TAENG International Journal of Computer Science

Interval Valued Secondary k-Range Symmetric
Fuzzy Matrices with Generalized Inverses

H. Prathab, N. Ramalingam, E. Janaki, A. Bobin, V. Kamalakannan and M. Anandhkumar

Abstract—This research examines an interval-valued
secondary k-Range symmetric fuzzy matrix. It discusses the
relationships between different types of matrices, specifically
interval-valued s-k Range symmetric, interval-valued k-Range
symmetric, and interval-valued Range symmetric matrices.
The study establishes the necessary and sufficient criteria for
an interval-valued s-k Range symmetric fuzzy matrix. It is
demonstrated that s-symmetry implies s-Range symmetric and
the reverse is necessarily true. Also, we illustrate a graphical
representation of Kernel symmetric, Column symmetric, and
Range symmetric adjacency and incidence fuzzy matrices.

Every adjacency fuzzy matrix is symmetric, Range
symmetric, Column symmetric, and Kernel symmetric, but the
incidence matrix satisfies only the KS conditions. Similarly,
every Range symmetric adjacency fuzzy matrix is a Kernel
symmetric adjacency fuzzy matrix, but a Kernel symmetric
adjacency fuzzy matrix need not be a Range symmetric fuzzy
matrix. Also, in every isomorphic graph, its adjacency fuzzy
matrix is a Kernel symmetric, Range symmetric, and Column
symmetric adjacency fuzzy matrix, but the converse need not
be true.

Additionally, equivalent criteria for various g-inverses of
an interval-valued s-k Range symmetric fuzzy matrix being
interval-valued s-k Range symmetric matrices are also estab-
lished. The generalized inverses of an interval-valued s-k Range
symmetric matrix corresponding to the sets A{1,2}, A{1, 2, 3}
and A{1, 2, 4} are characterized.In this paper, we present an
application of soft graphs in decision-making through the use
of the adjacency matrix of a soft graph. We have developed
an algorithm for this purpose and provide an example to
demonstrate its application.

Index Terms—Interval-valued fuzzy matrix, Range symmet-
ric Interval-valued fuzzy matrix, s-k-Range symmetric Interval-
valued fuzzy matrices.

Abbreviations

IV = Interval-valued
RS = Range symmetric
CS = Range symmetric
KS = Kernel symmetric
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IFM = Intuitionistic fuzzy matrix
NFM = Neutrosophic fuzzy matrix

I. INTRODUCTION

Ll matrices used in this study are of an IV fuzzy

matrix type. Jaya Shree [1] has studied secondary
k-KS fuzzy matrices. Anandhkumar et.al [2] have studied
Secondary K-RS NFM. An IV fuzzy matrix is defined as
A = (ai;j)= [aijr, aiju], where each a;; is a subinterval of
the [0,1] interval. If F,,,, where x + y = max{x,y} and
x.y = min{x,y} is the collection of each and every nxn
fuzzy matrix supported by 0 and 1 under the procedure. Al
denotes a regular fuzzy matrix A’s set of all g-inverses. If
AT exists for a fuzzy matrix, then it coincides with AT. A
fuzzy matrix A is RS and KS is denoted by R(AT) = R(A)
and N(AT) = N(A). It is commonly known that for
complex matrices, the concepts of range and KS are
equivalent. Additionally, this fails for IV fuzzy matrices.

Meenakshi [3] has studied fuzzy matrix theory and
applications. Matrices having symmetric entries relative to
the secondary diagonal, referred to as secondary symmetric
matrices, were first studied by Ann Lee [4]. Antoni,
Cantoni, and Butler Paul [5] conducted an examination
of the relevance of per-symmetric matrices, which are
matrices symmetric with respect to both diagonals, in the
field of communication theory. Studies on generalized fuzzy
matrices have been conducted by Kim and Roush [6].

Water and Hill [7] have developed a theory pertaining to
s-real and s-Hermitian matrices as a generalization of k-real
and k-Hermitian matrices. Meenakshi and Krishnamoorthy
[8] have studied secondary k-Hermitian matrices. Meenakshi,
Krishnamoorthy, and G. Ramesh [9] have discussed s-k-EP
matrices. Meenakshi and Jaya Shree [10] have studied k-KS
matrices. Jaya Shree [11] has characterized K-RS matrices.
Anandhkumar et al. [12] have studied various inverses of
neutrosophic fuzzy matrices. Shyamal and Pal [13] have
studied IV fuzzy matrices. Meenakshi and Kalliraja [14]
have focused on regular IV fuzzy matrices.

Anandhkumar et al. [15] have discussed generalized
symmetric neutrosophic fuzzy matrices. Xiaomin Gong
et al. [16] have studied a BWM-TODIM-based integrated
decision framework for financial technology selection with
interval type-2 fuzzy sets. Qianhong Zhang and Bairong Pan
[17] have focused on qualitative analysis of k-order rational
fuzzy difference equations. Wenjun Sun et al. [18] have
studied prospect selection decisions for emergency logistics
paths in fuzzy environments. As a specific illustration,
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building upon and expanding the findings related to
complex matrices, we introduced and extended the notion
of IV s-k Hermitian and IV RS matrices in the context of
fuzzy matrices. We also expanded many basic conclusions
on these two types of matrices.

Jaya Shree [19] has studied secondary k-RS fuzzy ma-
trices. Kaliraja and Bhavani [20] have focused on interval-
valued secondary k-RS fuzzy matrices. Anandhkumar et
al. [21] have discussed pseudo similarity of neutrosophic
fuzzy matrices. Anandhkumar et al. [22] have discussed
reverse sharp and left-T, right-T partial ordering on neu-
trosophic fuzzy matrices. Anandhkumar et al. [23] have
focused on reverse tilde (T) and minus partial ordering on
intuitionistic fuzzy matrices. Anandhkumar et al. [24] have
highlighted results on partial orderings, characterizations, and
generalization of k-idempotent neutrosophic fuzzy matrices.
Anandhkumar et al. [25, 26] have discussed secondary k-CS
neutrosophic fuzzy matrices and interval-valued secondary k-
RS neutrosophic fuzzy matrices. Punithavalli, Anandhkumar
[27] have discussed Kernel And K-Kernel Symmetric Intu-
itionistic Fuzzy Matrices. Anandhkumar et.al [28] have stud-
ied Generalized Symmetric Fermatean Neutrosophic Fuzzy
Matrices. Punithavallil and Anandhkumar [29] have dis-
cussed Reverse Sharp and Left-T Right-T Partial Ordering
On Intuitionistic Fuzzy Matrices.

The structure of the article is as follows.

In section I, we present intraduction,
In section II, we discuss Research gap.
In section III, we introduce Notation.
In section IV, we present some elementary definitions.
In section V, we provide graphical representations of RS,
CS, and KS adjacency matrices.
In section VI, we introduce interval-valued secondary k-RS
fuzzy matrices.
In section VII, we discuss interval-valued s-k RS regular
fuzzy matrices.
In section VIII, we provide results on interval-valued s-k
RS intuitionistic fuzzy matrices.
In section IX, we discuss KS neutrosophic fuzzy matrices.
In section X, we highlight s-k-KS regular neutrosophic
fuzzy matrices.
In section XI, we provide results on IV KS, k-KS, RS
Neutrosophic fuzzy matrices.
In section XII, we discuss Application of adjacency
Neutrosophic fuzzy matrix of a graph in decision making.

II. RESEARCH GAP

In the preceding introduction section, Meenakshi and
Jaya Shree introduced the concept of s-RS matrices, while
Meenakshi and Jayashri further developed the notion of
RS fuzzy matrices. In this study, we extend these ideas
to interval-valued secondary RS fuzzy matrices with
generalized inverses. This framework plays a crucial role in
the hybrid real matrix structure, and we apply it to fuzzy
matrices, examining specific results in depth.

Initially, we present alternative characterizations of
interval-valued secondary RS fuzzy matrices. Subsequently,

we provide an example of a secondary s-RS fuzzy matrix.
We also explore various g-inverses associated with regular
matrices and establish a characterization of the set of all
inverses using secondary s-RS fuzzy matrices.

k range symmetric

l

Secondary k-range
symmetric fuzzy matrices

l

Interval Valued Secondary

k-Fange Symmetric Fuzzy
Matrices

l

Interval Valued Secondary

k-Range Symmetric Fuzzy

Matrices with Generalized

Inverses

Figure 1:Interrelation of k-RS

III. NOTATIONS

AT = Moore-penrose inverse of fuzzy matrix A
AT = Transpose of the fuzzy matrix A
R(A) = Row space of fuzzy matrix A
C (A) = Column space of fuzzy matrix A
N(A) = Null space of fuzzy matrix A
Frn = IV fuzzy matrix

IV. PRELIMINARIES

Definition IV.1. The ij'" entry of the matrix A is an interval
reflecting the membership values of an IV fuzzy matrix of
order mn.

Each interval in IVFM is an element and a subinterval of
the interval [0,1]. E and F can be used to represent any two
IVFMs. In the case of any two elements, e € E and f € F,
where e= [er,ey| and f= [fL, fu] are intervals between 0
and 1,

so, e, <ey, fr < fu.

(i) e+ f = [max{er, fr}, max{ev, fu}]
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(ii) e + f = [min{er, fr}, min{ev, fu}
For X =(xi;) = [wir,viul, Z =(2i5) = [zi0, z50] of
order mn with their sum denoted as
X+Z =(ij + zi5) = [Tijr + 2ijL, Tiju + ziju)
For X =(i;)mn and Z =(zj;)np with their product denoted
by
10 .
XZ =(yij)mp=zk:1 aikbkj, 1=1,2,...m

Xz =[(yij)mp=2;0:1 aikLbkjLzllcozl aikubi;ul,

X<Z iff xsj1.<zij1, and xiju<ziju
Tijr=%i;1, and Tijuy=zi;u maximum and minimum fuzzy
matrix composition.

Definition IV.2. If k(y)=(yr[1), k(2] Yk[3)- - - > Ykin] ) EFnts
where K is involuntary, the corresponding permutation
matrix is satisfied using the following.

(Po1)KKT = KTK = 1,,, K= KT, K?=1
By definition of V, and R( y) = Ky

(Poo) V=VT, VVT =VTV =1, and V2 =1
(P2.3) N(A) =N (AV), N (A) =N (AK)
(Poy) (AT = VAT, (VAT =ATV

(Pos) If AT exists, then (AV)T = VAT, (VA)T =ATV.

Definition IV.3. For IV fuzzy matrix A is KS fuzzy matrix
iff N (A) = N(AT) .

Definition IV.4. Let A be a fuzzy matrix, if R[A]= R[AT],
then A is called as RS.

Example IV.1. Let us consider fuzzy matrix,

02 0 0.7

A=10 0 0

0.7 0 0.3

The following matrices does not satisfies the RS condition

110
A=1(0 1 1
0 0 1

100

AT=11 1 0

0 1 1

(1 10)€ R(A), (1 1 0)e R(AT)
(01 )e R(A), (01 1)e R(AT)
(0 0 1)E R(A), (00 1)¢ R(AT)
R(A)¢ R(AT)

Definition IV.5. Let A be a fuzzy matrix, if C[A]= C[AT],
then A is called as CS.

Definition IV.6. An adjacency matrix is a square matrix that
serves as a representation for a finite graph. The matrix’s
elements convey information regarding whether pairs of
vertices’s within the graph are connected or not.

In the specific scenario of a finite simple graph, the
adjacency matrix can be described as a binary matrix, often
denoted as a (0,1)-matrix, where the diagonal elements are
uniformly set to zero.

Let G(V, E) be a simple graph with n vertices’s. Then the
adjacency matrix A = [a;;] is a symmetric matrix defined

by
1
A=la;:]=14"
[aJ} {0’

It is denoted by A(G) or Ag.

if v; is adjacent to v;
otherwise.

Example IV.2. Let us consider adjacency matrix and corre-
sponding graph

0 1 01
1010
A_OlOl
1010

Qvﬁ
o

Figure 2: Adjacency Graph

Definition IV.7. Letr G(V, E) be a simple graph with n ver-
tices. Let V.= {V1,Va,-+- ,V,,} and E = {e1,ea, - ,em }-
Then, the incidence matrix I = [m;;] is a matrix defined by

A= [my] = {1, if v; is incident to e;

0, otherwise.

It is denoted by A(G) or Ag.

Example IV.3. Let us consider incidence matrix and corre-
sponding graph. The incident matrix is

1 0 01 1
110 00
A_O()llO
01 1 01

(O —

(2 €2

e €3 a

Figure 3: Incidence Graph

Definition IV.8. Isomorphism Graph

Two graphs with the same number of vertices, the same
number of edges, and the same degree sequence, and whose
fuzzy matrices are equal, are isomorphic.
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V. GRAPHICAL REPRESENTATION OF RS, CS AND KS

ADJACENCY MATRICES

©

®)

Graph A
(——®)
(—®
(O—®)

@

Figure 4: Adjacency Graph

Adjacency Matrix

0 1.0 1.0 0 0 0 O]
101 010000
01 00 O01O0O00O0
100 01 01 0O
A=1]0 1 01 01 0 1 0
001 010001
0001 0O0O0T1FPO0
000 01O01O01
0000010 1 0
The given graph is RS fuzzy matrix R(A) = R(AT).
Graph B
(1) /)
@——()—(
O——®
O—E—O
Figure 5: Adjacency Graph
Adjacency Matrix
(00 0 000 1 1 0
00 0O0O0OT1TUO0T1FP®O0
000010100
000011000
B=({0 01100001
01 01 000O0O0°1
1 01 000 O0O01
110 0 0 0 0 01
00001 1 1 1 0]
The given graph is CS fuzzy matrix C(A) = C(AT)

Graph C
(WD—0—®)

(H—E—©

O—®)
£ b

Figure 6: Adjacency Graph
Adjacency Matrix

o

Q
Il
_——_0 0000 oo
O OO OO
RO, OOOOoO
O R =, OO OOoOo
i il il i en B an B an B o R @)
SO OO = EFEOO

0
1
0
1
1
0
0
0
0

OO OO OO
OO OO OO - =

[t
e}
o

The given graph is KS fuzzy matrix N(A) = N(AT).
Note 1 Every adjacency matrix is symmetric, RS, CS, and
KS, but the incidence matrix satisfies only the KS condition.

Note 2 Every fuzzy matrix that exhibits range symmetry is
also a fuzzy matrix with kernel symmetry, but it’s important
to note that not every fuzzy matrix with kernel symmetry
necessarily exhibits range symmetry.

Isomorphism Graph The two given graphs have the same
number of vertices, the same number of edges, the same
degree sequence, and identical adjacency fuzzy matrices.
Therefore, the given graphs are isomorphic and their adja-
cency fuzzy matrices are KS, CS, and RS.

A B

D

C

Figure 7: Non isomorphism Graph
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R Q

Figure 8: Non isomorphism Graph

OO0 oo~ RO
coror~roOrRTm
o~ ocoroocoly
cocoococoor ko0
orRrRrRrOocOoOCOCOm
—ooococor~OoM
mPooOrOoOr OO
orRr R o0 OOoOR

QT AQDE e

The two given graphs (Figures 7,8) have the same
number of vertices, the same number of edges, and the same
degree sequence, but the adjacency fuzzy matrices are not
equal. Therefore, the graphs in Figure 7,8 are not isomorphic.

Note 3 Every isomorphic graph has KS, RS, and CS
adjacency fuzzy matrices, but the converse need not be true.

VI. IV SECONDARY K-RS FUZZY MATRICES

Definition VI.1. For a fuzzy matrix A=[Ap, Ay]l€IV FM,,,
is an IV s - symmetric fuzzy matrices iff A,=VA?V and
Ay=VALV.

Definition VI.2. For a fuzzy matrix A=[A}, Ayl€IV FM,,
is an IV s- RS fuzzy matrix iff R(A) = R(VATV),R(Ay)
= R(VALV).

Definition VL.3. For a fuzzy matrix A=[Ap, Ay|€IV FM,,
is an IV s-k- RS fuzzy matrix iff R(Az) = R(KVAIVK),
R(Ay) = RIKVALVK).

Lemma VIL.1. For a fuzzy matrix A=[Ap, Ay]l€eIV FM,,
is an IV s-RS fuzzy matrix iff VA=[V Ay, VAy] IV RS
fuzzy matrix iff AV =[ApV,AyV] is an IV RS fuzzy
matrix.

Proof: A fuzzy matrix A=[A}, Ayl€elVFM,, is s- RS
fuzzy matrix.

<= R(AL) = R(VATV)
= R(ALV) = R(ALV)T
<~ A,V is RS.

< R(VALVVT) = R(VVALV)
<= R(VAL) = R(VAL)T

<~ VAL is RS.

Similaly

< R(Ay) = R(VALV)

<~ R(AUV) = R(AUV)T

[ Definition 6.2]
[ By P».0]

[ Definition 6.2]
[ By 2]

<= AyV is RS.

< R(VAyVVT) = R(VVALV)

<= R(VAy) = R(VAy)T

<~ V Ay is RS.

Therefore, VA=[V AL,V Ay] IV RS fuzzy matrix
Similarly, AV =[A;V, Ay V] is an IV RS fuzzy matrix.

Remark VI.1. To be more precise, Definition (6.3) reduces
to R(Ar) =R(VATV),R(Ay) = R(VALV), meaning that
the appropriate fuzzy permutation matrix K is an IV s-RS
matrix, where k(i) =ifori=1,2, ..., n.

Remark VI.2. For k(i) = n-i+l, the analogous permu-
tation fuzzy matrix K can be reduced to V. R(Ar) =
R(VATV),R(Ay) = R(VALV) means that is an IV RS
from Definition 6.3.

Remark VI3. If A is IV s-k-symmetric, then (Ap) =
(KVAIVK), (Ay) = (KVALVK), indicating that it is
an IV s-k-RS fuzzy matrix, then R(AL) = R(KVALVK),
R(Ay) = R(KV ALV K). We note that s-k-symmetric fuzzy
matrix is s-k-RS fuzzy matrix. The opposite isn’t always true.
The example that follows illustrates the same.

Example VI.1. Let us consider fuzzy matrices

el =[]
et <[220 0504

is an IV symmetric, IV s-k symmetric and hence therefore
IV s-k KS. Hence

0.2 0.6
AL=|06 0.2l

0.2 0.4
Ay= 0.4 0.2

1 0](0 1]]0.2 06|[0 1|1 O
TV e

KVALVK‘[O 1} [1 0} {0.6 0.2] [1 0} {0 1}
_ 0.2 0.6

~ 0.6 0.2

KVATVK=AL.

Similarly, we get KV ALV K=Ay

R(KVALV)K=R(AL)
A=[Ar, Ay] is an IV s-k RS.

Example VI.2. Consider IV fuzzy matrix

010 0 01
K=|1 0 0|,V=1]0 1 0
0 0 1 1 00
[0,0.1] [0.1,0.1] [0.2,0.2]
A=[Ar,Ar] = 1]0.3,0.3] [0.3,0.4] [0.2,0.3]
[0.0.1] [0.1,0.1] [0,0.1]
is not IV s-k range symmetric and not an IV s-k symmetric.
0 01 02 0.1 02 02
Ar =102 03 02|,Ay= (03 04 0.3
03 00 O 0.3 0.1 0.1
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0 1 00 0 1 0 01 0.2
KVATVK=[1 0 0] |0 1 0] |02 0.3 0.2
0 0 1] (1 0 0] (0.3 0.0 O
0 0 1](0 1 0 03 0.1 0.1
0 1 0|1 0 O0l=102 0 02
1 0 0[]0 O 1 02 03 O

KVATVK is not equal to AT
Hence A is not s- k-symmetric and not s- k- RS.

Theorem VI.1. The subsequent conditions are equivalent for
AeF,,,.
(A =[AL, Ay] is an IV s-k RS
(i) KVA =[KV Ay, KV Ay] is an IV RS
(iii) AKV =[A; KV, Ay KV] is an IV RS
(iv) VA =[V AL,V Ay] is an IV k-RS
(v) AK =[A K, Ay K] is an IV s-RS
(vi) AT is an IV s-k RS
(vii) R(AL)=R(ATVK),R(Ay)=R(ALVK)
(viii) R(AT)=R(ALVK),R(A})=R(AyVK)
(ix) R(IKVAL)=R(KVA)T,R(KV Ay)=R(KV A)T
(x) AVK =[A VK, AyV K] is an IV RS
(xi) AV =[ALV, AyV]is an IV RS
(xii) VKA =[VKA,,VKAy] is an IV RS
(xii) KA =[K A}, KAy] is an IV s-RS
Proof: (i) iff (ii) iff (iv)
Let A =[Ar, Ay] is an IV s-k RS
Let Ay, is an s-k RS
<= R(AL) =R(KVAYVK),
R(Ay) =R(KVALVK)
(By Definition 3.3)
<= R(KVAp)=R(KVApL),
R(Au) =R(KV Ay)
(By P2.2)

KVA =[KV A;, KV Ay] is an IV RS
VA =[V A,V Ay] is an IV K-RS

As a conclusion (i) iff (ii) iff (iv) is true
(1) iff (i) iff (v)

Let A =[Ap, Aylis an IV s-k RS

< R(Ar) =R(KVA,VK),

R(Ay) =R(KVAyVK)

(By Definition 3.3)

<= R(KVAL) =R(KVAL)T,

R(Ay) =R(KV Ay)"

— R(VK(KVAL)) =R((VK)AL(VE)T),
R(VK(KV Ay)) =R((VK)AL(VE)T)
<= R(ALKV) =R(ALVK)T,
R(AyKV) =R(AyVEK)T

AKV =[A, KV, Ay KV]is an IV RS
AK =[A K, Ay K] is an IV s-RS

As a conclusion (i) iff (iii) iff (v) is true
(>ii) iff (ix)

KVA =[KV A;, KV Ay] is an IV RS
<= R(KVAL) =R(KVAL)T,

R(KV Ay) =R(KV Ay)T

(>i1) iff (ix) is true.

(>ii) iff (xii)

KVA =[KV A;, KV Ay]is an IV RS
<= R(KVAL) =R(KVAL)T,

R(KV Ay) =R(KV Ay)T

< R(Ar) =R(KV AL)T,

R(Ay) =R(KV Ay)"

R(AL) =R(Ay),
R(Ay) =R(KVAg)
<= R(AL) =R(ATVK),
R(Ay) R(ATVK)
As a conclusion (ii) iff (xii) is true.
(iii) iff (xiii)
AKV =[A, KV, Ay KV]is an IV RS
<= R(ALVK) =R(ALVK)T,
R(AyVK) =R(AyVEK)T
(By Py.2)
< R(ALVK) =R(Ap)7T,
R(AyVK) =R(Ap)T
As a conclusion (iii) iff (viii) is true
(1) iff (vi)
A =[A},Ay] is an IV s-k RS
< R(AL) =R(KVATVK),
R(Ay) :R(KVAEVK)
< (KVA)T =(KVAL, KVAy)T is an IV RS
< (AVK)?T =(ALVK,AyVK) is an IV RS
— (A)T =(AT, AT) is an IV RS
As a conclusion (i) iff (vi) is true
(1) iff (X) iff (xi) A =[AL, Aylis an IV s-k RS
Consider Ay, is a s-k RS
<= R(AL) =R(KVAZLFVK),
R(Ay) =R(KVA5VK)
(By Definition 3.3)
<= R(ALVK) =R(ALVK)T,
R(AyVK) =R(AyVEK)T
<= AVK =[A VK, AyV K]is an IV RS
< AV =[A.V, AyV]is an IV RS
As a conclusion (i) iff (x) iff (xi) is true
(1) iff (xii) iff (xiii)
A =[A}, Aylis an IV s-k RS
< R(AL) =R(KVATVK),
R(Ay) =R(KVALVK)
(By Definition 3.3)
< R(ALVK) =R(ALVK)T,
R(AyVK) =R(AyVEK)T
— R(VK(KVAL)) =R((VEK)AL(VE)T),
R(VE(KVAy)) =R((VE)AL(VE)T)
<= VKA =[VKAp,VKAylis an IV RS
<— KA =[K Ay, KAy] is an IV RS
As a conclusion (i) iff (xii) iff (xiii) is true
The above statement can be reduced to the equivalent require-
ment that a matrix be an IV s- RS for K =1 in particular.

Corollary VI.1. The subsequent conditions are equivalent
for A€F,,,.

(i) A =[Ap, Ayl is an IV s- RS

(i) VA =[V AL,V Ay] is an IV RS

(iii) AV =[A;V, AyV] is an IV RS

(iv) AT is an IV RS

(v) R(A)=R(A}V).R(Ay)=R(ATV)

(vi) R(AT)=R(ALV),R(A])=R(AyV)

(vii) KVA =[(VAL)T, (VAy)T]is an IV RS

Theorem VIL.2. The subsequent conditions are equivalent for
AeF,,,.

(M)A =[AL, Ay] is an IV k- RS

(i))VA =[AL, Ay] is an IV s-k RS
(i)R(AT)=R(VKALV)T, R(AL)=R(VK Ay)T

Proof: (i) and (ii) implies (iii)
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A =[A, Ay lis an IV k- RS
=R(AL)=R(ALV), R(Ay)=R(ALV)
= R(AL)T=R(VKAT), R(AU)T=R(VKAE)
(1) and (ii) implies (iii) is true
(1) and (iii) implies (ii)
A =[Ap, Ay] is an IV k- RS
:>R(AL)=R(KAfK), R(Ap)=
Therefore (ii) and (iii)
:>R(KALK) R(VALK)T, R(KAUK)=R(VAUK)T
=R(AL)=R(VALVK), R(AU)=R(VAEVK)
?R(AL) (KVAL)T, R(AU)ZR(KVAE)T

=[Ar, Ayl is an IV s-k RS (By Theorem 3.1)
(11) is true
(ii) and (iii) implies (i)
A =[A}, Aylis an IV s-k RS
=R(AL)=R(VALVK), R(Ay)=R(VALVK)
:R(KALK)=R(KA7;(), R(KAUK)=R(KA§K)
Therefore,(ii) and (iii)
:>R(KALK)=R(AE),R(KAUK)=R(A5)
=R(AL)=R(KATK), R(AU)zN(KAEK)
A =[Ap, Ay] is an IV k- RS
Therefore, (i) is true
Hence the theorem.

R(KALK)

VII. INTERVAL VALUED S-K RS REGULAR FUZZY
MATRICES

In this section, we discuss on various generalized inverses
of matrices in IVFM. The comparable standards for various
g-inverses of an IV s-k RS fuzzy matrix to be an IV s-k RS
are also established. The generalized inverses of an IV s-K
RS corresponding to the sets A{1,2}, A{1, 2, 3}, and A{1,
2, 4} are characterized.

Theorem VIL1. Let A€ F,,,,, X € A{1,2} and XA, AX, are
an IV s-K-RS. Then A is an IV s- k- RS iff X= [X}, Xy]
is an IV s- k-RS.

Proof: Let R(KVAL)ZR(KVALXAL)gR(XAL)

(Since (AL)=(AL)X(AL) )
=R(XVVVAL)=R(XVKKVVAL)CR(KVAL)

Hence, R(KV Ap)=R(XAyL)

=R(KV(XAL)TVK) [XA is s-k-RS]
=R(ATXTVK)
=R(XTVK)
=R(KVXT)
R(KVAL)T=R(ATVK)
=R(XTALVK)
=R(KVALXDT
=R(KVALXT)
=R(KVXT)

Similarly,

Hence, R(KV Xy)=R(KV Ay)T [KVX is an IV RS]
<= R(KVAL)=R(KVAL)T,
R(KVAy)=R(KV Ay)T

< R(KVXr)=R(KVXp)T,

R(KV Xy)=R(KV X))

<= NKVX=N[KVXp,KVXy]isanIV RS
<= NX=N[Xp,Xy] is an IV RS.

Theorem VIL2. Let AcF,,, X € A{1,2,3}, R(KV AL)
= R(KVX.)T), RIKVAy) = R(KVXy)T). Then A=
[AL, Ap] is s-k-RS iff X= [X, Xi] is IV s-k-RS.

Proof: Given A{1,2,3}, Hence A X A;, =

[VA is s-k-IV RS]

Ar,

XLALXL = XL,(ALXL)T=ALXL
Consider R(KV AL)T = R(XFATVK)
[By using AXA=A]

~R(KV (A1)")

R((ALXp)") [ByP,.2]
=R(ALXL) [(ALXp)T=ALX.]
=R(X}) [By using X; A X1 = X1]
=R(KVXy)

Similarly,
—R(KVAU) = R(XEAEVK)

R(KV(Au)T)

=R((AuXu)") [ByP.2]

=R(AuXv) [ (AuXy)'=Ay Xy]

R(Xy) [By using Xy Ay Xy = Xy ]
—R(KVXU)

If KVA is an IV RS

<= R(KVAL)=R(KVAL)T,
R(KVAy)=R(KV Ay)T

<= R(KVXp)=R(KVXp)T,

R(KV Xy)=R(KV Xi)T

<= KVX=[KV X, KVXy] is an IV RS.
<= X=[X, Xy] is an IV s-k RS.

Theorem VIL3. Let A€F,,, X belongs to A{1,2,4},
R(KVAL)T = RIKVXL), RIKVAy)T = R(KVXy).
Then KVA is an IV s-K-KS iff X=[X}, Xy] is IV s-k-RS.
Proof: Given A{1,2,4},

Hence ALXLAL = AL,

XL ApXp =X, (XpAL)"=X AL

Consider R(KV Ar) = R(Ap)

[By P, 2]

=R(XLAL) (XLAL)T=XLAL
_R((ATXT))

=N(Xp)" [ (AL Xp)T=ArX.]
=R(KVXL)T [Bypgg]
Similarly,

R(KV Ay) = R(Av) [ByP» 2]
=R(XyAv) (XvAv)"=Xy Ay
=R((ALX{))

=R(Xu)" [ (AUXU) =Ay Xyl
=R(KVXU) [Bypgg]

If KVA is an IV RS

<= R(KVXp)=R(KVAL)T,
R(KVXy)=R(KV Ay)T

< R(KVAL)=R(KVAL)T,

R(KV Ay)=R(KV Ay)T

< KVX=[KV X, KV Xy] is an IV RS.
<= X=[Xr, Xy] is an IV s-k RS.

The aforementioned Theorems reduce to comparable cri-
teria, in particular for K = I, for different g-inverses of IV
s-RS to be IV secondary RS.

Corollary VIL1. For A€F,,, X € A{l,2}, and R(AX)
=R[ALXL, AUXU], R(XA) =[XLAL,XUAU} are an IV s-
RS. Then A is an IV s- KS iff X=[X, Xy] is an IV s-
KS.

Corollary VIL2. For AcF,, X € A{l1,2,3},
R(KVAL) = RVX)T, RIKVAy) = R(VXy)T.
A is an IV s-RS iff X=[X1, Xy/] is an IV s- RS.

Corollary VIL3. For A€F,, X € A{1,2,4},

Then
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R(VAL)T = R(VXy), R(VAy)T = R(VXy). Then A
is an IV s-RS iff X=[X, Xy] is an IV s- RS.

VIII. IV SECONDARY K-RS INTUITIONISTIC FUZZY
MATRICES

Definition VIIL.1. An IV IFM (IVIFM) P of order m x n
is defined as P = [1ij,< Diju;Pijv >mxn, Where pij,
and p;j, > are both subsets of [0,1] which are denoted
by piju = [PijuL, Pijuv] and pijy = [Pijur, Pijou] with the
condition 0 < pijuu + pijou < 1, 0 < pijur + Pijor < 1,
0 < pur <P < 1,0 <pur Spou < ].f()l”iz 1;2,~~-am
and 7 =1,2,...n

Example VIIL.1. Let us consider IV intuitionistic fuzzy

matrices
p_ < [0.4,0.4],[0.5,0.5] > < [0.4,0.5],[0.2,0.4] >
~ |<[0.4,0.5],[0.2,0.4] > < [0.4,0.4],[0.3,0.3] >

Hence, Lower Limit IFM, P, = [P, 1, P, 1]

 [<04,04> <04,05>
T 1<04,05> <04,04>|

Upper Limit IFM, Py = [P,u, Pyu]

[<05,05> <0204 >
<02,04> <0.3,03>

Definition VIIL2. [f k(X)=(X;€[1] y Xk:[2]7 Xk[3]7 ceey Xk[n])
€ F,x1, where K is involuntary, the corresponding
permutation matrix is satisfied using the following.

(P21 )KKT = KTK = I,,K = KI' K? = I and
R(z) = kx

By Definition of V ,

(Poo)V=VT VVT =VTV =1, and V> =T

(P23)R([Pur,p,,]) = R([PuL,p,. V),

)

R([Pur,p,.]) = R([Pur,p,. ] K)
R([Puv,p,v]) = R([Puv,p,u]V),
R([Puv,p,v]) = R([Puv,p,u]K)

(P.2.4)R([Pur.p,.]V)" = R(P[PuL.p,,]"),
R(V[PuL,va}T) = R([PuL P V)

R([Puv,p,, |V ) R(V [uUPuU]T%

R(V[Puv.p,,]" ) R([Puv.p,,|"V)

Definition VIII.3. For an IFM P =<
[Pur, Puvl, [Por, Pou] >€ IVIFMy, is an IV s -
symmetric fuzzy matrix iff [Pyr, Pyr] = V[PurL, PyL]

= V[P, Pu)'V.

Definition V4. For an IFM P = <

[P.r, Puul, [PUL,PUU] > € IVIFM,, is an IV s -RS IFM
W‘R([ uL; D :R(V[PuLaPUL]TV)7R<[PuU7PvU])
= R(V[Puy, Pu]TV)

Definition VIII.S. For an IFM P =<
[PuLa-PuU] [P'UL)P’UU] > IVIFM,, is an IV s - k
- RS fuzzy matrix iff R([Pyr, Pyr))

= R(KV|Pur, P,r)'VK), R([Puv, Por))

= R(KV[P., P,y]TVK).

Lemma VIIL1. For P =< [P,;, P, [Puv,Pov] >
Pt= < [Pu,Pu|t.[Pu. Polt > exists iff
(K[Puu, Pou])™ emstssz(VK[ wis Por]) T,

(VK[P,u, P,y]) Texists.

Proof: For P =< [PuL;PvL]» [PuUanU} >

Pt =< [P, P,p]" exists

then [PuL7 P’UL]+ = [PuL7 PvL]T
generalized inverse of [Py, P,1]
Consider [Py, P,r] ", [Pur, Pou]T exists

— (K[Pup. Por))*, (K[Puv, Pa]")

— (K[PuLvPvLD(K[PuLvPUL])+(K[PuLvPvL])7
(K[PUU) PUU])(K[PUU7 PvU])+(K[PuU; PvU])

<~ (K[PuLanLD (K[PuU; P’UU])+ exists.

(VK[ uLs P, ])(VK[ uls P, D (VK[ uL7PULD7
(VK[Pqu PUU])([PUU7 PUU]) (VK[ ul » PUUD

= (VK[ Pu, Por))" € (VK[Pur, Por]){1},
(K[PuUava]) € (VK[Pu, Pow]){1}

< (VK[Pur, Por))T(VK[Pyu, Pou])T exists.

which [PUL,PWL]T is a

Remark:8.1 For P = ([P.L,Por],[Puv,Poul)s
pt =< [PuL,P ] [PuU7PyU] > and
(}(Vv[f)u[,7 PvL])+7 (KV[PUU, PvUD+ exists.

Lemma VIIL.2. For an IFM P =<

[Pur, Puvl, [Por, Pou] >€ IVIFM,, is interval valued
s-RS IFM <= VP =< V|[P,,P,.],V[Puw, Pov] >

IV RS intuitionistic fuzzy matrix <= PV =<
[Pur, Por]V, [Puv, Pou]V > is IV RS IFM.
Proof: An IFM P =< [P,r,P.v),[Por,Pov] >€

IVIFM,, is s-RS fuzzy matrix

R([PuLa PUL]) = R(V[Pulm PUL]TV)

R([Pur, Por]V) = R([Pur, P, ]V)T

[PuL;PvL]V is RS [By PQ 2]
R(V[PUL,PUL}VVT) = R(VV|P,r, vL]TV)
R(V[PuL7 PULD = R<V[PuL; P’UL])

V[PuLyva] is RS.

Similarly

< R([ wlU » PUU]) = R(V[PuUa PUU]TV)

<~ [PuUa-PvU]V is RS.

= R(V[Puv, PUU}VVT) = R(VVI[Puw, PUU]TV)
R(V[Puw, Puul) = R(V[PUU,PUU])T V[Puu, Pyu] is RS.
Therefore, VP =< V[P,r, Pyr], V[Puw, Pou] > is an IV
symmetric.

R RNy

Remark: If P is IV s-k-symmetric, then
[Pur, Pyr) = KV[P,,P,)TVK, and Py =
K VAE VK, indicating that it is IV (IV) s-k-RS
IFM, then R([PUL,PUL}TVK),R([PHU,PUUD =

R(KV[P., Pu]TVK).
We note that s-k-symmetric IFM is s-k-RS TFM.

The converse not always true, though. The example that
follows illustrates this V.

Example VIIL.2. Let us consider IVIFM

o |<L0> <01>
T <0,1> <1,0>|
<0,1> <1,0>

V= <1,0> <0,1> and
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P =< [PuLaPuU]a[PvLyp'uU] >€ IVIFMm

p_ [<104,04],[05,0.5] > < [04,0.5],[0.2,0.4] >
_LWAMHMﬂ4><QMﬁ4m&0$4

is an IV symmetric, IV s — k symmetric and hence therefore
IV s — k RS. Hence,

P, — [< [0.4,0.4] > < [0.4,0.5] >}
< [0.4,0.5] > < [0.4,04] >
%ZPQMQH><dMﬂ41
<[0.2,04] > < [0.3,0.3] >
KV:'<L0> <Q15[<Q1> <Loﬂ
<0,1> <1,0>||<1,0> <0,1>
C[<0,1> <1,0>]
<1,0> <0,1>]
VK~ |<01> <Lo>[<L0> <Q11
<L,0> <0,1>]|<0,1> <1,0>
C[<0,1> <1,0>]
<1,0> <0,1>]
<0,1> <1,0>
KVPLVE = [< 1L,0> <0,1 >}
<DMM>‘QMﬁﬂﬂ
<[04,0.5] > <[0.4,04] >
_ (< 0,1> <1,0>} _p
<1,0> <0,1>
<0,1> <1,0>
KVPLVE = L L0> <0,1 >}
<mamp><mzaqﬂ
1< [0.2,0.4] > < [0.3,0.3] >
_[<0,1> <LO>}:P
<1,0> <0,1> v
R(Py) = R(KVP]VK)

P =[Py,Py]isan IV s — k RS.

Example VIIL.3. For k = (1, 2),

<1,0> <0,1>
<0,1> <1,0>]
<0,1> <1,0>

V=lc10> <01>|

P =< [P’U«L7PuU}7[PvL7PyU] >e ]VIFMm

K =

p_ < [0,0.02],[0,1] > < [0.2,0.5],[0.2,0.4] >
~ 1< [0.2,0.5],]0.2,0.4] > < [0.2,0.2],[0.3,0.4] >
p | < 0,1 > <[0.2,04] >
VT 1<0.2,04] > <[0.3,0.4] >
KVPLVK + Py
Here P = KPI'K
Therefore P is symmetric IFM, k- symmetric IFM, s —k-RS
IFM but not s — k-symmetric IFM.
Theorem VIII.1. The following conditions are equivalent
for Pe IVIFM,.
(i) P =< [Pur, Por], [Puv, Pyu] > is an IV s-k RS
(i) KVP =< KV[ wl s vL] KV[PUU7PUU] >is an IV
RS

(iil) PKV =< [Py, P,L)KV, [Py, Pou]KV > is an IV
RS
@iv) VP =< [PuLava]a V[Pquva} > is an IV k-RS
(V) PK =< [Pyr, P, ] K, [Py, PwU]JK > is an IV s-RS
(vi) PT is an s-k KS
i) R([Puz, Por]) =
R([P,v, Pov)) = (R[Puw, Pou]"VK)
(Vlll) R([ uLyPUL]T) = (R[PuL7 1)L]VK)7
R([Puv, Pu]") = (R[Puv, PV K)
(1X) C(KV[ [ P’UL]) = C<KV[PuL7 PUL]T)Ta
C(KV[Pu, P,v]) = C(KV [Py, Pu]t)T
(x) [PuLa PUL] = VK[PuL7 PUL]TVKHh [PuUa PUU]
= VK[PUU,PUU} VKH,forH, € IVIFM
(Xl) [ uL» } H1VK[ uls UL}TVK [ uUanU]
= HlK[PuU,P vITVK forH, € IVIFM
(Xll) [PuLa P’uL]T = KV[PuLa P’uL]KVHla [PuUa P'UU]T
= KV[PuU,PUU}VKHlforHl e IVIFM
(xiii) [ uLvaL} = HIKV[ uLs UL]K‘/7 [Pquva}T
= H1KV [Py, P,ulVK forH, € IVIFM
Proof: (i) iff (ii) iff (iv)
Let P =< [Pyr, Pyr], [Puv, Por >] is an IV s-k RS
Let [P,r, P,r] is an s-k RS
< R([ uLaPUL]) = R(KV[ wl 1,L] VK)
R([PU.U7 R)U]) R(KV[RLUv PvU] VK)v

(By Definition 8.5)
<= R(KV|Py,Pyr]) = R(KV[Pur, Por])”,
R([Pu, Pou]) = R(KV[Pyw, Pou])” By (Pa.s)
— KVP=< KV[PuLyva];KV[PuUaP'UU] > is an IV
RS
<— VP =< V[ wLs Py ], V[PuU7P1)U >} is an IV k-RS
As a conclusion (i) iff (11) iff (iv) is true
(1) iff (i) iff (v)
Let P =< [Pyr, PyL], [Puv, Por >] is an IV s-k RS
<= R([Pur,Pyr]) = R(KV[PuL,PvL]TVK),
R([Puv, Pov)) = R(IKV[P,u, P,u)TVK),

(By Definition 8.5)
< R(KV[Pyr,PyL]) = R(KV [Py, vL])Ta
R([Pus, Pov]) = RKV[Par, Pau)T By (Pas)
R(VK(KV[Pyr, Pyr]))
= R((VK)[Py, P,.]*VK(VK)T),
R(VK(KV[Pus, Pav]))
= RUVE)[Puvs P VE(VE)T),
— R([ uls vL]KV)
—R([ wlL > 'uL]KV) R([PuU7PvU]KV)
= R([Pyu, Pou]KV)"
<= PKV =[[Pyur, Pyr]KV, [Py, P,u]KV] is an IV RS
<= PK =[Py, P,.]1K, [Puu, Poy)K] is an IV k-RS
As a conclusion (i) iff (iii) iff (v) is true
(i) <= (ix)
KV A=[KV[P,p, P,L]KV[P,u,vU]] is an IV RS
< R(KV|P,1,P,1]) = R(KV|P,, P,r])T),
R(KV[Puw, Pyu)) = R((KV[PuU,PUUDT)
<= C(KV[ uL,PUL]) = R(KV|[P,r, P,L]),
R(KV[Puv, Pou))" = R(KV[Puv, Pov))
(17) <= (1 ) is true
KVP =[KV[P,r, P,.]KV[P,y,vU]] is an IV RS
<= R(KV|[Pyur,P,r]) = R(KV[Pyr, WL])T)v
R(KV[Pyu, Poul]) = R((KV [Py, UUD )
<= R([Pur, Pur]) = R(KV|[Pur, Pur])"),
R([PuUa PvU]) R((KV[PuUa PUU])T)

(R[PuL7 P’UL]TVK)a
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— R([PuLa P’UL]) = R([PuLyva]T)7

R([PuUa PUU]) = R([PuUa PUU]TVK)

As a conclusion (i7) <= (vii) is true

(ZZZ) <~ (’U’iil) PVK = H wly 7JL]‘/}(, [PUU,PUU]VK}
— R([PUL, PUL]VK) = R(([PUL, PvL]VK)T),
R([PuUa PUU]VK> = R(([PuUa PvU]VK)T)

— R([ ulL 11L]VK) = R([PuLaPUL])Ta
R([PuUa R)U]VK) = R([Pqu PUU])T

As a conclusion (iii) <= (viii) is true

(i) — (vi)

Let P =< [Pyr, Pyr], [Puv, Por >] is an IV s-k RS
<= R([Pur,PyL]) = R(KV[PML,PUL]TVK),
R([PuUava]) = R(KV[ uU UU] VK)

(By Definition 8.5)
< R(KV[Pyr, Pyr]) = R(KV[Pyr, Por])"),
R([Pqu-PvU;; ((KV[Pqu-PvU]) )

— (KVP (KV[PuL, Pyl

KV[P,y, P,y])T is an IV RS

< PTVK = ([Pur,P,L]VK, [P, P,u]VK) is an IV
RS

<= PT = ([Pur, Por]", [Puv, Pov]T) is an IV s-k RS

As a conclusion (i) <= (vi) is true

(i) = (zii) <= (11)

Let P =< [Pyur, PyL], [Puv, Pov >] is an IV s-k RS
Consider [P,r, Pyr] is an s-k RS <= R([P,r, P,L])
= R(KV[ uls vL}TVK) R([PuUa PUUD

= R(KV [Py, P, } VK), (By Definition 8.5)

— R([PuL7 PvL] )

= C(KV[Pur, Py )VK), R([Pav, Pov])T

= C(KV[Pyu, PvU]VK)

— [PuLaP ] *KV[ ul vL]VK7 [PuU7PUU]T
= KV[Puw, PoulVK

<~ [PuL7 PvL] = HIKV[PuL7 PvL]TVK7 [PuU7 P’UU]
= KV[P., P.u)]'VK forH; € IVIFM by (P33)

As a conslusion (i) < (zii) < («xi) is true
Therefore, (i) < (z) <= (11) is true

KVP =< KV[P,, P,r], KV[P,,vU] > is an IV RS
VP =< V[Pyur, Pyr], V[Puu,vU] > is an IV k-RS
<= R(V[P.r,P,1]) = R(K(V[PuL,PUL])TK),
N[Pqu R}U] = R(V(V[PuUa PUU]) K)7
R([PuLava]):R([PuLa ]) VK N[PuUava]

= R([Pw, Pou))TVK,

C([PU,L7 PvL])T = C(KV[PuL7 PUL])T7 C([PuUa P'UU])T
= R(KV[PUU,PUUDT [By Definition 8.5]

([PuLaP ]) —HKV[ 'lLL7 ]a([PuUavaDT

= HKV[ wlU vU]fOT S IFIFM

([PuLaP ]) HlKV[PuLanL]K‘/; ([PuU»PvUDT
= H1 KV [P, Pou]KV

[Pur, Por) = VK[Pyur, P, )" VK Hy, [Py, Pyl

= VK[P,v, P VK H,

As a conclusion (i1) <= (ziii) <= (x) are true. As a
result, the theorem is valid.

The above statement can be reduced to the equivalent
requirement that a matrix be an IV s-RS for £ = [ in
particular.

Theorem VIIL2. For P =< [P,r, P,z], [Puv, Pou] then
any two of the conditions below imply the other

G) P =< [P’U,IMPUL]v [PuUanU] isanIV k£ — RS
(i) P =< [PuL, PUL] [PuUava} isan s —k — RS
(111) R([ ul UL]) R(VK[ uLanL])Ta
R([Puv, Pov])" = R(VK[Puu, Pou]")

Proof: (i) and (ii) implies (iii)

Let P <[PuLanL]a[PuUaP'uU] isan s —k— RS
= R([ uLanL]) R([PuLa 'UL]TVK);R([PUU’
PvU]) R([PuUa 1)U] VK)

:>R( [ uLanL]K) :R(K[PuLv-PvL]TK),
R(K[P,v, Pov)K) = R(K[Puv, Pov]TK)

= R([Puz, Por])" = R(VK[Pur, P,L])"),
R([PuUa PvU])T = R((VK[PuUa PUU])T)

(1) & (ii) implies (iii) is true

(1) & (iii) implies (ii)

P =< [PuLa-PvL]a [PuUanU] isanIVEk— RS

= R([PuL, P’UL]) = R(K[PML,PUL]TK)7

R([P,v, Pov]) = R(K[Puy, Pt K)

= R(K[Py, P, ]K) = R(([Pyr, P ]) )
R(K[PuUa P’L)U]K) = R(([PUU7 P’UU]) )
Therefore, (i) & (iii)

= R(K[PUL, PvL]K) = R((V[PML, PUL]K)T),
R(K|[P,v, P,u)K) = R((V[Pu, Pov]K)T),
= R([P.r, PyL]) = R([PuL,P,UL]K)TVK,
R([PU.U7P1)U]) R([P?LUaR)U] )TVK>,

= R([ ul vL]) R(KV[ ul vL])T),
R([PuU7P'UU]) R(KV[P’U,U7P’UU]) )’

P =< [PuLaP'uL]y [Pquva] isan s —k— RS
= (i) is true

(i1) & (iii) implies (i)

P =<[P,.,P,),[Puw, Pyl is an s — k — RS
= R([ ulLy vL]) R([PuLa PvL]TVK),
R([Puv, Poyl) = R([Pqup'uU] VK)

= R(I([F)uL7 P’UL]K) = R(K[PUL, PUL] K)),
R(K|[Puy, Po]K) = R(K([Puv, Pov]" K))
Therefore, (ii) & (iii)

:>R( [ uL;PvL]K) :R([PuvavL]T)’
R(K[PUU7 P’UU]K) = R([PuU7 PUU}T)s

= R([PuLa P’UL]) = R(K[PuLanL]TK)a
R([Pqu PUU]) = R(K[Pqu PUU]TK)7

P =< [P'ILL7 H;L], [P“,U, R)U] isan IV k— RS
Therefore, (i) is true

Hence the theorem.

IX. KS NEUTROSOPHIC FUZZY MATRICES

Theorem IX.1. The subsequent conditions are equivalent
for ¢ € F,

i) N(¢) = N(¥").
(i) vT = ¢YH = Ky for several NFM H,K and
p(Y) =r.

Theorem IX.2. The subsequent conditions are equivalent
for v € F,

(i) N(¢¥) = N(KVy'VK)

(i) N(KVy) = N((KVy)T)
(i) N(¢KV) = N((vKV)T)
(iv) N(Vy) = N(K(Vy)"'K)
(V) NWK) = N(V(yK)"V)
(vi) N(¥") = N(KV (¢)VK)
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(vii) N(¢) = N("VK)

(viii) N (") = N(KV)

(ix) ¥ = VKYTVKH, for Hy € F,

x) ¥ = HIKVYTVK for H, € F,

xi) ¢T = KVYVKH for H€F,

i) ¥T = HKVYKV for H € F,.
Proof:

(1) & (i1) < (iv)

Y is s—k—KS

& N() = N(KVYTVEK)

& N(KV) = N((KV§)T

& KV 4 is KS

< VP is k—KS

Hence, (i) < (ii) < (iv) hold.

(1) & (i) < (v)

X is s—k—KS& N@) =NKVYTVE)
& N(KVY) = N((KV)T)

& N(VE(KVY)(VE)T = N(VEWTVE(VE)T)
< N(KV)=N({(KV)T)

< YKV is KS

S YK is s—KS

Hence, (i) < (iii) < (v) hold.

(17) < (vit)

KV is KS < N(KVy) = N(KV)T)
& N@) = N(KV)T)

& N\ = NOTVE)

Hence, (ii) < (vii) hold.

(iid) iff (viii) :

WVEK is KS < NWVEK) = N((VE)T)
& NWVK) = N(4T)

Hence, (7ii) < (viii) hold.

(i) iff (vi)

¥ is s—k—KS & N) = N(KVYTVE)
& N(KVY) = N((KV)?)

& (Kvy)T is KS

e YIVK is KS

s ylis s—k—KS

Hence, (i) < (vi) hold.

@) iff (zi) iff (x)

¥ is s—k—KS< NO\) = N(KVATVE)
& N@T) = N(KVVK)

eyl = KVYVKH

v =HKVYTVEK for H, € F,

Hence, (i) < (xi) if f < (x) hold.

(11) & (zid) if f < (i)

KVP is RS Vy is k—KS

& N(VY) = N(K(Vi)TK)

& () = NWIVE)

& N(¥T) = N(KV)

s YT =HKVYy for HCF,

syl = HKVYKV

54 1/) = VKwTVKHl fOT‘ H, € F,
Hence, (ii) < (xii) if f < (iz) hold.

Theorem IX.3. For then, any pair of the following state-

ments indicates the other one.
(i) N(¢) = N(Ky"K)

(i) N(¢) = N(VKyT)KV)
(i) N(p") = N(VEp)T)
Proof:

(1) and (it) iff (4i7)

Y is s—k-KS

= R(¥) = RW'VK)

= N(K¢yK) = N(KyTK)

Hence (i) and (ii) = N(¥T) = N((VyK)T)
Hence, (¢i¢) hold.

(i) and (iii) iff (i)

¥ is k—KS= N(t) = N(K¢TK)

= N(K¢K) = N(uT)

Hence (i) and (iii) = N(KyK) = N((VyK)T)
= N(¥) = NWTVK)

— N() = N(KV)T)

=1 is s—k— KS Therefore,(ii) hold.

(#3) and (iii) < (4)

Y is s—k-KS= N(¥)=N@WIVK)

= N(K¢yK) = N(KyTV)

Hence (i7) and (iii) = N(KyK) = N(37)
= N(¢) = N(Ky"K)

=y is k —KS

Therefore, (i) hold. Hence the Theorem.

X. S- K-KS REGULAR NFM

We show the existence of several generalized inverses of
NFM in F,, and determine the conditions for different g-
inverses of a s-k-KS NFM to be s-k KS NFM. General-
ized inverses belonging to the sets ¥{1,2},4{1,2,3} and
1¥{1,2,4} of s-k-KS NFM are characterized.

Theorem X.1. Let ¢ € F,,, Z € F,,{1,2} and ¢ Z, Z+), are
s-k-KS NFM. Then 9 is s - k - KS NFM < 7 is s -k - KS
NFM.

Proof:

N(KVX) = N(KVyZip) C N(Zy)[since ¢ = Y Zy)]

= N(ZVVy) = N(ZVKKVy) C N(KV4)

Hence, N(KV) = N(Zv)

= N(KV(Z¢)TVK)

=N@TZTVK)

= N(ZTVK)

= N((KVZ)")

N((EV)T) = NWTVE)

= N(ZTYTVK)

— N(KV$2)T)

=N(KVAZ)=N(KVZ)

KVZ is KS<< N(KVy)=N((KVy)T)

& N(KVZ2)T)=N(KVZ)

< KVZ is KS

& Z is s- k- KS.

Theorem X.2. Let Z € {1,2,3}, N(KV) = N((KVZ)T).
Then 1 is s-k-KS NFM = 7 is s — k— KS NFM.
Proof:

Since Z € ¢¥{1,2,3},

Hence

YZY =9, 7

vz = Z,

(W2)T =2

N((KVy)T)

= N(ZTYTVK)

[By using Zy = ]

N(KV(\Z)T)

Volume 51, Issue 12, December 2024, Pages 2051-2066



TAENG International Journal of Computer Science

=N(KVZ)

KV is KSNFM < N(KVA) = N((KVA)T)
S N(KVZ)T) = N(KVZ)

& KVZ is KS

& Ziss —k — KS.

Theorem X3. Let o € F.,Z €
¥{1,2,4}, N((KVP)T) = N(KVZ). Then Z is s-
k-KS NFM < 7 is s- k- KS NFM.

Proof:

Since Z < {1,2,4},

we have

Yz =1,

W7z = Z,

(Z4)" = 74

N(KV) = N(1)

— N(ZW)[Z0Z = 2,62 = N(Z)D)[(Z0)F = Zu]

= N(©27)

=N(zT)

— N((KVZ)T)

KV is KSNFM < N(KV)A) = N((KVA)T

& N(KVZ2)T)=N(KVZ)

& KVZ is KSNFM

& Z is s- k — KS NFM.

XI. IV KS, K-KS, RS NEUTROSOPHIC FUzzY MATRICES

Theorem XI.1. For an IVNFM P =<
[P/,HP)wPU]L’[PM?P)wP’U]U >aQ =<
[Q,UnQ/\aQ’U}L; [Q;MQ)\)QU]U >c IVNFM’m and K

be a NFPM if N([B,, Px, P,J) = N([Qu Qx, Qulr) <
N<K[PH7 Py, PU]LKT) = N(K[qu Qx, QU]LKT)'
N([Pp,aPAvpv]U) = N([QM?QA?QU}U)

& N(K[P,, Py, PuKT) = N(K[Qu,Qx, QuJuKT).
Proof: Let w € N(K|[P,, P\, P)J1)KT)

= w(K[PM,PA,PU]L)KT) = (0.0,0.0,0.0)

= yKT =(0,0,0) where y = wK([P,, Px, P,]1)
=y e N(KT)

detK = detKT > (0.0,0.0,0.0)

Therefore, N(KT) = (0.0,0.0,0.0)

Hence, y = (0.0,0.0,0.0)

= wK([P,, Py, P,]1) = (0.0,0.0,0.0)

= wk € N([PwPAvPv]L) = N([quQAva]L)
= wK([Q#,QA,Qv]L)KT = (0.0,0.0,0.0)

= w e N(K([Qu, Qx, Qu]r)KT)

N(K[Pu’ Py, Pv]LKT) - N(K[qu Q@x, QU]LKT)
Similarly, N(K[Q,,, @x, Q. KT)

C N(K[Py, Px, P,JLKT)

Therefore,

N([Pw Py, PU]L) = N([Qua Q)w QU]L)

s N(K[PH,P,\,PU]LKT)

= N(K[Qp, Qx, Qu]LKT)

Therefore,

N([P,LMPMPU]U) = N([Q/MQ)\?QU}U)

=4 N(K[PM,P)\,Pv]UKT) = N(K[QM,Q)\,QU]UKT)
Conversely, if N(K[P,, Py, P,]LKT)

= N(K[Qu’ Qx, Qv}LKT)a N([P;MP)U PU}L)

= N(K"(K([Py, Px, P,]JL)K")K)

= N(E"(K([Qu: Qx, Qu]L)KT)K)

N([Pw Py, PU]L) = N([Qm Q)\v QU}L)

Similarly,

N(K[PM’P/MPU]UKT) = N(K[QWQMQU]UKT)
g N([Puvpz\vpv]U) = N([Q}MQ)UQU}U)'

Theorem XI.2. For an IVNFM P =<
[Pu,P)\,PU]L,[Pu,PA,PU]U > IVNFM,, and K be
a NFPM if N([P#,P)\,PU]L) = N([Pﬂ,P)\,PU}L) 4
N(K[P,,P\,P,JLK") = N(K[P,, P\, P,]LKT).

and N([P,, Px, PyJu) = N([Py, Px, P,|v)

& N(K|[P,, Py, P,JuKT) = N(K[PM,P,\,PU]UKT).
Proof: Let x € N(K[P,, Py, P,])KT)

= 2(K[P,, Py, P,]L)K™) = (0.0,0.0,0.0)

= wK” =(0,0,0) where w = 2K ([P, P\, P,]L)
=we N(KT)

detK = detK™ > (0.0,0.0,0.0)

N(KT) =(0.0,0.0,0.0)

Here, w = (0.0, 0.0,0.0)

= zK ([P, Px, P,]r) = (0.0,0.0,0.0)

= 2K € N([P,, Py, P,]1) = N([P,, P\, P,)T)

= zK([P,, P\, P,)F)KT = (0.0,0.0,0.0)

=T c N(K([PH7P>\7PU]L)KT)

N(K[P,, P\,P,)LKT) C N(K[P,, Py, P,]LKT)
Similarly, N(K[P,, Py, P,].KT)

C N(K[P,, P\, P,]LKT)

Therefore,

N(K[PM’PNPU]LKT) = N([PM>PA’R’}€KT)
Conversely, if N(K[P,, Py, P,]LKT)

= N(K|[P,, P\, P,]LKT),

N([P,.. P, P,]1) = N(KT(K([P,, Px, P,],) KT)K)
= N(KT(K([P,, P, P,).)KT)K)

N ([P, Px, Po]r) = N([Py, Px, Po]L)
N([PWP/\?PU]L) = N([PWP/\?PU]%)

A N(K[PHaPMPU]LKT) = N(KT[Pu7PA7PU]€KT)
Similarly,

N(K[P,,P\,P,JuKT) = N(K[P,, P\, P,JuK")

& N(K[P,, Py, PuKT) = N(KT[PM, Py, P,JEKT).

Theorem XI.3. For P =< [P,, P\, P,|, [Py, P\, P,Ju >€
IVNFM,, is KS IVNEM, then
N([P,uvPMPU]L[PIMP)\’PUH;)

— N([P.. P, P,)1) = N(IP, Py, PEIP,. Pr, Pil1)

and N([P,, Py, Py)u[Py, Px, PU]E)

= N([Py, Px, PoJu) = N([Py, Px, P]i; [Py, Px, Polv).
Proof: Let x € N([P,, Px, P,]|1)

< z[P,, P\, P,]r = (0.0,0.0,0.0)

& [Py, Py, P)]L[Py, Pa, P,]T =(0.0,0.0,0.0)

s X e N([P,L,PA,PU]L[PWP)\,PU]:LF)

<~ N([P/MP/\vPU]L) c N([P/MP/\vpv]L[PMaPA’PvH:)
Similarly, N ([P, Px, P,|1[Py, P, Pv]z)

C N([PWP)\?PU]L)

Therefore, N([P,, P\, P,|1)

= N([PmPAvPv]L[PMPA?Pv]:E)

Similarly, N ([P, Px, P,]r)

= N([PuvP/\an]:E[PmPMPv}L)

Therefore, N ([P, Px, Py|L[Py, P, R,}%)
= N([PI“P)\,R;]L) = N([P/upkapv]z[ljlup)\;R)]L)

Similarly, N([P#,PA,PU]U[P#,P)\,PU]E)
:N([PAMP)\?PIJ]U) :N([PmPMPI}]E[PMPMPU]U)'

Theorem XI.4. For P =< [P,, Py, P,|r, [Py, Px, P,Ju >
, < [QanMQv]Lv[QanMQv]L >€ IVNFMnm and
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KNEM, R([P,, Py, P,]1) = R([Qu, Qx, Qu]1)
& R(K[P,, P, PJLK") = R(K[Q,, Qx, Q)L K™) and
R([Py, Py, Polu) = R([Qu, @x, Qulv)
g R(K[Pﬂv P)\v PU]UKT) = R(K[qu Q)\v Qv]UKT)
Proof: Let R([P,, Px,P,]r) = R([Q, Qx, QulL)
Then’R([P;uP)\a PU}LKT) = R([Q;ﬂ Q/\a Q’U}LKT)
= R([P,, P\, P,]L)K”
= R([P,, P\, P,]LKT)
Let 2 € {R([P,, P\, P,JLKT)}
z=w(K[P,, P\, P, K") for some w € V"
z=r[P,, P\, PJL KT, r = wK
z € R(R([Pmpkapv]L)KT) = R([QM7Q>\an]L)(KT)
z =u[P,, Py, P,], KT for some u € V"
z = (’U,KT)K[Q#, Q)\a QU}LKT
z=vK[Qu,Qx, Qy]LKT for some v € V"
2 € R(K([Qu, Qx, Q) KT)
Therefore, R(K ([P, P\, P,JLKT)
= R(K([Qua Q)\a Q’U]LKT)
Similarly, R(K([Q,, Qx, Qv KT)
c R(K([Pﬁm Py, PU]LKT)
Therefore, R(K ([P, Py, P,]LKT)
- R(K([Qua Q)u QU}LKT)
Conversely, Let R(K ([P, Py, P,]LKT)

R(K([Q/u Q)\a Q?)}LKT)

= R(KT([QManan]KT)K

= R([Qp, Qx, Qu])

R([P/u Py, PU]L) = R([Qw Q@x, Qv]L)

Similarly,

R([P;MPMR)]U) = R([Q/MQMQU]U)

& R(K[P,, P\, P,JuK") = R(K[Qy, Qx, Qu]u K™).

Theorem XI.5. The subsequence conditions are equivalent
for P =< [Pu,P)\,PU]L, [P;MPA,PU]U >

€ IVNFMnn

(i)N(K[P/MPA?Pv]LKT) = N(K[P/uPMPv]LKT)z
N(K[P,,P\,P,JuKT) = N(K[P,, P\, P,JuK")
(”)N(K[PW Py, PU]L) = N((K[P/u Py, PW}L)T)v
N(K[P;u P)n Pv]U) = N((K[Pua P)\a P?)}L)T)

(ii1) N (K[Py, Py, P]1) = N((K[Py, Px, P]L)"),
N([Py, Py, P,JuK) = N(([Py, Pr, P, JuK)T)

(iv)N ([P, Py, P,JT) = N(K[P,, Py, P,)1),

N[P,, P\, P = N(K[P,, Py, P,]u)

(N ([P Pr. Pul2) = N(([Pus Pr, PJLE)T),
N([P,LMP)\)P] ) N(([P P)m'P]UK) )

(vi)[ Py, Py, P, ]Lzsk KSIVNFM,|P,, Py, P, }U is k —
KSIVNFM

(U”)N([P Py, P, } ) [ P)\aP’U]EK)v

N[P P)\a ] [ P)\a N K

(Wi K Py, P P [P Pr Pl

= [P,“P,\,P] [P, P,\,PE]TLK,

K[P#,PA,P] [P., P\, P)lu

=[P, P\, Py [PN,PA,P K

(ia:)[PN,PA,P] [Py, Py, Py]L K

= K[P,, Py, P,)L[P., Py, P},
[PWPMR,]L[RL,PA,PU]UK
:K[PWPNPU]U[PMPNPUHJ

Proof: (i) < (i4)

& N([P,, Pr, 1) = N(K[P,, Py, P
& N(K[P,, Py, PJJ1) = N([P,

(By P)(K* =1)

A N(K[PLHP)\’Pv]L) = N((K[PM?PMPU}L)T)

LK)
P)\,P ]{K)

(Because (K P)T = PT(KT = PTK)
K|[P,, Py, P, is KS,
Similarly, N([P,, P, P,Ju) = N(K[P,, P\, P,

7K
<:>N(K[P#7P>\7Pv]U) = N((K[PLHP)\’P} )T)
Condition(i7) is true
Condition (i) < (444)
< N([Pu, P, Pu]L)
g N([R“P)\?PU]LK)
(By P)(K* =1)

g N([PWP)\?PU]LK) = N(([PWP)\?PU]L)K)T)
(Because (KP)T = PT(KT = PTK)

K[P,, Py, P,|LK is KS,

Similarly, N([PIMP)\»PU]U) = N([PIMP)” PU]EK)

& N([Pyp, P, PoJuK) = N((IPy, Py, PJuK)?)
Therefore, (ii) holds

(17) & (iv)

<:>N(K[PH’P/\’PU]L) = N(K[PMaPA’Pv}E)

= N(([Py, Px, P,Ju)"K)

& N(K[P,, Py, P.J1)

— N([P,, P PJT) (By Py)
Similarly, N (K [P, Py, P,]u) = N(K|[P,, Py, P,]Ju)"

& N([P,, Py, PoJ1)T) = N(K[P., Py, PJ0)

Therefore, (iv) holds

(791) & (iv)

g N([Puv Py, PU]LK) = N(([le Py, PU]LK)T)

g N([Pw Py, PU]L> = N(([PW Py, Pv]LK)T)(ByP2)
Similarly, N([P,, Py, P,]u K)

= N(K|[P,, Py, P,Ju)K” < N([P,, Px, P,)1)

= N([P,, P\, P,JuK)T.

(#9) < (vi) holds

Condition (7) < (vid) holds.

(1) < (viit) holds.

Therefore (ix) are holds.

= N(K[P,, P\, P,)TK)
= N(K[P,, P\, P]T)

XII. APPLICATION OF ADJACENCY NEUTROSOPHIC
Fuzzy MATRIX BY USING GRAPHS IN DECISION MAKING

In this section, we introduce an algorithm designed to
reduce parameters through the use of an adjacency matrix
associated with a soft graph. We then apply this algorithm
to a decision-making problem.

12.1 Algorithm Consider  the product set
{My, My, M3, .....M,} with parameters {Py, Pa, ..., P;}.
To select the best product based on these parameters,
we propose the following algorithm, which utilizes the
adjacency matrix of a soft graph.

Form a bipartite graph G=(V,E) for the given problem.

In this graph: V represents the set of vertices, which
includes the products {Mj, Mo, Ms,.....M,} and the
parameters {P;, Ps,...,Pc}. If E represents the set of
edges, which connect each product Mi to the relevant
parameters P;.

This bipartite graph effectively illustrates the relationships
between the products and their associated parameters.
To construct a soft graph FA)
A={My, My, M3, .....M,} follow these steps:

with
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1y

2)

3)

4)

Define the Set S(x): For a given vertex x in the graph,
define S (z) = {z € V : d(z,z) < 1}, where d(x,z)
denotes the distance between vertices x and z.

Define the Set T(x): Define T'(z) = {zu € E: u €
S (x)}, where E represents the set of edges and u is a
vertex connected to X.

Construct F(x): The soft graph F(x) is then represented
as F(x)=(S(x),T(x)), where S(x) is the set of vertices
within a distance of (1,1,0) from x and T(x) is the set
of edges connecting x to these vertices.

* Construct the adjacency matrix of the given soft
graph (F,A). In this matrix:

* The rows correspond to the products M;.
* The columns correspond to the parameters P;.

Each entry (M;,P;) in the matrix represents the
relationship or connection between product Mi and
parameterP;. If there is a connection, the entry is
(1,1,0); otherwise, it is (0,0,1).

» If any entry (M;,P;) in the adjacency matrix is
either (1,1,0) or (0,0,1) for all i=1,2,...,n, then the
parameter P; should be removed. This indicates that
the parameter P; does not contribute to distinguishing
between products and can therefore be excluded from
consideration.

* To determine the row totals in the modified adjacency
matrix of the soft graph.

*Modify the Adjacency Matrix: Make any necessary
modifications to the original adjacency matrix based
on the specific requirements or criteria provided.

*Calculate Row Totals: For each row in the modified
adjacency matrix, sum the entries. This sum represents
the total number of connections or relationships for
each vertex in the graph.

eIdentify the Last Column: The last column of the
matrix should contain these row totals.

* Determine the product M; that has the highest row
total.

* The product with the highest row total will be the
most favorable option.

12.2 Application

Mr. X is looking to purchase a laptop from the
following options: My, My, M3, My, andMs5, each of
which has certain properties P;, P», P, and P;.

* Laptop M features properties P; and Ps.

» Laptop M5 includes properties P;, P», and Pjy.

» LaptopM3s has property Ps.
» Laptop M, also includes property Ps.
* Laptop My comes with properties P» and Ps.

What would be the best laptop choice for optimal
performance?

First, create a graph based on the provided problem
as described.

Figure 9:Bipartite Graph

If V ={My, My, M3, My, Ms, Py, Py, P3, P4},
Select AZ{Ml, Mg, M3, M4, M5},
Describe S (z) = {z € V :d (z,2) < 1},
T(z)={zuecE: ue S(z)} and
F(x)=(5(x), T(x)),
F(M,) ={My, Py, P>},
F(Msy) = {Ms, Py, P>, Py},
F(M?)) = {M3’P2}>
F(My) ={My, P2},
F(Ms) = {Ms, P, P3}.
Thus (F, A) is a soft graph. From graph (Figure 9), the
adjaceny matrices are determined as shown in Table 1 and
Table 2.

The row total in the final column of the adjacency
matrix represents the vertex degree in the soft graph (F,A).
Given that the entry (M;, P») is (1,1,0) for i=1,2,3,4,5 we
should remove the second column from the matrix.

In the final column of the matrix, examine the row
totals for laptops M, My, M3, My, and M5. The row total
forM, is the highest among them. Therefore, M, is the
optimal choice.
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TABLE 1
ADJACENCY NEUTROSOPHIC SOFT FUZZY MATRIX

P Py Py Py M, M, M My Ms Row total =Degree of vertex
My (1,1,0) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1,) (2)
M, (1,1,0) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)  (0,0,1) (3)
Mz  (0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)  (0,0,1) (1)
Ms (0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)  (0,0,1) (1)
Ms (0,0,1) (1,1,0) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)  (0,0,1) (2)
P (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (1,1,0) (0,0,1) (0,0,1)  (0,0,1) (2)
P, (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,0) (5)
Ps  (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)  (1,1,0) (1)
Py (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (0,0,1)  (0,0,1) (1)
ADIACENCY NEUTROSOPHIC SOFT FUZZY MaTRix
Py P3 Py M, Mo M3 My Ms Row total =Degree of vertex

Mi  (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)  (0,0,1)  (0,0,1,) (1)
M> (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)  (0,0,1) (2)
Mz (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)  (0,0,1) (0)
My (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)  (0,0,1) (0)
Ms  (0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)  (0,0,1) (1)
P (0,0,1) (0,0,1) (0,0,1) (1,1,0) (1,1,0) (0,0,1) (0,0,1)  (0,0,1) (2)
P, (0,0,1) (0,0,1) (0,0,1) (1,1,0) (1,1,0) (1,1,0) (1,1,0)  (1,1,0) (5)
Py (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)  (1,1,0) (1)
Py (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (0,0,1)  (0,0,1) (1)

XIII. CONCLUSIONS AND FUTURE WORK

In conclusion, this research has explored the properties
and relationships of IV secondary s-RS fuzzy matrices,
highlighting on their connections with various other types of
IV matrices. We have determined the required and complete
criteria for a fuzzy matrix to be classified as IV s-RS.
Notably, we’ve shown that s-symmetry implies s-RS, though
the reverse is always true. Furthermore, we’ve illustrated
the equivalent criteria for the g-inverses of IV s-RS fuzzy
matrices to retain their IV s-RS. Also, we illustrate a
graphical representation of KS, CS and RS adjacency and
incidence fuzzy matrices.

Every adjacency NFM is symmetric, RS, CS and KS
but incidence matrix satisfies only KS conditions. Similarly,

every RS adjacency fuzzy matrices is KS adjacency NFM
but KS adjacency fuzzy matrices need not be RS fuzzy
matrices. The generalized inverses of an IV s-k RS ma-
trix A corresponding to the sets A{1,2}, A{l, 2, 3} and
A{l, 2, 4} are characterized. These findings contribute to a
deeper understanding of IV matrices and their symmetrical
properties within the context of fuzzy matrices.Soft graphs
represent a novel area of research in mathematics. In this
paper, we explore their application in decision-making by
utilizing the adjacency matrix of a soft graph and develop-
ing a corresponding algorithm. In future we will work on
related properties of IV Secondary k-RS fuzzy matrices with
graphical representation.
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