

Abstract—HIV/AIDS is one of the deadliest infectious

diseases in the world, causing nearly one million deaths
annually. In some countries, HIV/AIDS is the leading cause of
death, especially in regions like South Africa. In the Asian
region, Myanmar is also a high-prevalence area for
HIV/AIDS-related deaths. This study utilized data on
HIV/AIDS-related deaths from 1990 to 2019, sourced from
ourworldindata.org/HIV/AIDS. LR, SVM, RF and XGBoost
models were introduced to predict the four-year mortality
trends in South Africa and Myanmar. Model performance was
evaluated using metrics including RMSE, MAE, MSE, MAPE,
and Pinball. By fitting and forecasting mortality data from the
past several years, it was observed that the LR model
outperformed other models in predicting trends in South Africa
and Myanmar. The LR model's predictions were closer to the
actual outcomes. This study aids in understanding mortality
trends in these regions, offers insights for epidemiological
control, and helps other countries take preventive measures and
formulate policies to combat this epidemic.

Index Terms—HIV/AIDS mortality, Time series prediction,
Epidemiological insights, Machine learnin

I. INTRODUCTION
IV/AIDS, which stands for Acquired Immunodeficiency
Syndrome, is a highly fatal infectious disease caused by
the Human Immunodeficiency Virus infection [1] (the

abbreviation HIV is used below). Globally, the total number
of people living with HIV/AIDS in 2010 was 34 million, with
an estimated increase of 3.3 million cases annually, and the
highest burden in the African region[2]-[4]. It has become a
global public health issue[5]-[8]. Interestingly, there are
significant disparities in the HIV burden in Africa, with the
sub-Saharan African region alone accounting for
approximately 70% of all global HIV cases[9], [10].
Myanmar is one of the countries in Southeast Asia severely
affected by the HIV epidemic[11].
The factors influencing the prevalence trends of HIV are
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complex and include population, economy, behavior, and
environment. In recent years, scholars have used
Autoregressive Integrated Moving Average (ARIMA)
models, Grey System Theory models (GM (1,1)), and BP
(Backpropagation) neural network models to predict the
trend of HIV incidence. For example, Liang et al. [12] used
the GM (1,1) model to fit the HIV incidence rate in Jiangsu
Province, with a relative error of 23.89%. The GM (1,1)
model is the simplest form of this model, and the basic steps
in establishing it are to first accumulate irregular raw data
into regular data sequences and then establish differential
equations to predict future development trends of the
disease[1]. Yang et al. [13] used ARIMA to establish a model
for HIV incidence rates in China from 2000 to 2014, with an
average absolute percentage error of 19.90%. Wu et al. [14]
used Backpropagation Artificial Neural Networks (BP-ANN)
as a model to predict the HIV prevalence rate, with training,
calibration, and testing accuracies of 93.94%, 88.48%, and
89.60%, respectively. An et al. [15] established a two-stage
Empirical Mode Decomposition (EMD) - BPNN
(Backpropagation Artificial Neural Network) model to
predict HIV in Dalian City. Recently, there has been
considerable work on using machine learning for
epidemiological dynamics prediction. For instance[17]-[19],
Jr et al. [16] used a multilayer perceptron neural network to
predict the time series during the nationwide outbreak of the
COVID-19 pandemic. Although the full effects of
COVID-19 on HIV services and development are still
unknown, there are predictions suggesting that such
disruptions could lead to a significant increase in HIV-related
casualties.
However, there is currently limited research on predicting

the trend of HIV-related death counts. This study will use
four different models to predict the trend of HIV-related
death counts. Figure 1 shows the mortality rate map of South
Africa in 2019, while Figure 2 shows the mortality rate map
of Myanmar in 2019. As seen from the figures, both South
Africa and Myanmar, being high-prevalence countries, still
exhibit high mortality rates. Since reporting their first cases,
the HIV epidemic in both countries has been on the rise, with
death counts initially increasing as well. However, in recent
years, the number of deaths due to HIV in these two countries
has slowly declined. Up to now, there is no cure or effective
vaccine for HIV. Therefore, establishing an HIV prediction
model to discover the development trend of HIV-related
death counts is of great significance for HIV control efforts,
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and it can further facilitate the efficient allocation of medical
aid.

II. MATERIALS AND METHODS

A. Data Description
The data related to HIV cases in South Africa and

Myanmar was collected from the Our World in Data website
(HIV/AIDS - Our World in Data). This source provides
comprehensive information on all HIV-related data, such as
deaths, confirmed cases, and laboratory testing data.
Currently, this online source is the most reliable for HIV case
data. We used death case data in our study to predict the
mortality trends of HIV in South Africa and Myanmar. The
dataset covers data from 1990 to 2019. For training, the
dataset from 1990 to 2013 was used, while the data from
2014 to 2019 was used for testing.
Figure 3 illustrates the actual trend of the number of deaths

caused by the HIV virus in South Africa from 1990 to 2019.
From the graph, we can observe that the number of deaths

increased in a J-shaped trend from 1990 to 2006. During this
period, after the end of apartheid in South Africa, there was a
significant influx of foreign immigrants, which also brought
many social issues such as violence, drug trafficking, and
prostitution. This led to a sharp increase in HIV infections,
making South Africa one of the countries with the highest
HIV infection rates in the world. However, due to inadequate
healthcare resources, the country couldn't meet the demands
of a large number of infected individuals, resulting in an
increasing number of deaths due to HIV. However, from
2006 onwards, the number of deaths started to gradually
decrease. This decline is attributed to South Africa's
proactive efforts in HIV detection and screening in recent
years. Early detection of the HIV virus allows for early
initiation of treatment, and there has been an expansion of
Antiretroviral Therapy (ART) coverage, enabling more
HIV-infected individuals to receive continuous treatment.
ART effectively suppresses virus replication, slows disease
progression, improves the quality of life, and prolongs the
lifespan of patients.

From the Figure 4, we can observe that the number of
deaths increased gradually from 1990 to 2010, and after 2010,
the number of deaths began to decrease gradually.

Figure 3. The trend of the number of deaths caused by the HIV virus in
South Africa from 1990 to 2019.

Figure 4. The trend of the number of deaths caused by the HIV virus in
Myanmar from 1990 to 2019.

Figure 2. The mortality rate map of Myanmar in 2019 (The number of
deaths from HIV per 100,000 people).

Figure 1. The mortality rate map of South Africa in 2019 (The number
of deaths from HIV per 100,000 people).
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Figure 5 compares the trends in the number of deaths due
to the HIV virus from 1990 to 2019 between South Africa
and Myanmar. First, the data for South Africa and Myanmar
is standardized to eliminate scale differences. Then, from the
graphs, we can observe that the number of deaths in South
Africa is significantly higher than in Myanmar. This is
because South Africa is one of the countries with the highest
HIV infection rates globally and has a large population of
HIV-infected individuals. The high infection rate leads to
more HIV-related diseases and complications, contributing to
the higher number of deaths. Additionally, long-term use of
antiretroviral drugs in South Africa may lead to issues of drug
resistance, which can affect the effectiveness of treatment.
Some regions in South Africa may also experience drug
resistance, impacting the treatment outcomes for certain
patients.
On the other hand, Myanmar has a smaller population,

which means fewer potential transmission pathways.
Moreover, Myanmar's culture, religion, and social structure
may influence the spread and control of HIV. Certain cultural
and social factors can affect people's behavior and attitudes,
influencing the patterns of infection and treatment.
International organizations, non-governmental organizations,
and cooperation from other countries may have played a
positive role in HIV control in Myanmar by providing
technical support, drug supplies, and other resources, helping
to reduce the number of deaths.

B. LR, SVM, RF and XGBoost models
Linear regression (LR) [24] is a method that transforms

input variables through a linear combination to predict the
target value. Linear regression offers advantages such as
simplicity in form, ease of modeling, and embodies
fundamental concepts in machine learning. Specifically, it
constructs one or multiple models to describe the relationship
between independent and dependent variables, achieved
through the least squares function of the linear regression
equation. As a supervised learning algorithm, it learns from a
training set, deducing coefficients and subsequently
evaluating the model's performance using a test set. The
method often employs the least squares method, which aims
to minimize the sum of squared errors, striving to find the
best-fitting results. By employing the least squares method,
results can be obtained quickly while minimizing the sum of
squared errors between predicted and actual data points.

Support Vector Machine (SVM) [25] is a powerful
supervised machine learning model primarily used for
classification and regression tasks. SVM aims to find the
optimal hyperplane that best separates different classes in a
high-dimensional feature space. 'Support vectors' are the data
points closest to the decision boundary. The effectiveness of
SVM lies in its ability to handle complex data relationships
and generalize well to new, unseen data. However, its
performance can be influenced by the choice of kernel
functions and hyperparameters, which require careful tuning.
Commonly used kernel functions include linear, polynomial,
radial basis function (RBF), and sigmoid kernels. SVM finds
wide applications in prediction and classification tasks
because it can handle complex data relationships and
generalize well to new data. SVM models perform well in
classifying numerical samples and are suitable for
small-sample test data. The objective function is as follows:
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where n represents the number of test samples; C is the
penalty parameter )0( C ;  represents the slack variable,
 is the coefficients of the separating hyperplane, and b is
the constant parameter of the separating hyperplane. Both of
these parameters need to be obtained through model training.
ix represents the i -th training sample, and iy represents the

state of the i -th sample corresponding to the path node.
The Random Forest algorithm [26] is an improvement and

extension of the decision tree algorithm. It's a type of
ensemble algorithm constructed based on the principles of
statistical sampling. Two key parameters in this algorithm are
the number of decision trees built and the number of features
considered in each individual tree. The Random Forest
algorithm can achieve favorable results for both classification
and regression tasks. By utilizing resampling, multiple
samples are drawn from the original dataset, and each sample
generates its own independent decision tree. In each decision
tree, a randomly selected proportion of the data is used for
model building, while the remaining data is used for
validation. For each sample in the test set, the model
combines the results from multiple decision trees. In
classification problems, it uses majority voting to make
predictions, and in regression problems, it calculates the
predicted values on the test set by averaging the results from
multiple trees.
The XGBoost model [20]-[22] is a machine learning

algorithm based on decision trees, widely used in data
science. By using an internal algorithm that combines the
results from multiple individual trees, XGBoost can generate
accurate predictions[23]. Additionally, this model provides
rankings for input features. Furthermore, XGBoost can help
create stronger classifiers from other classifiers and offers
other advantages such as avoiding overfitting, effectively
handling missing values, and reducing runtime through
parallel and distributed computing. The objective function
for the XGBoost model is as follows:
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where n represents the number of training data, and iy are
the feature vector and label of the i -th instance, )1(ˆ ty

Figure 5. Comparison of the trend in the number of deaths caused by the
HIV virus in South Africa and Myanmar from 1990 to 2019.
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represents the prediction of the i -th instance at the )1( t -th
iteration, tf represents the new tree that classifies the i -th
instance using ix , and represents the regularization term that
penalizes the complexity of the new tree.

C. Models performance measures
To evaluate the performance of each of the models

mentioned above, commonly used accuracy measurement
methods were applied. The performance functions are as
follows [27]:
Mean Absolute Percentage Error (MAPE):
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Mean absolute error (MAE):
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Root mean square error (RMSE):
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Mean Square Error (MSE):
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In these above equations (3)-(7), N , i and i represent
the number of observations, actual values, and predicted
values, respectively, while i i   represents the error
between predicted values and actual values. MAE is the
arithmetic mean of the absolute errors between predicted
values and true values, providing the average of absolute
prediction errors. MSE is a loss function used to measure the
error between predicted values and true values. RMSE is the
square root of the mean squared error and is often used to
assess the differences between predicted values and true
values. MAPE is expressed as a percentage and represents the
average error between actual values and predicted values,
calculating the average absolute percentage difference
between actual and predicted values. Pinball is also a loss
function used to evaluate the accuracy of quantile forecasts,
where  represents the target quantile.
When MAPE, RMSE, MAE, MSE, and Pinball values

approach zero, the prediction results are considered more
accurate.

III. RESULTS
In this article, trends in the number of deaths caused by

HIV in South Africa and Myanmar were predicted using
SVM, LR, Random Forest, and XGBoost. The data was
divided into two parts: one for training and the other for
testing the models. The data was split into a training set and a
testing set in an 80:20 ratio. After training, the models were
used to predict the number of deaths using the testing set.
Figure 6 represents the predictions for South Africa's testing

data, while Figure 7 represents the predictions for Myanmar's
testing data. The blue curve represents the data from the
testing set, and the red curve represents the predicted data
using different models. The learning results are shown in the
figures. From Figures 6 and 7, we can roughly observe that
the LR model yields better predictions compared to the other
three models.
Figure 8 presents a comparison of the death trends

predicted by different models for South Africa, while Figure
9 shows the comparison for Myanmar. These figures display
the predictions of all four models alongside the actual test
data for HIV-related deaths, providing a more intuitive view
of each model's prediction performance. The blue line
represents the actual test data, the orange line represents the
SVM model's predictions, the green line represents the
Random Forest model's predictions, the red line represents
the Linear Regression model's predictions, and the purple line
represents the XGBoost model's predictions. The comparison
results are more clearly displayed here, with the Linear
Regression model having predictions closest to the actual
values, followed by the SVM model, Random Forest model,
and XGBoost model.
The prediction results for the number of HIV-related

deaths in South Africa show that the LR model has an MAE
of 0.0374, an MSE of 0.0014, an RMSE of 0.0383, an MAPE
of 18.3070%, and a Pinball of 0.0187, which are better than
the evaluation metrics of the other three models. The specific
prediction results evaluation metrics for SVM, LR, Random
Forest, and XGBoost are shown in Table I. For the prediction
results of deaths in Myanmar, the LR model has an MAE of
0.0203, an MSE of 0.0005, an RMSE of 0.0219, a MAPE of
18.7549%, and a Pinball of 0.0101, which is superior to the
other three models. The evaluation metrics for the prediction
results of other models are shown in Table II.
The prediction results for the number of HIV-related

deaths in South Africa show that the LR model has an MAE
of 0.0374, an MSE of 0.0014, an RMSE of 0.0383, an MAPE
of 18.3070%, and a Pinball of 0.0187, which are better than
the evaluation metrics of the other three models. The specific
prediction results evaluation metrics for SVM, LR, Random
Forest, and XGBoost are shown in Table I. For the prediction
results of deaths in Myanmar, the LR model has an MAE of
0.0203, an MSE of 0.0005, an RMSE of 0.0219, a MAPE of
18.7549%, and a Pinball of 0.0101, which is superior to the
other three models. The evaluation metrics for the prediction
results of other models are shown in Table II.
The LR model is often used as a baseline model for

comparison with other more complex models. In some cases,
the performance of a linear model may unexpectedly surpass
that of other models. The overall trend of HIV in South
Africa is not linear, but the prediction results indicate that the
linear model performs better than other models. This could be
because certain local regions of the data exhibit a linear
relationship, and the linear model may better fit the data in
these areas. Additionally, the overall data size is relatively
small, making it easier for the linear model to achieve a more
robust performance. This result validates why the LR model
is often used as a baseline for comparison with more complex
models. In some cases, the performance of a linear model
may unexpectedly outperform other models.
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Figure 6. Prediction chart for South African test data (red line). The blue
line represents the actual values of test set.

Figure 7. Prediction chart for Myanmar test data (red line). The blue line
represents the actual values of test set.
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IV. DISCUSSION
Figure 10 presents the trend prediction of HIV mortality in

South Africa from 2020 to 2023. The blue line represents
historical actual data, while the red line indicates future
forecast data. It shows that over the next four years, the
annual number of deaths is expected to decrease year by year,
exhibiting a general downward trend, though the decline is
relatively slow. The figure also provides the estimated range
of HIV deaths, with the yellow line representing the
estimated maximum number of deaths and the green line
representing the estimated minimum. The data is sourced
from the AIDSinfo website, with the forecast data extending
up to the end of 2022. Figure 11 depicts the trend prediction
of HIV mortality in Myanmar from 2020 to 2023, with the
blue line illustrating historical actual data, the red line future
forecast data, the yellow line the estimated maximum number
of deaths, and the green line the estimated minimum. Over
the next four years, the annual number of deaths in Myanmar
is also predicted to decrease, but at a faster rate compared to
the trend in South Africa.
Regarding the forecast data for South Africa, this study's

predictions do not fall within the official forecast range. This
discrepancy is attributed to the official estimates of mortality
being generally lower since 2012, likely due to the
development of antiretroviral drugs and the widespread
availability of treatment, leading to overly optimistic official

mortality estimates. However, due to a large base of infected
individuals and the time required for treatment to become
widely accessible, this study's predictions based on actual
mortality rates show a slight deviation from official estimates,
although the overall trend remains similarly positive. For
Myanmar, the study's forecast data falls within the official
prediction range. Despite actual mortality rates being
significantly higher than the forecast range before 2014, the
conservative nature of the forecasts, the growing forecast
range, and increased investments in HIV treatment in
Myanmar have led to a gradual and slow decrease in death
rates, falling back within the estimated range. Under the
current conditions of disease prevention measures, social
environment, and investments in medical services, both
South Africa and Myanmar are experiencing a positive
development trend with decreasing HIV mortality rates.

Note that HIV is one of the deadliest infectious diseases in
the world, causing nearly 1 million deaths annually. In some
countries, particularly in the South African region, HIV is the
leading cause of death. With the increasing availability of
treatment options for HIV, the use of machine learning for

TABLE I
COMPARING THE PERFORMANCE OF DIFFERENT LEARNING MODELS FOR
PREDICTING THE TREND OF DEATH CAUSED BY HIV IN SOUTH AFRICA

Model
Model fitting

MSE MAE RMSE MAPE Pinball

SVM 0.0024 0.0492 0.0490 25.8271% 0.0246

LR 0.0014 0.0374 0.0383 18.3070% 0.0187

RM 0.0040 0.0500 0.0637 19.2065% 0.0250

XGBoost 0.0067 0.0564 0.0823 32.4223% 0.0282

Figure. 10. Death toll trend forecast for South Africa until 2023 (red
line).

Figure 8. Comparison of different learning models in predicting death
trends in South Africa.

Figure 9. Comparison of different learning models in predicting death
trends in Myanmar.

TABLE II
COMPARING THE PERFORMANCE OF DIFFERENT LEARNING MODELS FOR

PREDICTING THE TREND OF DEATH CAUSED BY HIV IN MYANMAR

Model
Model fitting

MSE MAE RMSE MAPE Pinball

SVM 0.0006 0.0227 0.0238 21.5210% 0.0113

LR 0.0005 0.0203 0.0219 18.7549% 0.0101

RM 0.0051 0.0678 0.0712 152.7885
% 0.0339

XGBoost 0.0062 0.0561 0.0787 58.9220% 0.0281
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time series forecasting has proven effective in modeling and
predicting the future trajectory of virus transmission.

In this study, we introduced machine learning models,
including SVM, LR, Random Forest, and XGBoost, to
predict the trends in HIV-induced deaths in South Africa and
Myanmar. To train and test the models used for our research,
we utilized data up to the year 2019. The models employed in
this work are data-driven approaches, and we assessed our
model predictions using MAE, MSE, RMSE, MAPE, and
Pinball. Using the models we developed, we forecasted the
number of deaths for the next four years. Our findings
contribute to the more rational allocation of HIV medical
resources, prioritizing assistance in countries with
persistently high death rates. For instance, this can enhance
antiretroviral therapy programs in regions with high mortality
rates, ensuring their accessibility and delivery. This can aid
these areas in implementing preventive measures against the
epidemic and formulating policies to reduce mortality rates.

V. LIMITATIONS
The research area of this article, South Africa and

Myanmar, has a relatively small amount of data, covering
only the mortality data from 1990 to 2019. Official websites
do not provide mortality data from 2020 to the present.
However, we can indirectly corroborate our predictive results
through the estimated mortality data range provided by
official sources up to the end of 2022. Additionally, the data
from the test set can be used to validate the training results of
the model, showing that the LR model performs better.
Although the overall trend of HIV in South Africa is not
linear, some local areas of the data exhibit linear relationships,
and linear models may better fit the data within these areas.
With the overall smaller data volume, linear models are more
likely to achieve robust results. If a larger dataset were
available, a non-linear trend might emerge, potentially
leading to better predictive performance from models like
Random Forest, Support Vector Regression, and XGBoost.
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