale features. Zheng Wang[11]
and colleagues proposed an improved YOLOv3 method
for PCB solder joint defect detection, combining ordered
probability density weighting with attention mechanisms.
Testing showed that the improved network’s average de-
tection accuracy increased from 84.35% to 96.69%, with
better convergence than the original network. Tang J[12]
and colleagues proposed an improved PCB surface defect
detection algorithm called PCB-YOLO, based on YOLOv5,
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achieving 95.97% mAP at 92.5 FPS—more accurate and
faster than many other real-time, high-precision detection
algorithms for surface defects in PCBs. WU Junhua[13] and
colleagues proposed a fast PCB defect detection method
based on an improved YOLOv5, introducing a Parallel Resid-
ual Ghostconv Convolutional Block Attention Module (PRG-
CBAM). This module eliminates the priority of channel and
spatial attention modules, improving the accuracy of object
detection.Additionally, by replacing the standard convolution
in the PANet module with ghost convolution (Ghostconv),
they reduced the number of network parameters and compu-
tational costs, thereby improving detection efficiency.

Additionally, Single Shot Multibox Detection (SSD) is
also a highly effective model that, by predicting bounding
boxes at multiple scales, can better capture defects of vari-
ous sizes. This characteristic of SSD makes it particularly
effective in detecting small-sized or micro-defects. Litian
Kang[14] and colleagues proposed a deep learning detection
network based on SSD, called multi-layer SSD (mSSD),
which includes a small target prediction feature layer mod-
ule, enhancing the perception of small target features.The
improved mSSD network significantly enhanced the detec-
tion accuracy of SSD in PCB defect detection.Guangzai
Ran[15]and colleagues applied a PCB defect detection and
recognition algorithm based on the SSD (Single Shot De-
tector) deep convolutional network framework to address the
low robustness of existing traditional PCB defect detection
algorithms.The detection results were optimized by non-
maximum suppression (NMS), and experiments showed that
the algorithm significantly improved PCB defect detection
accuracy.Yusen Wan[16] and colleagues proposed a semi-
supervised defect detection method (DE-SSD) with a data
augmentation strategy, achieving competitive results for PCB
defect detection with fewer labeled samples.

While these models possess distinct advantages, they
generally necessitate careful tuning and optimization for
specific PCB defect detection scenarios. Consequently, this
paper presents a PCB defect detection algorithm based on an
enhanced YOLOv8 model, which significantly improves the
recognition of micro-defects by integrating the Global Atten-
tion Module (GAM), Partial Convolution Layer (PConv3),
and a multi-head detection strategy. The Global Attention
Module enhances the model’s focus on the overall feature
map, while the Partial Convolution Layer optimizes infor-
mation capture, and the multi-head detection strategy enables
precise defect detection across varying scales. Through the
comprehensive integration of these technologies, our method
not only increases detection accuracy but also fulfills real-
time requirements, providing an effective solution for auto-
matic defect detection in PCB production lines.

II. RELATED STUDIES
In the field of PCB defect detection, numerous deep

learning-based methods have been proposed. These methods
primarily rely on convolutional neural networks (CNNs)
and object detection models such as SSD, Faster R-CNN,
and the YOLO series. YOLOv8, the latest object detection
model, has demonstrated significant improvements in both
speed and accuracy. The network architecture of YOLOv8
primarily consists of three key components: the backbone,
the neck, and the head[17]. This hierarchical design offers

an efficient processing framework for object detection, with
each component playing a specific role in the entire network.
The structured design not only optimizes data flow through
the network but also enhances processing speed and detection
accuracy[18]. The detailed network architecture is illustrated
in Fig 1.

The backbone serves as the core of the network, tasked
with extracting fundamental features from images. It com-
prises modules such as SPPF, C2f, and Conv. The SPPF
module stabilizes output size, enhancing the network’s adapt-
ability to varying input image dimensions. In the YOLO
architecture, SPPF is employed to improve the feature extrac-
tor’s scale invariance, effectively extracting richer contextual
information and bolstering the model’s capacity to detect
objects at different scales. The C2f module facilitates the
connection of features across varying levels, thereby aiding
the model in differentiating objects of diverse scales during
detection. Conv, a fundamental component in deep learning,
processes input feature maps by applying filters to capture
local features and generate new feature maps.

The neck, a critical component of the neural network
architecture, is responsible for further processing and refining
features to enhance the model’s ability to recognize complex
or small targets. It is designed to optimize the model’s feature
representation, making it more discriminative and robust for
tackling various challenging object detection tasks.

Finally, the head’s main task is to convert the processed
and enhanced feature maps into final object detection results,
such as the categories and positions of the targets.

YOLOv8, the latest version in the YOLO series, has
seen significant improvements in multiple aspects. The main
improvements include: 1) adopting Darknet-53 as the back-
bone network to leverage its depth and efficiency for feature
extraction; 2) introducing a new Anchor-Free detection head,
moving away from traditional anchor-based methods; 3)
using VFL Loss as the classification loss and combining DFL
Loss with CIOU Loss as the regression loss[19], wwhich
enhances training stability and detection accuracy. YOLOv8
offers various models in different sizes, including YOLOv8n,
YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x, to meet
the needs of different network depths and widths. Consider-
ing model size, this paper selects the YOLOv8n network,
which is compact and highly accurate, making it more
suitable for real-time PCB defect detection[20].

III. IMPROVED YOLOV8N ALGORITHM

Although the YOLOv8n model shows significant advan-
tages in object detection, applying it to PCB surface defect
detection presents several challenges. First, PCB images
contain complex structures and abundant details, which may
cause the model’s performance to decline when detecting
small-sized or low-contrast defects. Second, PCB surfaces
contain a wide variety of defect types, requiring the model
to have strong generalization capabilities to effectively detect
different kinds of defects. However, the model is limited by
the diversity and quantity of training data, which could lead
to poor performance on unseen defect samples. Additionally,
PCB surface defect detection demands strict requirements
for both speed and accuracy, necessitating fast real-time
detection while maintaining high precision. Therefore, de-
spite the YOLOv8n model’s excellent speed performance,
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Fig. 1: YOLOv8n Model

further research and improvements are needed to address
these challenges in practical applications.

Fig. 2: Enhanced YOLOv8n Model

To address the aforementioned challenges, we propose
three key improvements. First, to better handle defects of
different sizes, we introduce an additional detection head in
the detection component. This enables the model to extract
features and detect defects across more scales, enhancing its

ability to recognize small defects while ensuring accurate
detection of larger ones[21]. Second, we introduce the SPPF
(Spatial Pyramid Pooling-Fast) module, a critical component
in YOLOv8 that enhances the model’s ability to process
features at various scales. By introducing the GAM (Global
Attention Module) after the SPPF module, the model can
effectively focus on crucial areas of the image, particularly
those containing small defects, thereby improving detection
accuracy and sensitivity[22]. Finally, considering the diverse
morphologies of PCB defects, we insert PConv3 partial
convolutional layers at the end of the neck network. PConv3
enhances the model’s ability to handle irregular defects by
providing more flexible convolutional kernel shapes and
sizes, particularly for defects with unclear edges or complex
morphologies, ensuring high-accuracy defect detection[23].
The specific improvements are illustrated in Fig2.

These customized improvements substantially enhance the
performance of the YOLOv8n model in PCB defect detec-
tion, increasing its ability to recognize defects of various
sizes and shapes while also boosting detection sensitiv-
ity and accuracy. Through these technological innovations,
YOLOv8n is better equipped to meet the rigorous standards
of industrial quality control, providing robust technical sup-
port for PCB production.

IV. IMPROVEMENT STRATEGY

The method proposed in this paper is based on the
YOLOv8 model and integrates the Global Attention Module
(GAM) to enhance the model’s capacity to learn specific
defect features. GAM dynamically adjusts the importance
distribution of feature maps, enabling the model to concen-
trate more on defect regions. The Partial Convolution Layer
(PConv3) is specifically designed to address irregular defects
in PCB images, effectively managing the details between
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defect edges and complex backgrounds. Additionally, we
employ multiple detection heads to further enhance the
accuracy and robustness of defect detection by identifying
defects at various scales.

A. GAM Attention Mechanism

The Global Attention Module (GAM) enhances the per-
formance of deep learning models by focusing on global
information, particularly excelling in tasks that require em-
phasizing key feature areas[24]. The entire process is illus-
trated in Fig3, with Equation 1 and Equation 2 (Woo et al.,
2018). Given an input feature map F1 ∈ RC×H×W , the
intermediate state F2and output F3 are defined as:

F2 = Mc(F1)⊗ F1 (1)

F3 = Ms(F2)⊗ F2 (2)

Here, Mc and Ms are the channel and spatial attention
maps, respectively; ⊗ denotes element-wise multiplication.

Fig. 3: The overview of GAM

Its basic working principle involves the following steps:
1) Global Context Extraction: Using Global Average Pool-

ing (GAP) to extract global context information from the
input feature map F. For each channel, GAP computes the
average of values at all spatial positions, generating a global
feature descriptor, G. Assuming the size of the input feature
map F is CHW (where C is the number of channels, and H
and W are the height and width, respectively), the operation
of GAP can be represented as:

Gc =
1

H ×W

H∑
i=1

W∑
j=1

FcijstateSpaceForm1 (3)

Here, Gc is the global context feature of the c-th channel.
2) Attention Weight Generation: Transforming the global

feature descriptor G into attention weights A by applying
one or more fully connected layers (FC). This process may
include activation functions, such as sigmoid, to ensure that
the weight values fall between 0 and 1. LetWg and bg be the
weights and biases of the fully connected layer, respectively;
then the calculation of attention weights can be represented
as:

A = σ (Wg·G+ bg) (4)

Here, σ is the sigmoid function, ensuring that the weight
Ac of each channel is between 0 and 1.

3) Feature Re-weighting: Finally, the calculated atten-
tion weights A are applied to the original feature map F ,
weighted by element-wise multiplication, to obtain the final
weighted feature map F ′:

F ′
c = Ac ⊙ Fc (5)

Here, ⊙ represents the element-wise multiplication oper-
ation, and F ′

cis the weighted feature map.

Fig. 4: Channel attention submodule

Fig. 5: Spatial attention submodule

In this paper, we enhanced the head network of the
YOLOv8n model by integrating the Global Attention Module
(GAM) after the SPPF module to improve its ability to
detect small targets and establish relationships between these
targets and the feature maps. By incorporating the GAM
attention mechanism into the YOLOv8n model, we can more
effectively capture the critical features of small targets and
focus attention on regions essential for their detection and
recognition. This approach enables more accurate identifi-
cation of small targets, thereby improving both detection
accuracy and recognition performance.

B. Partial Convolution Module 3 (PConv3)

The PConv3 (third-generation partial convolution module)
represents a significant advancement in deep learning for
local feature processing. Its core design principle is to utilize
local convolution operations instead of traditional global
convolutions to enhance the model’s ability to capture subtle
changes in images [25].

Fig. 6: Comparison of Convolution Techniques

As shown in the Fig6, PConv is fast and efficient, as it
applies filters only to a few input channels while keeping
the rest unchanged. In implementation, PConv3 customizes
operations for each convolutional layer. Specifically, for the
input feature map F, PConv3 first analyzes the features of
each local region, then dynamically adjusts the convolutional
kernel parameters Wpconv and bias bpconv based on these
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features to adapt to the characteristics of that local region.
This can be expressed by the following formula:

F ′ = Wpconv(F ) + bpconv (6)

Where F ′ is the output feature map after processing
by PConv3, and Wpconv and bpconv are the dynamically
adjusted convolutional kernel parameters and bias based on
the input features. PConv3 precisely captures local details
and features by dynamically adjusting the shape and size of
the convolutional kernel according to the local properties of
the input feature map, significantly enhancing the model’s
sensitivity and detection performance for subtle defects.

Additionally, the design of the Partial Convolution Layer
(PConv3) emphasizes computational and memory efficiency,
optimizing model performance when processing large-scale
datasets. PConv3 represents a significant advancement in
deep learning for local feature processing, as its local convo-
lution mechanism enhances the model’s efficiency and flexi-
bility in capturing subtle variations in images. Particularly in
applications such as PCB defect detection, which necessitate
highly precise identification, PConv3 markedly improves the
detection of subtle defects by dynamically adjusting the
convolutional kernel. The implementation of this technology
optimizes the model’s consumption of computational re-
sources while maintaining high-precision detection, offering
an efficient solution for complex visual tasks. Specifically,
the local convolution operation of PConv3 can be expressed
by the following formula:

F ′ = PConv3(F ) (7)

Where F is the input feature map, and F ′ is the feature
map after being processed by PConv3. PConv3 dynamically
adjusts the parameters of the convolutional kernel based on
the local information in F to process each local region in
the most suitable way.

Fig. 7: Partial Convolution(PConv)

In this study, by introducing the PConv3 partial convo-
lution into the neck network of the YOLOv8 model, we
achieved efficient local convolution operations on the input
feature map. This enhancement enables the model to more
flexibly capture local details and features in PCB images,
particularly tiny defects. PConv3 provides more sensitive
and accurate detection capabilities. By introducing PConv3,
the YOLOv8 model exhibits greater flexibility and accuracy
in PCB defect detection tasks, particularly in identifying
and locating tiny defects in images, significantly enhancing
detection performance.

C. Addition of Detection Head

In PCB defect detection, the small-area characteristics
of most defects pose a challenge, particularly because the

large downsampling factor of YOLOv8 makes it difficult
for deep feature maps to capture details of small targets. To
address this issue, we innovatively added a high-resolution
detection head to YOLOv8, specifically targeting small tar-
gets. By refining the downsampling strategy, the generated
high-resolution feature map can reveal detailed information
about small targets, significantly improving YOLOv8’s per-
formance in detecting small defects. Although this increases
computational complexity and may affect inference speed,
the improvement in detection accuracy confirms the value of
this strategy, demonstrating a reasonable trade-off between
accuracy and efficiency. Future work will explore algorithm
optimization and hardware acceleration methods to enhance
computational efficiency and ensure the feasibility of real-
time detection.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this chapter, we evaluate the performance of the en-
hanced YOLOv8n algorithm for PCB surface defect detec-
tion. First, we provide a detailed description of the dataset
construction process and outline the experimental parameters
and environment configurations. Subsequently, we conduct
ablation experiments to verify the specific impact of improve-
ments like the small object detection head, GAM attention
mechanism, and PConv partial convolution on the algo-
rithm’s performance. Additionally, we perform comparative
experiments to evaluate our model against several popular
models currently available in the market, thereby obtaining
comprehensive experimental results and evaluations.

A. Dataset Construction

This study utilized the PKU-Market-PCB dataset released
by Peking University’s Intelligent Robotics Open Laboratory.
The dataset comprises 693 high-quality images of printed
circuit boards (PCBs) of various sizes, covering six common
types of defects encountered in industrial production: missing
holes, burrs, mouse bites, short circuits, open circuits, and
excess copper. These six defect categories are depicted in
the Fig8 below.

These defect categories are evenly distributed across the
dataset, with each image containing approximately 1 to
5 defects, providing abundant examples for training deep
learning models. Considering the scale of the dataset (only
693 images), directly training on these original images may
be limited by insufficient data, which could make it difficult
to achieve optimal performance. To address this issue, we
employed a series of data augmentation techniques—such as
cropping, translation, brightness adjustment, adding noise,
rotation, and horizontal flipping—to systematically expand
the dataset, enhancing the model’s generalization capability
and robustness. (Refer to Fig9).

B. Experimental Environment

The experimental environment of this study is shown in
Table I.

During training, the dataset was automatically split into
training, validation, and testing sets in an 8:2 ratio. The other
hyperparameters used during training were set as follows:
momentum was set to 0.937, lr0 (initial learning rate) was
set to 0.01, lrf was set to 0.015, batch size was set to 16, the
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(a) missing hole (b) spur

(c) mouse bite (d) short

(e) open circuit (f) spurious copper

Fig. 8: Types of PCB Defects

TABLE I:
Experimental Conditions and Environment

System Windows11

CPU 12th Gen Intel(R) Core(TM) i5-12500H 2.50 GHz
GPU Nvidia GeForce RTX 3090

Memory 16
Software Conditions PyCharm

Python version Python3.8
Deep learning framework Pytorch

number of epochs was set to 200, and the standard image
input size was set to 640×640.

C. Evaluation Metrics

In this study, we use mean Average Precision (mAP), Pre-
cision, and Recall as performance evaluation metrics. These
metrics collectively provide a comprehensive perspective to
quantify the model’s performance on PCB surface defect
detection tasks.

TP (True Positives): The number of instances correctly
predicted as positive (i.e., defects present) by the model.

FP (False Positives): The number of instances incorrectly
predicted as positive (actually negative, i.e., defects absent)
by the model.

FN (False Negatives): The number of instances incor-
rectly predicted as negative (actually positive) by the model.

C (Total number of classes): The total number of different
defect types in the dataset.

AP (Average Precision): Represents the average precision
of the model’s prediction results for a single class.

Precision and Recall are key metrics for measuring the
model’s performance, reflecting the accuracy and complete-
ness of the model in identifying positive samples. Addition-
ally, mAP provides an effective measure of the model’s
overall performance across all classes, calculated as the
average of AP values for all classes. The formulas are as
follows:

mAP =

C∑
i=1

APi

C
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

AP =

∫ 1

0

P (R)dr (11)

D. Ablation Experiments

To validate the impact of adding the small target detec-
tion head, GAM attention mechanism, and PConv partial
convolution on the algorithm, ablation experiments were
designed. The data is shown in Table II, where ”!” indicates
the corresponding improvement method and its experimental
sequence.

In this study, we evaluated the performance of models
under different configurations. Initially, we used a baseline
model without any enhancements, achieved an accuracy of
93.7%, recall of 92.6%, and mAP of 93.0%. Subsequently,
we progressively added different features and observed their
impact on performance. When adding the small object de-
tection layer alone, we observed a significant performance
improvement, with accuracy increasing to 96.8%, recall to
92.3%, and mAP to 95.2%. Upon introducing the GAM,
accuracy slightly decreased to 92.6%, but the recall increased
to 94.9%, with an mAP of 94.1%. When PConv was in-
troduced alone, accuracy slightly decreased to 93.7%, but
the recall increased significantly to 96.4%, with an mAP of
92.9%. Without PConv, combining the small object detection
layer with GAM yielded accuracy, recall, and mAP of 96.2%,
94.3%, and 96.0%, respectively. When both the small object
detection layer and PConv were added, the configuration
without GAM showed an accuracy of 95.9%, recall of 95.6%,
and mAP of 95.4%. The configuration using only GAM
and PConv without adding the small object detection layer,
was slightly lower than the previous one, with accuracy
of 94.6%, recall of 97.3%, and mAP of 95.2%. Finally,
with all features added, the model performed optimally, an
achieving accuracy of 96.3%, recall of 96.9%, and mAP
of 96.6%. These experimental results are presented through
clear graphical outputs, a facilitating comparative analysis
of the specific impact of various configurations on model
performance. (Refer to Fig10).
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Fig. 9: Distribution of Defect Types in PCB Dataset

TABLE II:
Ablation Experiments

Number a small goal detection layer GAM PConv3 Precision/% Recall/% mAP

1 × × × 93.7 92.6 93.0
2 ✓ × × 96.8 92.3 95.2
3 × ✓ × 92.6 94.9 94.1
4 × × ✓ 93.7 96.4 92.9
5 ✓ × ✓ 96.2 94.3 96.0
6 ✓ ✓ × 95.9 95.6 95.4
7 × ✓ ✓ 94.6 97.3 95.2
8 ✓ ✓ ✓ 96.3 96.9 96.6

E. Comparative Experiments

In this study, we conducted several experiments comparing
our proposed improved algorithm with widely recognized
models in the field—YOLOv5, YOLOv7, Faster R-CNN,
SSD, and RetinaNet—using a unified dataset and evaluation
criteria for PCB surface defect detection tasks. The final
results are shown in Table III below.

As seen from the table, the classical YOLOv3, YOLOv5,
and Faster R-CNN do not perform well, and their accuracy is
reduced, while the performance of other models improves to
varying degrees. Our model surpassed other models in terms
of the comprehensive performance evaluation metric, MAP,
reaching 96.6%. Although our model exhibited slightly lower
precision compared to YOLOv7 by 0.6%, and recall lower
than RetinaNet by 0.8%, its overall performance remains

TABLE III:
Comparative Experiments

Model Precision/% Recall/% mAP

YOLOv3 92.3 93.4 93.3
YOLOv5 93.5 94.8 94.6
YOLOv7 96.9 95.1 95.9
Faster R-CNN 91.5 93.9 93.7
SSD 92.8 95.5 95.4
RetinaNet 95.6 97.7 96.3
Ours 96.3 96.9 96.6
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(a) P-R curve of the YOLOv8n algorithm (b) P-R curve of the improved YOLOv8n algorithm

Fig. 10: A comparison of the P-R curves between the two models

highly satisfactory.

VI. CONCLUSION

This study developed an advanced PCB defect detection
method based on the YOLOv8 model, effectively enhanc-
ing the accuracy and efficiency of the detection system
by integrating GAM, PConv3, and multi-detection head
strategies. Experiments conducted on the PKU-Market-PCB
dataset, combined with extensive training and diverse data
augmentation techniques, not only expanded the diversity
and scale of the dataset but also significantly improved the
model’s performance. This method demonstrated outstanding
performance in detecting various PCB defects, with precision
reaching 96.3%, recall at 96.9%, and average precision
(mAP) at 96.6%. These results demonstrate that the method
meets the stringent requirements of the PCB manufacturing
industry for high-precision and efficient defect detection,
showcasing its potential value in industrial applications.

Despite achieving significant results, there are still some
limitations in this research. The robustness of the current
model under extreme conditions (such as very low contrast or
complex backgrounds) needs improvement. Additionally, the
model’s performance can be further improved when dealing
with extremely small or highly overlapping defects. Future
research will focus on optimizing algorithms to enhance the
model’s adaptability and accuracy in various complex envi-
ronments. Plans include introducing more advanced image
processing techniques and deep learning algorithms, such as
adaptive image enhancement and deep feature fusion, to fur-
ther improve detection accuracy. Moreover, considering the
significant impact of dataset diversity on model performance,
future exploration will also involve augmenting the dataset
through synthetic data and simulated defect generation to
make training more comprehensive and effective.
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