
 

  

Abstract— Cyberattacks can be avoided if threats are 

identified in advance and robust cybersecurity measures are in 

place to protect infrastructures. However, in recent years, 

cyber threats and data breaches have become more prevalent, 

exploiting vulnerabilities and causing significant financial 

damage and organizational harm. This often involves 

compromising sensitive personal information, emphasizing the 

need for proactive defence strategies led by experienced 

security professionals. Traditional methods of threat detection 

involve laborious log analysis due to the multitude of logs 

generated by network devices. However, ensemble machine 

learning techniques offer automation within intrusion 

detection systems, streamlining the threat detection process. 

This study investigates various ensemble methods, such as 

blending and stacking, to enhance detection capabilities, both 

manually and automatically identifying potential cyber 

threats. The methodology involves implementing a stacking 

blending ensemble model and conducting feature selection to 

improve performance. Additionally, a web application 

interface is developed using the Python Flask web framework 

to facilitate model deployment and management. Evaluation 

includes testing on real production network traffic and the 

CICIDS2017 Thursday-WorkingHours-Morning dataset, with 

intentional web attacks executed to assess system effectiveness. 

The ensemble model is evaluated using the Thursday Morning 

Dataset, achieving high precision, recall, and F1-score of 0.99, 

with an overall accuracy of 99% in binary classification tasks. 

These results validate the model's robustness and effectiveness 

in identifying real-time network traffic patterns and potential 

security incidents, demonstrating its potential to enhance 

cybersecurity measures. 

 
Index Terms—Cybersecurity, Intrusion Detection System, 

Machine Learning, Stacking, Blending Ensemble Model 

 

I. INTRODUCTION 

s technology advances, so do the complexities of cyber 

security risks and attack methods [1], [2]. Malicious 

actors now employ sophisticated tools and technologies for 

swift, targeted assaults that can yield significant harm and 

gather vast amounts of data [3], [4], [5]. In this dynamic 

landscape, the Security Operations Center (SOC) plays a 

central role, continuously monitoring an organization's IT 

infrastructure to swiftly detect and mitigate cybersecurity 
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threats. Whether managed internally or outsourced, SOC 

teams are entrusted with overseeing and maintaining 

cybersecurity technologies and evaluating threat data to 

bolster the organization's security posture [6]. They employ 

an array of tools, including firewalls, intrusion detection and 

prevention systems, and security information and event 

management (SIEM) systems, while adhering to security 

best practices such as robust password policies, multi-factor 

authentication, and regular security audits [7]. 

In the realm of cybersecurity, Security Operations 

Centers (SOCs) leverage advanced technology and 

sophisticated computer forensics tools to detect, prevent, 

and respond to issues related to cyber threats and 

cyberattacks [8]. The effectiveness of a SOC hinges on its 

ability to efficiently scrutinize and analyse vast volumes of 

data, enabling the identification of malicious event patterns 

[9]. At its core, the SOC meticulously monitors and 

classifies a multitude of network events, encompassing both 

benign and malicious activities. 

SOCs are the recommended best practice on which large 

and medium-sized organisations depend for cybersecurity 

incident detection, notification, and response. Many 

organisations or enterprises have established SOCs as 

efficient solutions for monitoring cybersecurity [10].  SOCs 

function as a core unit within security operations, typically 

perceived not as a singular entity or system but as an 

intricate structure responsible for managing and improving 

an organisation's overall security posture. SOCs serve as 

centralized defence units within medium or large 

organizations. The function of SOCs involves identifying, 

analysing, and addressing cybersecurity threats and 

incidents using personnel, procedures, and technology as 

shown in Fig 1 [11], [12], [10]. The effectiveness of SOCs 

has been demonstrated in enhancing an organization's 

security posture by proactively addressing, identifying, 

analyzing, and responding to cybersecurity incidents  [13].  

SOCs are indispensable strategic resources for 

organizations, actively identifying, preventing, and 

facilitating the swift recovery from cyberattacks. Given the 

heightened prevalence of cybercrimes and cyberattacks, the 

role of SOCs is pivotal for organizations. The year 2017, in 

particular, witnessed some of the most severe and notable 

security breaches, exemplified by the Equifax breach, where 

hackers gained access to approximately 145.5 million user 

account credentials. 

The stolen information included personal identities, 

account numbers, vehicle license numbers, and banking 

information of around 5 million individuals. This breach 

had significant financial implications, but perhaps even 

more damaging was the loss of consumer trust and the  
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Fig. 1.  SOC Highlevel Architecture ([14] and owned by the authors). 

erosion of the company's brand which had been built over 

many years [15]. Incidents like the Equifax breach have 

compelled businesses to recognize the rapidly changing 

threat landscape and attack strategies, necessitating a shift 

away from basic firewall and antivirus measures toward 

more comprehensive and resilient processes, such as 

establishing a dedicated Security Operations Center [16]. To 

prevent sensitive information breaches, companies must 

proactively identify vulnerabilities and threats, enabling 

early incident detection for rapid response and, in worst-

case scenarios, faster recovery. Establishing a Security 

Operations Center (SOC) equipped with intrusion detection 

systems and security information and event management 

(SIEM) is the most effective way to strategically oversee, 

analyse, and manage an organization's security strategy 

[17]. 

 

The challenges and drawbacks of SOCs include: 

1) Detecting Sophisticated Attacks: Detecting sophisticated 

attacks poses a challenge for analysts. The complex nature 

and stealthy techniques employed in modern attacks make 

them particularly difficult to detect. According to [18], the 

complexity of these attacks presents difficulties for analysts 

in identifying them within extensive and intricate datasets. 

Analysts often have to depend on their experience to 

counter these attacks, especially when the attacker 

successfully bypasses existing technical controls. 

2) Large Volume of Alerts: SOC analysts struggle with a 

significant challenge related to the large number of alerts 

they encounter. The volume of alerts often makes it difficult 

for analysts to detect actual attacks amidst the multitude of 

notifications. [19] highlighted the presence of false 

incidents (false positives), emphasizing that not all alerts 

translate into legitimate incidents. Researchers propose 

several techniques to tackle this issue, including limiting log 

collection to essential assets/devices, adjusting policies, and 

filtering out unnecessary alerts (noise) [19]. Despite these 

recommendations, literature evidence indicates that analysts 

persistently face difficulties in managing the overwhelming 

volume of alerts they handle. 

3) Incident Management and Incident Handling Complexity: 

SOC analyst's primary responsibility is to respond to 

incidents, and all incidents must be handled in a way that 

minimizes further damage [20], [21]. In addition, analysts 

are under time constraints when dealing with incidents [21]. 

Detecting an attack is one thing; dealing with it through the 

incident-handling process is quite another. Detecting and 

managing security incidents (attacks) is critical to a 

SOC’s success. Incident management involves collaborating 

with (or escalating to) other teams, either internal or 

external to the organization, to reduce or eliminate the 

impact of any attack  [22]. Since the complexity of incident 

handling can be intimidating for less experienced analysts, 

they must rely on the guidance of more experienced 

analysts. With literature suggesting that SOCs are having 

difficulty retaining experienced analysts, dealing with 

complex incidents becomes difficult. 

4) Analyst Burnout: The issue of burnout represents a 

significant challenge for SOC analysts and has become a 

focal point for researchers [23]. Researchers widely agree 

that burnout is the outcome of various organizational, 

environmental, and human factors, including alert fatigue, 

stress, workload, and anxiety. These factors, in turn, 

contribute to turnover among analysts [21], [24]. 

5) False Positives: False positives (FP) are among the 

numerous challenges confronting SOC analysts. FP refers to 

the instances of 'false alarms' presented to analysts [18], 

[24]. These alarms, while not legitimate attacks (true 
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positives), misleadingly prompt analysts to initiate 

investigations, ultimately resulting in a waste of analyst 

time. FP contributes to the high volume of alerts faced by 

analysts. Similar to the alert volume, FPs also arise from 

collecting excessive logs. [20] caution that high FPs may 

lead to an IDS operator completely disregarding alerts. 

Factors contributing to FPs include system 

misconfigurations and weak signature/detection strings 

designed by the vendor or the analysts, which inaccurately 

match legitimate network traffic. Recommendations for 

reducing FPs include policy tuning and the application of 

machine learning [25]. Businesses can also invest more 

effort in addressing misconfiguration issues to alleviate the 

burden on analysts. Tuning policies and filtering out false 

positives are integral aspects of an analyst's responsibilities 

[19]. 

6) False Negatives: A challenge encountered by SOC 

analysts is false negatives (FN). FNs typically occur when a 

detection system fails to identify legitimate security events, 

presenting a difficulty for analysts [26], [18]. Analysts must 

then resort to alternative indicators on the network, such as 

employing behavioural analytical techniques, to identify 

malicious activity. 

7) Assessment Methods: SOC managers typically anticipate 

high operational performance from their analysts [27], [23]. 

Nevertheless, research indicates a deficiency in appropriate 

metrics and criteria for evaluating the analysts' 

performance. The challenge lies in cases where analysts and 

managers do not align on how performance should be 

measured, and managers encounter difficulty in formulating 

effective metrics. [23] assert that analysts derive benefits 

from well-defined metrics as their bonuses and promotions 

are determined based on these metrics. Analysts seek 

objective metrics that encompass various aspects of their 

work. 

8) Workloads: [28] argue that SOC analysts struggle with 

more alerts than they can effectively investigate. This is in 

line with [25], who attribute the heightened workload 

primarily to the overwhelming number of alerts that 

analysts need to handle. Workload is a significant challenge 

faced by SOC analysts. Previous research indicates that an 

increased workload also hampers analysts' ability to 

maintain situational awareness, vigilance, and attention  

[20]. [20] posit that workload adversely affects analyst's 

monitoring, analysis, and response capabilities. The authors 

further argue that attention has an impact on the response 

time of operators (analysts), and the same applies to eye 

movement in terms of vigilance. These human factors 

contributing to suboptimal performance are often 

underexplored or insufficiently measured to track how 

performance can be monitored and enhanced. 

9) Tacit Knowledge: The challenge associated with tacit 

knowledge extends beyond the SOC environment, as many 

professions encounter similar issues. Nonetheless, within 

the SOC environment, tacit knowledge can impede or delay 

investigations. A key problem with tacit knowledge is that 

experienced analysts may struggle to articulate the rationale 

behind their actions, making it difficult for less experienced 

analysts to learn. One potential solution to this challenge is 

for SOCs to implement playbooks or run books, 

accompanied by thoroughly documented processes that less 

experienced analysts can refer to for decision-making 

support within SOCs. 

10) Experienced Shortage: Analysts encounter challenges 

related to a shortage of experience and skills. The frequent 

turnover of analysts poses difficulties for SOCs in retaining 

their most experienced and qualified professionals [29]. 

This presents a dilemma for less experienced analysts, as 

the chance to learn from experienced counterparts becomes 

limited. Given the ever-evolving nature of cyber threats, 

analysts need periodic training, whether through in-house 

programs or external paid training, to ensure they possess 

the skills necessary to counteract attackers [27]. 

11) Repetitive and Manual Processes: The utilization of 

repetitive, manual, and monotonous step-by-step processes 

in certain SOCs has been identified as a source of 

dissatisfaction among SOC analysts [28], [27], [24]. 

Adhering strictly to these rigid processes may impede the 

creativity of analysts within the SOC [23]. Moreover, 

relying on manual processes and analyses proves highly 

inadequate for enterprise organizations, emphasizing the 

need for a shift toward automation [23], [19]. The 

integration of SIEM technologies, coupled with security 

event visualization systems, can alleviate some of the 

burdens associated with manual and repetitive procedures 

[29], [30]. 

12) Communication issues Between Teams: Inefficient 

communication among analysts is identified as a challenge 

in SOCs [27]. [21] emphasize the importance of 

communication and information sharing for SOC success, 

noting that team members often struggle to find time for 

communication when under pressure. The lack of effective 

communication within the team has an impact on overall 

performance  [21]. [23] assert that SOCs should prioritize 

addressing communication gaps to ensure analysts do not 

feel isolated or left behind. 

To address these challenges, machine learning models 

have been integrated to predict malicious attacks, mitigate 

the risk of false positives, optimize efforts, and reduce costs 

and time. False negatives, which pose substantial risks to 

organizations and can result in significant damage, are also 

a concern. Additionally, the extensive involvement of 

security analysts and other personnel in SOCs exacerbates 

the challenges of false positives and negatives, potentially 

introducing human errors into SOC processes. This research 

proposes a system that leverages various machine learning 

techniques to effectively classify threats, address false 

positives and negatives, minimise model overfitting, and 

identify new patterns in incoming traffic. Moreover, the 

proposed system aims to reduce human errors stemming 

from increased human interactions within SOCs  [31]. 

Machine learning (ML) is reshaping the cybersecurity 

landscape, serving as a potent tool against the ever-evolving 

threat landscape. These algorithms excel in processing vast 

datasets at speeds beyond human capability, unveiling 

concealed patterns, anomalies, and compromise indicators 

[32], [33]. One of ML's pivotal roles in cybersecurity is its 

capacity to augment threat detection by discerning subtle 

deviations from established patterns and identifying 

anomalies that may signal potential attacks, including 

previously unseen ones. Additionally, ML streamlines 

incident response by automating labour-intensive tasks like 
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log analysis and alert prioritization, thus reducing false 

positives and negatives. Its adaptability allows it to evolve 

alongside the threat landscape, learning from each 

encounter and progressively enhancing its capabilities [34], 

[35], [36]. 

This research focuses on the detection of internal and 

external network threats using traditional intrusion detection 

systems (IDS), a critical component of the SOC. In the 

realm of threat detection within network traffic, the 

challenges of false positives and false negatives are 

prominent, consuming substantial time and resources [37], 

[38]. Existing network threat detection criteria or signatures 

often prove inefficient, leading to elevated false positive 

rates (Kumar, 2007) [39]. 

This research employs machine learning techniques for 

developing threat detection systems, a choice grounded in 

the rationale outlined in subsequent subsections, which also 

elucidate the critical role of the SOC. Machine learning-

driven SOC systems leverage advanced analytics to 

proactively identify real-time cyberattack patterns, thereby 

mitigating potential harm. Within the SOC framework, 

SIEM plays a crucial role by integrating security 

information management (SIM) and security event 

management (SEM). SIM collates data from diverse 

sources, while SEM identifies and responds to security 

incidents, collectively reinforcing the organization's security 

posture [40]. SIEM systems aggregate data from various 

sources, including network devices, servers, applications, 

and security equipment, facilitating precise data analysis for 

informed decision-making. Leveraging advanced analytics 

such as machine learning and artificial intelligence, SIEM 

identifies unusual behaviour and triggers alerts upon 

detecting anomalies. These alerts empower SOC analysts to 

swiftly investigate and neutralize potential threats. In 

essence, the SOC serves as a vigilant guardian of an 

organization's digital assets, employing a range of tools and 

strategies, with SIEM and machine learning augmenting its 

capabilities to promptly and accurately detect and respond 

to cybersecurity incidents.  

This study aims to enhance the effectiveness of Security 

Operations Centers (SOCs) in identifying and mitigating 

security threats by developing and evaluating an ensemble 

machine learning approach tailored for network threat 

detection. The aim of this study was achieved with the 

following specific objectives: 

1) To collect and preprocess relevant data from various 

sources for analysis; 

2) perform data aggregation and exploratory data analysis 

formulate a predictive model using ensemble machine 

learning techniques; 

3) develop an application programming interface (API)  to 

provide intelligent security information; 

4) evaluate the proposed ensemble machine learning model 

using real-world network traffic data. 

II. RELATED WORKS 

 [41] introduced the use of the Bryant Kill Chain method for 

intrusion detection. A virtual Windows 7 workstation was 

used to simulate a corporate environment, and pen testing 

was done using the Kali Linux default toolset on 26 security 

test cases picked by the researcher. Default LogRhythm 

SIEM and the Deconstructed Kill chain method were used 

for evaluation. Their framework was able to detect 25 out of 

their 26 test cases (achieving a 96% detection rate), while 

the default LogRhythm detected 7 out of 26 (achieving a 

26.9% detection rate). Their framework demonstrates the 

ability to align log data or SIEM events with more 

descriptive event categories. The test cases were limited to 

attacks coming from the remote shell (rsh) and malware 

installations. Also, real-time user behaviour (server-clients) 

was not included in the virtual environment simulation. 

 [25] presented a user-centric machine learning system 

that leverages big data of various security logs, alert 

information, and analyst insights to the identification of 

risky users. The system provides a complete framework and 

solution to risky user detection for enterprise security 

operation centers. The authors also demonstrated that the 

learning system can learn more insights from the data with 

highly unbalanced and limited labels, even with simple 

machine learning algorithms. The authors used a Multi-

Layer Neural Network (MNN) with two hidden layers, a 

Random Forest (RF) with 100 Gini Split trees, a Support 

Vector Machine (SVM) with a radial basis function kernel, 

and a Logistic Regression (LR). Their model though 

intelligent, achieved a low detection accuracy. 

 [42] proposed a new network forensics framework that 

uses fully adaptive and computational intelligence 

approaches to enhance the security operating centers. This 

model is an accurate and useful ensemble machine learning 

tool that analyses network flow in real time to detect 

encrypted or malware traffic with low computing power 

usage. The authors utilized an ensemble architecture, 

combining SVM, ANN, Random Forest (RF), and k-Nearest 

Neighbors (k-NN) to identify malicious activities from data 

streams. Despite performing similarly or slightly less 

accurately than other models on all datasets, the novel 

framework presents a promising approach for the timely 

detection of malicious traffic in computer networks.   

 [43] proposed a novel visualization system for finding 

out network-based Underneath attacks (VISNU), which can 

help security experts of the CSOC to analyse security events 

more effectively. The VISNU classifies the security events 

according to each organization and displays them based on 

both real-time and accumulated information, such as 

appearance patterns and history. The proposed algorithm 

represented security occurrences in cubes, and the height of 

accumulated cubes and colours was used as an indicator for 

a security threat. The authors developed the formula height 

of the cubes. The experimental results demonstrated that it 

is beneficial for finding abnormal activities from the 

security events and provides a better understanding and 

insights for analyzing them. Their method is limited to some 

abnormalities and needs improvement. 

 [44] proposed a study that aimed to solve the problem of 

identifying and ranking malicious activities in enterprise 

networks based on their level of risk. They developed a 

system called MADE that uses machine learning techniques 

with security log data to detect suspicious communication. 

Unlike other methods which use detection methods, MADE 

relies on supervised learning to prioritise the most critical 

areas for enterprise hosts contacted in one month while 

detecting previously unnoticed malicious activities. 
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However, it has some limitations such as not being able to 

detect HTTPS malicious communication appropriately. The 

system also risks being compromised by adversaries who 

could exploit its features through adversarial attacks, 

negatively affecting overall performance. Despite these 

challenges, authors demonstrated MADE's effectiveness in 

detecting previously unnoticed malicious activities (18 out 

of 100), showing the system's potential usefulness in 

protecting enterprise networks from cyber threats while 

boasting high precision rates and limited false positives.   

 [45] introduced a novel intelligence-driven cognitive 

computing SOC that is based exclusively on progressive, 

fully automatic procedures. The SOC implements the 

Lambda machine learning architecture that can analyse a 

mixture of batch and streaming data, using an Extreme 

Learning Machine neural network with Gaussian Radial 

Basis Function kernel (ELM/GRBFk) for the batch data 

analysis and a Self-Adjusting Memory k-Nearest Neighbors 

classifier (SAM/k-NN) to examine patterns from real-time 

streams. The method performs poorly with huge volumes of 

real-time data. Also, the model introduces latency.  

 [46] presented an automated malware screening and 

pattern identification model using three machine-learning 

approaches. To test the proposed approach, the authors 

employed several well-known malware assaults such as 

WannaCry, DBGer, Cerber, Defray, GandCrab, Locky, and 

nRansom. The training logs and pattern extraction were 

obtained from the Cuckoo sandbox environment. Their 

investigations revealed that the TF-IDF approach is capable 

of identifying most of the malware detection characteristics 

when compared to other techniques like ET (randomized 

trees). However, the ET technique is more robust in 

handling input volatility and dynamic changes in data flow 

patterns. Overall, the study aims to address security 

challenges handled by intelligent security. 

 [47] utilised Gaussian mixture models (GMMs) to detect 

XSS through web requests and web responses representing 

the integration of the dual-stage model. Word2Vec model 

was used for feature engineering on normal and XSS 

payloads on web traffic datasets (response and requests). 

Then trained using GMMs, and their model was evaluated 

using ROC (Receiver operating characteristic). Their model 

successfully used both response and requests for analytics 

and prediction of Cross-Site Scripting (XSS) events instead 

of single stage most current research use. The evaluation 

metrics showed that their dual-stage model was more 

effective than a single model. The model was not evaluated 

on real-time traffic data and real-time XSS payloads. 2. The 

proposed model was not integrated into a SIEM for real-

time alarm generation and prevention mechanism. 

 [48] presented a revolutionary graphical system that 

enables security analysts to grasp a comprehensive picture 

of SIEM rule execution & alert scenarios that might occur 

in preparation depending on the closest condition 

graphically and in real-time. Aside from actual rule 

monitoring, it also allowed security analysts to investigate 

the reasons behind alarms in an orderly and effective 

manner using online accounts. The created ruleset was 

connected to create a graphic representation of the reasons 

behind protection warnings. Their suggested solution allows 

security analysts to examine the status of several rules in 

real-time, analyse susceptible rules, and undertake 

discovery using login details. In other phrases, a security 

researcher may profit from concentrating just on the 

constraints that may cause an alarm. 

 [49] presented a novel SOC incident categorization and 

prioritizing strategy that utilizes graph monitoring to 

identify a selection of ML features. By adopting diagram 

characteristics, their research shows improved accuracy 

rates with multiple ML classification approaches. The 

investigation used three statistical algorithms: LR, 

XGBoost, and DNN. Results revealed DNN as the highest-

performing clustering algorithm with an 8% improvement 

in the classifier for both threshold and magnified feature 

packages that include diagram functionalities showing area 

under curve values of 91% and 99%, respectively. 

 [50] introduced a new ensemble learning classifier to 

detect wireless networking assaults. The method combines 

SVM (Support Vector Machine) and LR (Logistic 

Regression) models using a pooling algorithm to increase 

efficiency, reduce misclassification, and improve overall 

recognition accuracy. By analyzing the data inside the KDD 

CUP sample that has 41 characteristics, this approach 

should immediately catch any attack. Further examination 

utilizing the Spyder IDE revealed that the EL ensemble 

methods achieved a remarkable prediction performance of 

99.2% with a confidence interval of only 0.8 percent. The 

current body of research on SOC and ensemble learning 

techniques falls short. To address this gap, we conducted a 

thorough literature review, and, in this section, we will 

examine a few relevant articles that shed light on the 

behavior of SOC and ensemble learning. 

 [51] proposed a unique approach for approximate 

representations of skewed datasets using positive sequence 

approximations. The improved depictions were then fed into 

an attack detection model specifically designed for 

industrial control system settings. This model, which 

employs DNNs and DT classifiers, effectively identifies 

information security through the novel representation. To 

assess the technique's performance, researchers evaluated it 

using ten cross-validations with two real ICS datasets and 

compared it to Random Forest, Deep Neural Network, and 

AdaBoost, as well as traditional classifications and existing 

systems in research. The suggested method exceeded 

expectations with its exceptional performance while being 

universally applicable that can readily be integrated into 

existing ICS systems. 

 [52] presented evaluation methodology in SOCs.  The 

author asserted that SOCs are a solution for companies 

seeking to handle regulation through threat monitoring. 

However, there is currently no conceptual method that 

encompasses procedures, staff, and technology despite the 

paradigms covering the technical aspects of these 

operations. Therefore, it would be beneficial for 

organizations and stakeholders considering developing, 

purchasing, or selling similar services to assess the efficacy 

and development of the products supplied. This study 

suggests a categorization or evaluation methodology for 

SOC operations that considers both skills and maturity of 

benefit rendered. 

 [19] proposed a comprehensive framework that 

comprises log capture, evaluation, incident response, 
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notification, management as well as regular. This approach 

also entails a Cyber Battle Plan backed by the CSOC 

architecture and overlaid on top of Protective Management 

Controls (PMCs). Additionally, the challenges and benefits 

of implementing SOC are examined. 

 [12] conducted 18 moderate discussions with SOC 

researchers and managers from various industrial sectors to 

identify and address challenges faced by SOC. The analysis 

of interview data revealed both technical and non-technical 

obstacles in SOC operations. Moreover, the study 

uncovered inherent conflicts between SOC directors and 

analysts that could compromise productivity and quality if 

left unresolved. From these findings, the authors distilled 

lessons applicable to both future educational research 

industries and SOC administration. They call for further 

studies aimed at improving the effectiveness and efficiency 

of SOCs. 

 [31] performed a more profound, discovery-oriented 

participant observation with a security expert on system 

security limits, including the accuracy & integrity of their 

alerts. Their findings show that, notwithstanding all FPs, the 

vast majority are caused by innocuous impulse alarms 

described by genuine activity in the external structure, 

which experts may choose to avoid. To virtually assess the 

adequacy and efficacy of security solutions, suppliers and 

investigators must be able to distinguish between different 

sorts of FP. Warning verification is a time-consuming 

process that might lead to alarm exhaustion &, ultimately, 

desensitization. 

 [53] proposed a framework for secure information 

exchange in power generation. Their suggested approach 

monitors security conditions within electricity networks and 

issues alerts to companies upon detecting suspicious threats. 

The proposed system entails collecting public data linked to 

electromagnetic safety and scanning available power control 

technology on the Internet resulting in an understanding of 

global security architecture and overpower systems. An e-

xtendable honeypot technology is subsequently installed to 

detect real-time security and intelligence states of power 

systems. Additionally, cyber risks are combined using a 

data structure around the transmission lines to capture 

holistic security consciousness. Investigation findings reveal 

that their framework can identify control efficacy in real-

time hence successfully protecting it from infiltration and 

incursion.  

A. Summary of Gaps Identified in Literature 

There is a lack of literature on security operations 

centers. Only a few studies on security operations centers 

have been published recently. Most security operations 

center material is based on best practices and security 

vendor blogs and presentations. There are few research 

publications on security operations centers using machine 

learning. This Chapter reviewed the essential concepts of 

NN and DL that lay the groundwork for the work presented 

in the following chapter, which will provide a detailed 

explanation of the proposed system and how the data flows 

through the HMM architectures. In this work, the research 

study explores the implementation of an XGBoost and 

LSTM for information extraction; both of these 

architectures have been used for tasks with significant 

success rates. As described in the project, there is previous 

work on obtaining security-related information in the 

Security Operation Center. However, after careful 

consideration of the literature review, it seems as though 

there is a lack of research on utilizing ML methods for SOC 

implementation. There have been many studies focusing on 

machine learning and other aspects of cyber security, but 

none specifically speak to integrating a SOC. Moreover, to 

the best of the knowledge gathered by conducting the 

comprehensive literature review, currently, there is almost 

zero Deep learning-based end-to-end approach exists for the 

SOC. Hence, an end-to-end fully functional ensemble 

machine learning approach for the SOC is provided as the 

main project outcome. The ensemble-based model 

implemented is based on HMM with gradient boosting 

(XGBoost) and LSTM working together for better 

predictions. All in all, it's an unprecedented deep learning 

ensemble-based model for SOC. To further clarify this 

specific combination of the HMM, LSTM, and XGBoost 

ensemble model, it hasn't been implemented yet when it 

comes to predicting cyber threats or the SOC itself both in 

the research purposes and the industrial level. Again, there 

are several papers focused on stock market analysis using a 

similar ensemble approach, but non-existent for the cyber 

security or SOC domain. Thus, using this particular 

methodology or ensemble approach for the security 

operations center is unprecedented and should provide a 

huge value and a great impact on the fields of cyber 

security, the security operations center, and hence, the IT 

security domain in general. 

The effectiveness of SOC technologies stands as a 

linchpin in thwarting modern threats that continually evolve 

in sophistication and scale. However, despite their vital role, 

a conspicuous gap in the existing literature becomes 

apparent when one seeks research specifically tailored to 

Security Operation Center technologies. This gap presents a 

compelling opportunity for further investigation and 

exploration into the intricate workings of SOC technologies 

and their optimization. 

Bridging the Gap with Emerging Technologies: The 

landscape of cybersecurity technologies is in a perpetual 

state of flux, with the rapid emergence of new tools and 

innovative approaches. Notably, technologies such as 

Artificial Intelligence (AI), Machine Learning (ML), and 

Big Data analytics have gained prominence for their 

potential to revolutionize SOC capabilities. However, there 

exists a noticeable void in research dedicated to probing the 

depths of these emerging technologies and their 

transformative potential within SOC environments. Delving 

into how AI, ML, and Big Data analytics can be harnessed 

to elevate detection accuracy, expedite response times, and 

fortify the overall security posture within the SOC 

represents a significant avenue for scholarly exploration and 

practical implementation. 

There is a research gap in the cyber security field when it 

comes to effectively deploying publicly available real-world 

or synthetic datasets. Most of the datasets available are 

imbalanced and directly affect the end –results, thus the 

traditional usage of dataset-balancing techniques needs 

more research, and new techniques are welcomed.  An 

imbalanced dataset occurs when the number of instances 
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belonging to one class is significantly higher than the 

other(s). This can make it difficult for machine learning 

algorithms to accurately classify data, as they may become 

biased toward the majority class and neglect the minority 

class. In this context, the minority class often represents the 

class of interest, such as a cyber-attack or malicious 

behaviour. Because the overwhelming amount and sizes of 

daily network logs are mainly related to “BENIGN” 

activities. 

III. RESEARCH METHODOLOGY 

The solution proposed in this study addresses the 

challenges by introducing an ensemble model based on the 

Hidden Markov model, XGBoost and LSTM to enhance the 

security posture of SOC. Additionally, it provides solutions 

for addressing the class imbalance issues, aiming to 

implement an effective threat detection model in SOC. This 

section discusses the design of the proposed framework as 

well as the core logic of the proposed model.  The proposed 

model is committed to detecting malicious threats in real-

time while reducing fatigue on the SOC analyst to the barest 

minimum. This includes the design of a Hidden Markov 

model to solve the feature/pattern extraction issues to 

reduce computational time and space.  

The proposed model is designed to address the challenges 

of the existing SOC security posture. It integrates an 

ensemble model based on the Hidden Markov model, 

Random Forest, XGBoost, and LSTM to achieve real-time 

detection of malicious patterns in SOC infrastructure. The 

proposed model includes several important elements that 

collaborate to ensure the system's effectiveness, as 

illustrated in Fig 2. Firstly, a comprehensive dataset of 

network logs, intrusion alerts, and system logs was collected 

from various sources. To ensure the quality of the data, a 

thorough data cleaning process was executed, eliminating 

any inconsistencies, errors, or noise that may exist in the 

dataset. The data balancing technique was then 

implemented to tackle the class imbalance problem. 

Additionally, the framework integrates an ensemble model 

for the classification task. The Hidden Markov model, 

Random Forest, XGBoost, and LSTM models were 

combined to enhance the accuracy of the classification 

process. 

 

A. Data Collection 

In this section, the data collection process is explored as a 

critical phase in preparing the dataset for comprehensive 

analysis. The dataset under consideration, "Thursday-

WorkingHours-Morning-WebAttacks.pcap_ISCX.csv," 

originates from the esteemed "CICIDS2017 Thursday 

Morning Hours Dataset," recognized for its significance in 

the field of cybersecurity research.  The data collection 

endeavors aimed to encompass a wide spectrum of network 

traffic scenarios and potential security incidents. The 

selected dataset comprises a total of 458,968 records and an 

intricate structure comprising 85 columns, including the 

pivotal label column, as thoughtfully summarized in Table 

I.   
 

 

 
 

TABLE I 
DATASET INFORMATION 

Dataset 

Name 

Total 

Records 

Total 

Columns 

Non-

Null 

Values 

Missing 

Values 

Data 

Types 

Thursday 
WorkingHours-

Morning-

WebAttacks 

458,968 85 170,366 288,602 Float/ObJ 

 

 

B. Data Preprocessing  

The crucial phase in machine learning is the data 

preparation and cleaning process, where the raw network 

logs are transformed into a suitable format for machine 

learning algorithms to detect malicious patterns [58]. Before 

proceeding with experiments to develop the proposed SOC 

cybersecurity detection model with optimal detection rates, 

a few steps must be taken to drop unused columns, and 

missing values and eliminate duplicated features and 

columns. as they can impact the effectiveness of the 

proposed model. The next step involves transforming 

categorical features into numerical representations and 

encoding non-numerical string values as integers for 

utilization in training the proposed model. In the context of 

network log datasets, this transformation is achieved using a 

Label Encoder known for its effectiveness in encoding 

string and categorical features into numerical values [54]. 

Through this process, non-numerical values are assigned 

integer values ranging from 0 to 𝑛 − 1, rendering them 

suitable for preprocessing by machine learning algorithms. 

Despite the class label being categorical features, it remains 

unaltered, as the original categories are crucial during 

processing for classifying different types of attacks in 

various forms and testing different approaches. Since the 

LSTM and HMM are part of the proposed ensemble model, 

it is essential to convert the network log datasets into 

sequences necessary for training the LSTM and HMM 

models. 

After the label encoder has been applied to the network 

log datasets, the next step involves normalizing the data. 

Failure to normalize the data can result in a situation where 

one feature dominates others, even if the dataset possesses 

numerous advantageous features. To preprocess the data, 

both min–max normalization and Z-score normalization are 

employed. The choice of normalization technique for 

detecting cyberattacks in SOC relies on the specific 

characteristics of the data and the algorithm in use. 

For the CIC-IDS-2017 dataset, the min–max 

normalization was utilised due to the widely varying ranges 

of its features. This technique ensures that all features share 

the same scale by transforming numeric column values 

ranging from 10,000 to 100,000 into a numeric range from 0 

to 1. Importantly, this transformation maintains the 

distinctions in value ranges without sacrificing information. 

The implementation of min–max normalization utilises a 

scaling formula known as "min–max scaling," as 

normalized data often enhances the efficiency of training a 

machine learning algorithm [55]. While the min–max 

method may eliminate some outliers, its impact on system 

performance is negligible, as the detection task is 

specifically designed to identify long-term attacks [56], 

[57]. 
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The important background for a machine learning model 

involves developing an algorithm that enables the model to 

learn from patterns once the dataset has undergone 

preprocessing. While some datasets consist of both training 

and test data, the network log datasets utilized in this study 

are individual, undivided datasets. Consequently, following 

normalization, the model is prepared in a state that can be 

utilised by the proposed algorithm by partitioning the 

datasets into two segments: 70% for the training set and 

30% for the testing set. 

 
 

Fig. 2. Structure of the Proposed Model 
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C. Feature Selection 

Feature selection techniques aim to streamline the 

model's intricacy by reducing the input feature while 

retaining only those that hold significance and relevance for 

implementing the model. This process serves the purpose of 

decreasing execution time and enhancing the performance 

of the model. The effectiveness of any model, given a high-

quality dataset, hinges on the process of feature selection. In 

this study, the focus is to extract the essential independent 

features that exhibit robust relationships with the dependent 

features. Otherwise, the model might attain an accuracy 

performance below 75%, which is deemed unacceptable for 

a cybersecurity model intended to counter sophisticated 

threats and enhance the efficiency of SOCs infrastructure.  

In this study, the feature selection process involves 

leveraging feature importance scores obtained from three 

different models: XGBoost, Hidden Markov Model 

(HMM), and LSTM. Each of these models indicates the 

significance of each feature in contributing to the detection 

of malicious patterns. The XGBoost model is trained on the 

network log datasets, and the important scores are extracted. 

Following that, the HMM is also trained on the sequential 

dataset to capture hidden states, and emission probabilities 

are then used as features. Additionally, an LSTM model is 

designed for sequence modeling, and it is trained on 

sequential data. Each model provides a ranking or score for 

each feature based on its contribution to the model's 

performance. The scores obtained from different models, 

including XGBoost, HMM, and LSTM, are then combined. 

This is achieved by using an aggregation technique. The 

next phase involves setting up a threshold based on their 

importance scores. Features that surpass the threshold are 

considered relevant and selected for the next stage. The 

final selected features from the reduced feature set are then 

used for training the proposed ensemble model. 

 

D. Data Balancing and Splitting 

Imbalanced datasets refer to datasets where the 

distribution of observations is uneven, indicating that one 

class label may have a substantial number of instances, 

while others have fewer. This situation is prevalent in 

classification problems. Various techniques can address this 

issue, such as oversampling or undersampling the majority 

class or a combination of both. Upon analysing the network 

log datasets, an imbalanced class distribution was identified, 

primarily driven by its heightened occurrence in the dataset. 

In the case of CIC-IDS-2017, the number of legitimate 

samples exceeds the proportion of malicious samples. This 

could result in a biased cyberattack detection model and 

negatively affect the detection rate. In this study, the Edited 

Nearest Neighbors (ENN) algorithm, specifically the 

Synthetic Minority Over-sampling Technique combined 

with ENN (SMOTE-ENN), was applied to the network log 

datasets to establish a balanced distribution among the 

classes. The SMOTE-ENN technique works by augmenting 

the minority class samples through linear interpolation, 

while simultaneously reducing the majority class samples 

using ENN, which eliminates noisy instances. Additionally, 

any sample with a class label differing from at least two of 

its three closest neighbors is removed by SMOTE-ENN. 

The network log datasets were divided into a 70% 

training set and a 30% test set ratio, with a majority of the 

data assigned to the training set and a smaller portion set 

aside for testing purposes. 

 

E. Designing the Machine Learning Model 

Three machine learning algorithms were utilized in the 

study to implement the proposed cyberattack detection 

model within SOC infrastructure. The approach involved 

leveraging the strengths of each model and employing the 

stacking ensemble technique to make the final prediction to 

detect unknown attacks or new instances. The machine 

learning algorithms utilised in this research include HMM, 

XGBoost and LSTM. 

 

1)  HMM Model: The HMM algorithm is characterized as 

a doubly stochastic process, comprising an underlying 

stochastic process that is unobservable and can be 

investigated through another set of stochastic processes. In a 

Markov model, the state is directly observable, whereas in 

an HMM, the state is associated with a probability 

distribution across a set of outputs (observations).  Hence, a 

sequence of observations produced by an HMM does not 

directly reveal the sequence of states. A representation of a 

Hidden Markov Model is expressed in Equation 1.1. 

 

  λ=[A,B,π]                    (1.1) 

 

where  denotes the state transition matrix,  denotes 

the matrix of observation probabilities, and  denotes the 

initial state probabilities in the Hidden Markov Model. 

Three fundamental problems that are to be solved 

include: In the first problem, considering a set of 

observations in Equation 1.2 and the HMM in Equation 1.1, 

the probability of the given observation sequence is 

computed in Equation 3.3. 

 

 

                                          (1.2) 

                                 (1.3) 

 

In the second problem, considering a set of observations 

in Equation 1.2 and the HMM in Equation 1.1, an optimal 

state sequence is computed in Equation 1.4. 

 

                          (1.4) 

 

In the third problem, considering a set of observations in 

Equation 1.2, the parameters of the HMM model in 

Equation 1.1 are adjusted such that Equation 1.3 is 

maximized. 

 

The first problem can be addressed through either the 

forward method or the backward method; the second 

problem is solved by employing the Viterbi algorithm, and 

the third problem can be addressed using the Baum-Welch 

algorithm (BW). To estimate the parameters of the HMM, 

the first problem must be solved by determining the 

probability value of an observation sequence. Once the 

parameters are estimated, the model can be trained using 

either the forward or backward method. The forward 
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variable in Equation 1.5, denotes the probability of the 

partial observation sequence when the current state, qt, is 

produced with the state  at time , given the model . 

)                    (1.5) 

 

After initializing the forward variable as expressed in 

Equation 1.6 and applying the induction formula in 

Equation 1.7, an optimal model is obtained, until Equation 

1.8 converges and is maximized, where Equation 1.9 

denotes the probability of state  at time  moving to  at 

time  and  is the probability of the observable 

state at time  given the hidden state at . 

 

                                      (1.6) 

)      (1.7) 

               (1.8) 

      (1.9) 

 

The next problem involves determining the sequence of 

hidden states that is most probable, considering the HMM 

model and the observation sequence expressed in Equation 

1.2.  

The Viterbi algorithm, a dynamic programming 

approach, is utilized to identify the most probable sequence 

of states, known as the Viterbi path, based on a given 

sequence of observations. Equation 1.10 introduces the 

dynamic programming approach for Hidden Markov 

Models (HMMs), emphasizing the Viterbi algorithm. The 

initial condition and the induction formula are expressed in 

Equation 1.10 and Equation 1.11. 

 

                 (1.10) 

           (1.11) 

 

where  denotes the probability of the most 

likelihood state sequence of the first  observations and  as 

its final state. By utilizing the dynamic programming 

algorithm, the Viterbi algorithm identifies the most 

probable hidden state at time T, as expressed in Equation 

1.12 for a given observation sequence, when Equation 1.13 

is maximized. 

 

               (1.12) 

                 (1.13) 

The Baum-Welch algorithm enhances the optimization of 

the HMM model by re-estimating the parameters 

recursively until the model converges when Equation 1.3 is 

maximized, as expressed in Equation 1.14. 

 

 as  nd 

                   (1.14) 

 

Modern sophisticated attacks follow a series of 

cybersecurity kill chains such Reconnaissance (State R): 

Observation: System X is under low-frequency scans from 

various sources; Weaponization (State W): Observation: 

Development or acquisition of malicious tools; Delivery 

(State D): Observation: Delivery of the weaponized 

payload; Exploitation (State E): Observation: Exploitation 

of vulnerabilities in the target system (System X); 

Installation (State I): Observation: Installation of malware 

or malicious components; Actions on Objectives (State O): 

Observation: Achieving the objectives, such as data theft or 

system manipulation. 

 

The proposed model employs a classification technique 

that considers the states to detect the stages of the 

cybersecurity kill chain. Since the malicious stages (states) 

are concealed within the event logs, the proposed model 

adopts the HMM. In this model, the sequence of transitions 

between malicious states is concealed, and it is observed 

through a sequence of emitted observations. The actions 

observed in event logs serve as emitted observations, while 

the sequence of concealed states forms a series of attack 

steps displayed in the upper layer. The lower layer shows 

the corresponding observations ss depicted in Fig 3. This 

mapping allows for the representation of each cybersecurity 

kill chain stage as a distinct state in the HMM. The 

observations associated with each state provide a way to 

capture the characteristics or indicators of the attack at that 

specific stage. 

 

The Baum-Welch algorithm enhances the optimization of 

the HMM model by re-estimating the parameters 

recursively until the model converges when Equation 1.3 is 

maximized, as expressed in Equation 1.14. 

 

 as  nd 

                      (1.14) 

 

Modern sophisticated attacks follow a series of 

cybersecurity kill chains such Reconnaissance (State R): 

Observation: System X is under low-frequency scans from 

various sources; Weaponization (State W): Observation: 

Development or acquisition of malicious tools; Delivery 

(State D): Observation: Delivery of the weaponized 

payload; Exploitation (State E): Observation: Exploitation 

of vulnerabilities in the target system (System X); 

Installation (State I): Observation: Installation of malware 

or malicious components; Actions on Objectives (State O): 

Observation: Achieving the objectives, such as data theft or 

system manipulation. 

 

The proposed model employs a classification technique 

that considers the states to detect the stages of the 

cybersecurity kill chain. Since the malicious stages (states) 

are concealed within  
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Fig. 3.  Attack Stages in the Cybersecurity Kill Chain 

 

the event logs, the proposed model adopts the HMM. In this 

model, the sequence of transitions between malicious states 

is concealed, and it is observed through a sequence of 

emitted observations. The actions observed in event logs 

serve as emitted observations, while the sequence of 

concealed states forms a series of attack steps displayed in 

the upper layer. The lower layer shows the corresponding 

observations ss depicted in Fig 3. This mapping allows for 

the representation of each cybersecurity kill chain stage as a 

distinct state in the HMM. The observations associated with 

each state provide a way to capture the characteristics or 

indicators of the attack at that specific stage. 

2)  LSTM Model: A Recurrent Neural Network (RNN) is 

a neural network structure designed for tasks involving 

sequence learning. Within the category of RNNs, LSTM 

stands out as a specialized variant. The Simple Recurrent 

Neural Network (RNN) iterates through sequence 

components, relying solely on the information from the 

preceding sequence component to handle the current 

timestep. Hence, encountering the challenge of gradient 

vanishing. LSTM addresses this limitation by introducing a 

memory cell state that can retain information over multiple 

timesteps, ensuring a persistent record of previous 

information. The cell states run concurrently 

with the hidden states , which receive input 

sequences at each timestep. Within LSTM, three 

mechanisms are employed to govern the interaction with the 

cell state, determining which elements of the sequence to 

retain, forget, or update. The first step in LSTM is to 

identify the information that is not necessary and decide on 

what information is going to be thrown away from the cell 

state. This decision is formed by a sigmoid layer called the 

‘forget gate layer as expressed in Equation 1.15. 

 

                (1.15) 

 

where  denotes the output from the preceding 

timestamp,  denotes the new input data, and  denotes the 

bias. The second phase involves determining the new 

information to be stored in the cell state. This consists of 

two components: first, a sigmoid layer known as the input 

gate layer which determines the values to be updated, and 

second, a 'tanh layer' that is responsible for generating a 

vector of new candidate values that can be added to the state 

as expressed in Equation 1.16 and Equation 1.17. 

 

              (1.16) 

              (1.17) 

 

In the third phase, Equation 1.16 and Equation 1.17 are 

combined to generate an update to the state as expressed in 

Equation 1.18. This stage is responsible for updating the 

previous cell state, C(t-1), into the new cell state. The 

previous steps have already determined what to do and are 

now being executed. First, the old state is multiplied, 

effectively forgetting the elements determined to be 

forgotten previously. Second, the result is added to the cell 

state, incorporating the new candidate values scaled by the 

proportion determined for updating each state value. 

 

              (1.18) 

 

The final stage is the output stage, where the output is 

designed to support the cell state in a refined manner. First, 

a sigmoid layer is applied, which determines the segments 

of the cell state that will be included in the output. Second, 

the cell state undergoes a tanh operation (to constrain values 

between −1 and 1) and is multiplied by the output of the 

sigmoid gate. This ensures that only the part decided upon 

are included in the final output as expressed in Equation 

1.19 and Equation 1.20. 

 

                  (1.19) 

                   (1.20) 

 

3) XGBoost Model: XGBoost was primarily 

developed for enhanced speed and performance through the 

utilization of gradient-boosted decision trees. It serves as a 

tool for machine boosting. XGBoost, short for eXtreme 

Gradient Boosting, is efficient in maximizing memory and 

hardware resources for tree boosting algorithms. It offers 

advantages such as algorithm improvement, model tuning, 

and deployability in various computing environments. 

XGBoost excels in executing three major gradient boosting 
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techniques: Gradient Boosting, Regularized Boosting, and 

Stochastic Boosting. Additionally, it facilitates the 

incorporation and fine-tuning of regularization parameters, 

setting it apart from other algorithms. XGBoost proves 

highly effective in reducing computing time while ensuring 

optimal utilization of memory resources. It exhibits Sparse 

Awareness, meaning it can handle missing values, support 

the parallel structure in tree construction, and possesses the 

distinctive ability to perform boosting on additional data 

that has already been integrated into the trained model. 

 

Additionally, XGBoost has various configurations to 

reduce overfitting and enhance the overall performance of 

detecting malicious patterns, resulting in improved 

accuracy, efficiency, and feasibility. One of these 

configurations involves adding regularization to the loss 

function, resulting in the objective function expressed in 

Equation 1.21. 

 

 
 

where  denotes the objective function,  denotes the 

number of predicted malicious threats, denotes the 

training error of the  sample, and  denotes the 

regularization function. 

 

4)  Random Forest Model: The RF model consists of 

decision trees and serves purposes of both classification and 

regression problems. When used for classification, the 

predictions are made by taking a majority vote of the 

decision tree predictions. On the other hand, for regression, 

the final result is obtained by averaging the outputs of the 

individual trees. In the intrusion detection system training 

phase, a separate training real-time network traffic dataset 

 is generated for each tree using samples from the original 

network traffic training dataset, . To create each tree split, 

a subset of  features is randomly selected, and a 

measurement is applied to determine the feature that should 

be used for the split. Due to this randomization, multiple 

trees are generated, which typically leads to improved 

prediction performance when combined. RF models offer 

several advantages over commonly used machine learning 

methods, including shorter model training time, robustness 

in handling inconsistent datasets, the ability to incorporate 

feature importance in classification, and internal metrics for 

assessing feature impact. RF is trained for intrusion 

detection by using different feature sets. 

 

F. Hyperparameter Tuning 

The model's parameters are learned from the data, and 

hyperparameter tuning is employed to determine the 

optimal best-fit for the learning algorithm. It can be 

conceptualized as a configuration for the model that must be 

fine-tuned, as the optimal values for one dataset may differ 

from those of other datasets to attain high precision and 

accuracy. These values are set before the initiation of the 

learning process.  

 

The random search cross-validation was employed in this 

study to identify the best hyperparameters for the attack 

detection models. This approach combines the advantages 

of grid search, such as conceptual simplicity, ease of 

implementation, and trivial parallelism, with the advantage 

of sampling random points. Unlike grid search, random 

search does not assign equal importance to every 

combination of hyperparameters. Due to the significance of 

multiple hyperparameters in terms of accuracy, speed, and 

the handling of false negatives and false positives, the 

following hyperparameters were selected in this study to 

mitigate overfitting. 

1. In the XGBoost algorithm, the feature subsampling for 

constructing individual trees is controlled through column 

subsampling by the tree. The learning rate determines the 

step size in each iteration, and regularization terms were 

applied to the feature weights (L1 Regularization Term on 

Weights). The subsample parameter regulates part of the 

training data used to develop the tree, while the column 

subsampling by tree parameter controls the selected features 

for choosing a split candidate. 

2. In the HMM algorithm, the utilization of the hidden 

state approach is essential. The selection of this technique 

directly impacts the model's efficacy in capturing the 

underlying patterns within the dataset. Additionally, it 

dictates the number of states within the HMM, influencing 

the model's ability to identify malicious patterns in the data. 

This approach strikes a balance between conceptual 

simplicity, ease of implementation, and the ability to 

explore the hyperparameter space efficiently. The focus on 

mitigating overfitting through the application of the hidden 

state technique underscores the study's commitment to 

enhancing the model's generalization to new, unseen 

attacks, contributing to the overall effectiveness of detecting 

sophisticated attacks. 

3. The random search cross-validation technique was 

used to determine the learning rate in the LSTM algorithm.  

Using the random search cross-validation technique to 

explore learning rates for LSTM models on the CSE-CIC-

IDS2017 dataset ensures an optimal configuration that 

maximizes the model's effectiveness in cyberattack 

detection. This approach aligns with the primary objective 

of efficiently dealing with the hyperparameter space to 

achieve superior model performance. 

 

G. Proposed Ensemble Model 

The proposed ensemble model combines three high-

performing algorithms to enhance threat detection in SOCs. 

It aggregates the predictions from each model and uses a 

stacking mechanism to make the final prediction for the 

class label of a new instance. An ensemble model that 

combines HMM, LSTM, and XGBoost for cyberattack 

detection in SOC infrastructure provides an in-depth 

solution. The ability of the ensemble to leverage the 

strengths of different models improves accuracy, 

and robustness, resulting in a more effective defence against 

a wide range of cyberattacks. 

 

The function of the HMM algorithm in the ensemble is to 

detect temporal dependencies and patterns in sequential 

data. The HMM algorithm contributes to the ensemble by 
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simulating normal network or system activity. The HMM 

algorithm performs well at detecting deviations and 

malicious patterns from learned patterns. Its strength lies in 

capturing the sequential nature of malicious threats, making 

it useful for understanding attack progressions. 

 

The LSTM algorithm excels at capturing long-term 

dependencies in sequential data, which is essential for 

understanding how malicious threats evolve. LSTM 

contributes to the ensemble by providing insights into subtle 

and complex patterns.  The ability of LSTM to identify 

malicious patterns over long periods contributes to the 

ensemble's understanding of the temporal aspects of 

malicious threats. The algorithm's ability to learn from 

historical network log datasets makes it advantageous in 

detecting sophisticated attacks. 

 

XGBoost, as a decision tree ensemble, provides a new 

perspective by paying attention to feature interactions and 

classifications. XGBoost contributes to the ensemble by 

robustly classifying instances based on various 

features. XGBoost can perform an array of features and 

capture complex relationships between them. It excels at 

classifying instances, making it useful for detecting patterns 

associated with cyberattacks. 

 

The combination of these models increases the likelihood 

of detecting a wide range of malicious threats, thus 

enhancing overall detection ability. When compared to 

individual models, the proposed model is inherently more 

robust and adaptable. When one model fails to detect a 

specific type of attack, others may compensate. This 

ability enables it to adapt to changing threat landscapes, 

providing a more reliable defence against evolving 

malicious threats. The proposed ensemble model is less 

prone to overfitting in the training data due to the 

combination of HMM, LSTM, and XGBoost. Due to the 

different strengths of these algorithms, the proposed model 

can balance biases and reduce the risk of overfitting, 

resulting in a more generalized and efficient cyberattack 

detection model in SOC infrastructure.  

The ensemble model is developed through a 

comprehensive set of steps that incorporate the strengths of 

HMM, LSTM, and XGBoost models, as depicted in 

Appendix A. The steps for implementing the blending 

ensemble model include: 

1)  Feature Extraction: HMM is utilized to create new 

features from the existing data, generating different 

components ranging from 1 to 5. These features are then 

used for subsequent training and testing. 

2)  Data Splitting: The enhanced dataset is split into 

training and testing sets in an 80:20 ratio, and the training 

set is further divided into a smaller training set and a 

validation set. 

3)  Normalization and Label Encoding: The features in the 

training, validation, and testing sets are normalized using a 

StandardScaler to have zero mean and unit variance. The 

labels (y values) are encoded using a LabelEncoder, 

converting categorical data into numerical values. 

4)  Model Training: Two different models are trained: an 

XGBoost model with varying numbers of trees (100, 200, 

300, 400, 500) and an LSTM model with LSTM layers and 

a Dense output layer. The LSTM model is compiled using 

the Adam optimizer and the categorical cross-entropy loss 

function. 

5)  Model Prediction: Both LSTM and XGBoost models 

make predictions on the test set. These predictions are then 

inverse transformed using the LabelEncoder to return them 

to their original format. 

6)  Ensemble Learning-Stacking: The script employs a 

blending ensemble strategy by using predictions from the 

LSTM and XGBoost models, along with the original 

features from the validation and test sets. These new 

datasets are used to train a meta-classifier, which, in this 

case, is a Random Forest model. 

7)  Evaluation: The performance of the Meta Classifier is 

evaluated on the test set, and predictions are obtained for 

the test set and inversely transformed using the 

LabelEncoder. The script presents the confusion matrix and 

classification report for the meta-classifier's predictions. 

 

 

H. Integration of the SOC Application Programming 

Interface for Intelligent Security Information 

One of the objectives of the study is to improve existing 

SOCs by integrating a novel stacking ensemble model based 

on the combination of HMM, LSTM and XGBoost for 

intrusion detection system (IDS). The SOC analyzes both 

external and internal threats by monitoring network traffic 

logs in real-time with the developed ensemble ML IDS. The 

proposed model was tested for performance evaluation 

using standard machine learning evaluation metrics after 

accounting for overfitting. The system was deployed in a 

real-world environment where it successfully detected web 

attacks as expected. The testing was conducted on the local 

host before deploying it in cloud systems. 

Digital Ocean cloud service was utilized to create cloud-

based scenarios for testing and evaluating the proposed 

system using real network traffic data. Several other cloud 

service providers were considered, such as AWS and IBM 

Cloud; however, Digital Ocean was chosen mostly due to its 

appealing subscription. Digital Ocean exclusively offers 

Linux servers as their droplets; therefore, the models, 

intrusion detection system, and security operations center 

had to be deployed in a Linux-compatible mode. The 

system was originally developed on a Windows platform. 

Most of the libraries and packages that had been previously 

used had to be adapted to be compatible with Linux. 

The latest version of "CICFLOWMETER," a software 

tool designed for flow-based analysis of network traffic, 

commonly used in intrusion detection and network security, 

was leveraged with specific modifications, including feature 

renaming. The feature names created in version four were 

different from an older version that had been used to 

generate the original CICIDS2017 dataset. Missing features 

in the newest CICIDS2017 flowmeter were created within 

the intrusion detection system prediction logic using 

feature/data aggregation methods.  

The study utilized the Flask web framework to create a 

user-friendly interface for integrating the proposed model 

into the API. Flask is a lightweight, easy-to-use web 

framework that enables the speedy implementation of both 
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web applications and APIs. It is built on two reliable 

components, namely, the Werkzeug WSGI toolkit and the 

Jinja2 template engine. 

To implement the API, it is necessary to import the 

trained models alongside their associated objects, such as 

the Standard Scaler and Label Encoder. The Python code 

imports both models and objects, utilizing them to generate 

predictions based on the incoming network traffic feed. As 

the API operates, the implemented model and objects are 

loaded into memory.  

Fig 4a depicts the index route that is responsible for 

returning the index page of the project. The predicted route 

depicted in Fig 4b is a POST request endpoint that is used 

for predicting malicious files, with "files" as the route 

argument or API payload. The Threat_Events route in Fig 

4c is a GET request endpoint that returns predicted threat 

instances stored in the system, while the predictions route in 

Fig 4d shows previous predictions stored for various 

monitoring on the system. Additionally, there are other 

routes, as depicted in Fig 4e, which represent various 

modular functionalities for different functions in the system. 

To define the various routes for an API, we utilized the 

Flask web framework, which creates distinct endpoints to 

handle different tasks. These endpoints, in Figures 4a to 4e, 

are unique URLs that allow users to access specific 

functionalities offered by the API. 

To create different pathways, the web framework 

provides routing functionality. In Flask, for instance, one 

can define routes using the @app.route() decorator which is 

a special type of function that modifies the behaviour of 

another function. When user requests are sent to a particular 

URL, the framework redirects them to an appropriate 

function corresponding to the endpoint associated with that 

URL. Afterwards, this function handles and processes the 

request and issues an output response back to the user. 

Dividing an API into different routes results in a system 

that is modular and well-organized. Each route can be 

designated to perform a specific function or a group of 

related functions, facilitating smoother management and 

maintenance for the API over time. The typical number of 

API routes ranges from 5 and above. These routes 

essentially serve as API endpoints for monitoring threat 

events, sending alerts, retrieving data, connecting to pickled 

models for prediction, and other modular functionalities 

used in this implementation. 

 

Moreover, utilizing a web framework with routing 

functionality provides certain benefits, such as pre-

implemented security protocols and error-handling features. 

These benefits guarantee reliable operation and safeguard 

against potential threats, enhancing the overall security and 

stability of the API. 

 
 

Fig. 4.  API Endpoints 
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IV. IMPLEMENTATION 

A. Model Evaluation Metrics 

The study measured precision, recall, and f1 score to 

evaluate the proposed model's attack detection accuracy. 

True positive (TP), true negative (TN), false positive (FP), 

and false negative (FN) values are utilized to determine 

these parameters. They can be formalized in the context of 

detecting malicious threats as follows. 

 

1)  TP: The total number of correctly predicted 

malicious instances. 

2)  TN: The total number of correctly predicted 

legitimate instances. 

3)  FP: The total number of incorrect predictions of 

legitimate instances. 

4)  FN: The total number of malicious instances that 

were incorrectly predicted. 

 

Accuracy measures the proportion of accurate predictions 

made by the model for detecting real-time threats in SOC. 

This ratio is determined by dividing the total number of 

correct predictions by the overall number of predictions, 

which includes both cyber attacks and benign ones. The 

calculation for accuracy is depicted in Equation 1.22.  

 

Precision measures the proportion of correctly classified 

instances among the overall predicted instances to be 

malicious threats, as shown in Equation 1.23. In Equation 

1.24 the recall is determined by the proportion of malicious 

threat instances out of all compromised instances. The F1-

score is the harmonic mean of precision and recall as 

expressed in Equation 1.25. 

 

 

Accuracy=  (TN+TP)/(TN+TP+FN+FP)      (1.22) 

Precision=  TP/(TP+FP)             (1.23) 

Recall=  TP/(TP+FN)              (1.24) 

F1-score=2×(recall×precision)/(recall+precision)  (1.25)  

 

 

B. Evaluating the Proposed Model with Real-

World Network Traffic Data 

 

Evaluating the proposed model with real-world network 

traffic data was achieved using two approaches. The first 

approach involves using standard machine learning 

evaluation metrics as discussed in Section 4.1. The second 

approach was executed within the API. This approach 

involves using real-world traffic data to simulate attacks.  

This means that actual web attacks were conducted on the 

network where the API was deployed, and the ability to 

detect these attacks by the integrated ensemble model was 

tested. This involved no labels as the real, raw network 

traffic flow logs captured by tcdump and cicflowmeter were 

passed into the API for detection.  

 

The evaluation metrics in the second approach include: 

 

1)  Mean Time to Detect: The Mean Time to Detect 

(MTTD) is used to measure the performance of a security 

operations center. MTTD measures the average time taken 

to detect or predict a security incident also known as a 

cyberattack. In the developed system Time To Detect or 

TTD is continuously calculated and monitored during the 

continuous analysis of the ongoing network traffic. The 

TTD is determined by the timestamps associated with the 

start time (when the network flows in question are captured 

during the tcpdump) and end time (the timestamp when the 

attack is identified), especially in this case of identifying 

brute force IPs. 

To capture the network traffic continuously the 

developed system follows an approach of capturing 

consecutive PCAP files using a loop with each PCAP 

representing a 15 seconds of network activity. This is done 

within the Start_Capture function as shown in Fig 5. 

 

 

 
Fig. 5.  Network Capturing 

Within the loop, these PCAP files are converted into 

CSV inside the replace_csv function (using the 

CICFLOWMETER and are subsequently loaded into the 

data frame called df as shown in Fig 6. As these data frames 

are loaded, the update_chart(df) function is called for each 

data frame.  This function is responsible for processing each 

df dataset using the developed ensemble model, enabling 

continuous monitoring of the ongoing network traffic. 

 

 
Fig.  6. Converting PCAP File to CSV 
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In the network analysis phase based on the TD and 

MTTD calculation, if a brute force attack is detected, the 

TTD is calculated for each run as new “df” datasets are 

processed by the update_chart() function. As mentioned 

earlier, the end_time for TTD calculation is recorded by the 

developed system when it predicts an IP address as a brute 

force IP as shown in Figure 6. The current timestamp when 

the detection is done is recorded for this purpose. On the 

other hand, the start_time for TTD calculation is derived 

from the timestamp of the brute force IP from the “df” 

itself. This timestamp is recorded when the PCAP file is 

generated from the tcpdump network traffic capturing. 

Furthermore, the earliest occurrence of the corresponding 

brute force IP is selected for retrieving its timestamp as the 

start_time as shown in Fig 7. 

 

 
Fig. 7.  Evaluating Brute Force Attack Based on TTD and MTTD 

The TTD is then calculated by subtracting the start_time 

from the end_time. This TTD calculation provides an 

estimate of the time taken to predict/detect the 

corresponding brute force attack. Then the MTTD is 

calculated as follows. Note that this is done in the front-end 

programming for displaying it to the user who is using the 

SOC as expressed in Equation 1.26. 

 

 
 

First, for  detections   amount of TTDs is calculated 

and summed together. Then this value is divided by the 

number n to calculate the MTTD. The formula is applied 

using a custom function in the Java scripting section in the 

monitor.html file. 

 

As shown in Fig 8, the MTTD is calculated for 

consecutive 5 TTD values. The TTD values obtained in 

different runs can vary depending on the number of records 

included in the Dataframe. For example, the df Dataframe 

instances with a higher number of records may result in 

longer TTD values. Such occasions are during active and 

aggressive brute force attacks. These may result in 

comparatively longer TTD values and ultimately longer 

MTTD values. Conversely, Dataframe instances with fewer 

records may lead to shorter MTTD values. Moreover, TTD 

is also highly dependent on its start_time which is recorded 

during the tcpdump as shown in Fig 9. 

 

To clarify, the TTD value is higher for the malicious IP 

flows which are timestamped during the starting of the 15-

second PCAP capture, than the ones timestamped during the 

end of the 15 second PCAP capture. However, as long as 

the tcpdump is the first contact of the attacks with the 

system, it is still important to use the tcpdump timestamps 

of the network flows as the start_time for the TTD 

calculation.  

 

 
Fig. 8. MTTD Calculation for Five Consecutive TTD Values 

 

 
Fig. 9. Custom Mean Function 

2)  Mean Time to Respond: Like the MTTD, the Mean 

Time To Respond (MTTR) is another important 

performance metric that can be used to measure the 

performance of a security operations center. MTTR simply 

defines the average time taken to respond to and mitigate a 

security incident once it has been detected or predicted by a 

system. In the developed system, first, the TTR or Time To 

Response is calculated based on two sets of timestamps, the 

recorded current time set as the detection of a brute force IP 

being the start_time of the TTR and the recorded current 

time of an application of a firewall rule being the end_time 

of the TTR.  

 

As discussed earlier, the proposed model flags brute 

force attacks with specific IP addresses associated with 

these attacks. Following the detection, the system responds 

to block the brute force attack by applying a new firewall 

rule to block the corresponding malicious IP address. The 

firewall rule application is done inside the 

apply_firewall_rule function using the UFW 

(Uncomplicated Firewall) which is a netfilter firewall 

designed with a command-line interface as shown in Fig 10. 

This response action is critical to prevent any unauthorized 

access attempts and protect the network. 

 

 
Fig. 10. Firewall Deny Rule 
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When a brute force IP is detected during the processing 

of a Dataframe (df), the system records the current 

timestamp as the end_time of the TTD as shown in Fig 11. 

This end_time becomes the start_time of the TTR 

calculation and is used as a parameter of the 

apply_firewall_rule function. The end_time for TTR is 

taken when the firewall rule is successfully applied to block 

the brute force IP, indicating the completion of the incident 

response process, though the difference between the 

start_time of TTR and the end_time of TTR provides an 

estimate of the time it takes the developed system to 

respond and implement the necessary mitigation measures 

for a detected brute force attack as shown in Fig 12. 

 

 

 
Fig. 11. Brute Force IP Detection Based on MTTR Calculation 

 

 
Fig. 12.  Firewall Deny Rule and Calculating TTR 

 

Like in the MTTD, MTTR is calculated by calculating 

the average time taken for multiple TTR actions in the 

front-end as expressed in Equation 1.27. 

 

 
 

First, for  firewall rule applications n amount of TTRs 

are calculated and summed together. Then this summed 

value is divided by the number  to calculate the MTTR as 

shown in Fig 13. 

 

 
Fig. 13. MTTR Calculation for Consecutive Five TTR Values 

V. RESULT AND DISCUSSION 

This section presents the experimental results of the 

proposed ensemble intrusion detection model, which 

incorporates stacking, bagging, and majority voting models. 

The chapter also discusses the experimental results obtained 

from undersampled and minority-sampled datasets using 

ensemble model techniques. A comparison was executed to 

determine the most efficient model for real-time detection 

of malicious threats in a network. 

 

A. Result of the Proposed Model for the Multi-

Class Classification 

The confusion matrix in Fig 14 shows that 1018 instances 

belong to the Benign class, and the model correctly 

predicted all of them as Benign. There are no instances that 

were incorrectly predicted as Class Benign. 1017 instances 

belong to Class Brute Force, and the model correctly 

predicted 928 of them as Class Brute Force. However, 5 

instances were predicted as Class SQL Injection and 84 

were predicted as Class XSS when they belong to Class 

Brute Force. 1018 instances belong to Class SQL Injection, 

and the model correctly predicted all of them as Class SQL 

Injection. There are no instances that were incorrectly 

predicted as Class SQL Injection. 1017 instances belong to 

Class XSS, and the model correctly predicted 978 as Class 

XSS. However, there is 1 instance that was predicted as 

Class Benign, 36 were predicted as Class Brute Force, and 2 

were predicted as Class SQL Injection when they belong to 

Class XSS. The classification report for the stacking 

blending ensemble is shown in Table II. 
 

 

Table II 

 CLASSIFICATION REPORT OF THE PROPOSED STACKING 

BLENDING MODEL FOR THE MULTI-CLASS CLASSIFICATION 

 precision        recall   f1-score    support 

BENIGN 1.00 1.00 1.00 1018 
Web Attack ? 

Brute Force 0.96 0.91       0.94       1017 

Web Attack ? Sql 
Injection     1.00 1.00 1.00 1018 

Web Attack ? 

XSS 0.92          0.96          0.94          1017 

accuracy   0.97       4070 

macro avg        0.97       0.97       0.97       4070 
weighted avg        0.97       0.97       0.97       4070 
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Fig. 14. Confusion Matrix of the Proposed Stacking Blending Ensemble Model for the Multi-Class Classification

The class-wise evaluations and the overall evaluation 

include: 

1)  Class-Wise Evaluation: In the test set, there are 1018 

instances of the first class, which is BENIGN. The model 

performed well in this class with precision, recall, and F1 

scores of 1.00, indicating that all instances of this class were 

correctly predicted by the model. The second class, called 

Brute Force, contains 1017 samples in the test set. 

According to the evaluation metrics, this model classifies 

instances belonging to this category with high precision, 

recall, and F1 scores of 0.96, 0.91, and 0.94, respectively. 

This indicates that the model correctly identifies 96% of the 

instances within this class and accurately categorizes 

approximately 91% of them. The test set contains a third-

class of 1018 instances. The precision, recall, and F1 scores 

of this class are all perfect with a value of 1.00. This 

indicates that the model accurately predicted all the 

instances involved in this particular class. The test set has 

1017 instances in the XSS class. It achieved precision, 

recall, and F1 scores of 0.92, 0.96, and 0.94, respectively. 

Thus, the model accurately predicted 92% of the examples 

belonging to this class and recognized precisely 96% of the 

instances that belong to it as expected. 

2)  Overall Evaluation: Precision is the proportion of true 

and positive predictions among all positive predictions. A 

high precision score indicates that the model is making 

fewer false positive predictions. The report shows that for 

all classes, the model has a precision score ranging from 

0.92 to 1.00, indicating high precision overall. Recall 

measures how well a model predicts the positive instances 

in a dataset. A high score indicates that the model 

accurately identifies a large proportion of actual positives. 

In this report, recall scores between 0.91 and 1.00 show that 

the model has high recall across all classes. F1-score: The 

F1-score is a statistical tool used to balance precision and 

recall by taking the harmonic mean between them. Scores 

obtained from 0.94 to 1.00 in this report suggest excellent 

performance across all classes for the model employed here. 

Accuracy is the proportion of accurately classified instances 

among all instances. According to this report, the model's 

overall accuracy stands at 0.97, indicating that it is 

performing well. The macro average is a performance 

metric that averages the precision, recall, and F1-score of 

each class. It provides an overall measure of the model's 

performance without considering the imbalance in instances 

across different classes. This report indicates good overall 

performance with a macro average of 0.97 for all metrics 

used in the evaluation. The report calculates the weighted 

average by combining metrics such as precision, recall, and 

F1-score for every class based on the number of instances in 

each category. This measure indicates the model's overall 

performance while accounting for unequal instance 
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distribution across different classes. The resulting weighted 

average of 0.97 implies a good overall performance of the 

model. 

 

B. Result of the Proposed Model for the Binary Class 

Classification 

For the malicious threat (class 0), 99% of instances 

predicted as malicious threats are indeed malicious. This 

indicates a low rate of false positives. The model also 

captures 99% of all actual instances of malicious threats 

(class 0), demonstrating high sensitivity. The model 

achieved an F1-score of 99%, suggesting an outstanding 

overall performance in classifying malicious threats (class 

0) as depicted in Table III 

 

For the legitimate traffic (class 1), among the instances 

predicted as legitimate traffic, 99% are truly legitimate. This 

implies an extremely low rate of false negatives. The model 

identifies 99% of all actual instances of legitimate traffic 

(class 1), indicating high sensitivity. The model achieved an 

F1-score of 99%, signifying an effective balance between 

precision and recall for classifying legitimate traffic (class 

1). 

 
TABLE III 

CLASSIFICATION REPORT OF THE PROPOSED STACKING 

BLENDING MODEL FOR THE BINARY-CLASS CLASSIFICATION 

                 precision    recall  f1-score   support 

 

           0         0.99      0.99      0.99      1552 

           1         0.99      0.99      0.99      1501 

 

    accuracy                                0.99    3053 

   macro avg       0.99      0.99      0.99     3053 

weighted avg     0.99      0.99      0.99     3053 

 

The result in Figure 15 depicts the Area Under the Receiver 

Operating Characteristic Curve (AUC_ROC score). The 

objective of the AUC-ROC score is to detect and respond to 

cyberattacks efficiently.  Fig 15 shows that the model 

achieved an AUC-ROC score of 0.99. This result indicates 

that the model is accurate and capable of classifying benign 

network activities from malicious patterns associated with 

cyberattacks. The model's high true positive rate 

(Sensitivity) combined with an AUC of 0.99 indicates that it 

is capable of detecting malicious patterns effectively. This 

is critical for efficient detecting and responding to security 

incidents, thereby reducing potential damage from cyber 

threats. 

 

A model with a high AUC-ROC score generally has an 

optimized detection threshold. Therefore, the model is tuned 

to achieve a balance between detecting as many attacks as 

possible (high recall) and minimizing false alarm rate (high 

precision). As a result, SOC teams can rely on the proposed 

model for continuous security monitoring, as well as have 

confidence in the model's ability to accurately flag 

suspicious activities, enabling SOC analysts to focus on 

genuine threats and take prompt action to protect the 

organization's resources. 
 

Fig 16 depicts the outcome of the cross-validation. The 

cross-validation results show consistently high accuracy 

across five-folds, with an average accuracy of around 0.999. 

This result shows that the model performs consistently well 

across various subsets of the training data. Consistency is 

important in machine learning because it indicates that the 

model's performance is stable and not heavily influenced by 

specific data points or subsets. An average accuracy of 

0.999 is high, indicating that the model is efficient at 

correctly classifying malicious network patterns in real-

time. This degree of accuracy is frequently indicative of a 

well-trained model with outstanding predictive abilities. As 

a result, there is high confidence in the model's ability to 

generalize well to new data points (unseen attacks). This is 

essential in real-world applications where the model must 

perform well with new, previously unseen attacks

 
 

Fig. 15. AUC-ROC Score of the Proposed Model 
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Fig. 16. Cross-Validation of the Proposed Model

C. Benchmarking with Existing Models in Literature 

A comparison of the proposed model to those reviewed in 

the literature reveals that it outperforms all other AI models 

for binary classifications, as shown in Table IV because the 

datasets used in this work have not been explored in the 

literature, the proposed model was trained on the same 

dataset used by the previous researcher to ensure a fair 

comparison. 

 
TABLE IV 

BENCHMARKING OF THE PROPOSED MODEL WITH EXISTING 

MODELS 

Authors Models Accuracy Precision Recall 
F1-

Score 

[59] AE 98.5% 98% 98% 98% 

[59] KNN 99% 98% 99% 98% 

[59] LDA 96% 96% 96% 96% 

[59] 
LST

M 
99.2% 99% 99% 99% 

[58] 
L-

SVM 
99% 98% 98% 98% 

[59] MLP 94.6% 94% 94% 96% 

[59] QDA 99% 99% 98% 98% 

[59] 
Q-

SVM 
64% 64% 64% 63% 

Ours 
Propose

d Model 
99% 99% 99% 99% 

 

D. Practicability and Generalization to Real-World 

Environments 

The effectiveness of any machine learning model, 

particularly in cybersecurity, hinges not just on its 

performance metrics in controlled environments but also on 

its practicability and generalization to real-world scenarios. 

This is particularly true for AI-driven cybersecurity models. 

This section evaluates the proposed model's ability to meet 

these requirements and compares it to state-of-the-

art approaches that make use of the KDD CUP dataset, 

which is an established benchmark for intrusion detection.  

The KDD CUP dataset has been extensively utilized to 

evaluate machine learning models designed for detecting 

various cyber threats, including DDoS attacks. For instance, 

[60] combined logistic regression and support vector 

machine (SVM) as an ensemble learning technique to detect 

DDoS attacks in real-time. This study achieved a 

remarkable 99.2% accuracy in detecting DDoS attacks, 

setting a benchmark in the field due to its high accuracy and 

strong generalization capabilities. However, when the 

proposed stacking blending model was applied to the same 

KDD CUP dataset, it achieved an improved accuracy of 

99.6%. This represents a significant improvement, with an 

absolute increase of 0.4% in accuracy. While this 

improvement might seem marginal, even small gains in 

detection accuracy can have a significant impact on 

cybersecurity, particularly when handling large volumes of 

network traffic where false positives or missed detections 

could lead to severe consequences. This result indicates that 

the model's strong generalization across different 

environments enables it to be adapted to various network 

configurations and threat models with minimal retraining. 

This adaptability makes it a valuable tool for organizations 

aiming to strengthen their cybersecurity defences. The result 

also suggests that the proposed model will not only perform 

well in controlled test environments but also has the 

potential for deployment in practical settings where the 

unpredictability and diversity of threats are significantly 

higher.  
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This means that the proposed model's consistently high 

detection rates and minimal false positives are essential for 

reducing the operational burden on SOC analysts. In 

addition, the model’s ability to reduce the number of false 

alarms allows security personnel to concentrate on genuine 

threats. Hence,  enhancing the overall efficiency of the SOC 

infrastructure. 

 

E. Environmental Setup of the Testing and Evaluation in 

Controlled and Real-World Environments 

This section discusses the evaluation and testing 

procedures to assess the effectiveness and reliability of the 

developed Intrusion Detection System (IDS) and its 

associated API. Two key aspects are explored: evaluation in 

a production environment with real network traffic data and 

control testing with simulated attacks. 

 

1)  Evaluation in the Production Environment (No 

Labels): The deployed model in the SOC environment was 

evaluated using real network traffic data converted to a 

continuously updating CSV dataset using tcpdump and 

CICFlowMeter. The ongoing network traffic in the network 

was captured in real-time and fed into the ensemble model. 

2)  Creating A Linux Attacker PC in Digital Ocean: An 

Ubuntu-based attacker PC was installed to validate the API 

using actual network traffic to replicate and simulate 

attacks, such as Brute Force attacks on the web server, as 

shown in Fig 17. 

3) Attacking the API with Brute Force Attack (Real-Time 

Monitoring): Fig 18 depicts the execution of a brute force 

attack using the Hydra technique. The IDS/API detects 

brute force attacks in "real-time" (with about a 10-second 

lag; this lag is for the prediction logic to take place for the 

updated CSV records upon the fetch calls from the front 

end, which is inevitable), as shown in Fig 19. 

A brute force attack involves attempting various 

username and password combinations until the attacker 

gains entry into the targeted system or application. The 

attacker uses automation tools like Hydra to quickly guess 

thousands of login credentials from their list, testing the 

Security Operation Center's Intrusion Detection System 

(IDS) effectiveness. Often, an external source, like a 

password.txt file, contains credential pairs that are tried out 

by the tool on multiple systems in rapid succession. Hydra 

is a widely used software for brute force attacks. This 

malicious tactic involves repeatedly guessing the username 

and password combinations until the correct match is found. 

Hydra automates this process by rapidly trying different 

username and password combo variations, significantly 

reducing the time it would take to discover the right 

credentials.

 

Fig. 17. The Linux Attacker PC 
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Fig. 18:  Conducting Brute Force Attack

 
 

 

 
 

Fig. 19. Real-Time Detection for Brute Force Attacks 

 

F. Results of System Effectiveness for Mean Time to 

Detect (MTTD) and Mean Time to Respond (MTTR) 

This section presents the outcomes of evaluating the 

system's efficiency in promptly detecting security incidents, 

measured by Mean Time to Detect (MTTD), and 

responding effectively, assessed through Mean Time to 

Respond (MTTR). The MTTD metric reflects the system's 

ability to identify threats swiftly, particularly in the case of 

brute force attacks, while a lower MTTR indicates the 

system's agility in implementing mitigation measures. 

 

1)  Results of System Effectiveness for Mean Time to 

Detect (MTTD): Mean Time to Detect (MTTD) is a crucial 

metric that measures the system's ability to promptly 

identify and respond to security incidents, such as brute 

force attacks. We gained valuable insights into the ensemble 

model's performance by continuously calculating Time-to-

Detect (TTD) values and obtaining MTTD values. Fig 20 

and Fig 21 display TTD values captured from the front end. 

Fig 22 depicts a TTD value capture within the backend 
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console. These values represent the time taken to detect the 

brute-force IPs after the attacks were initiated. Using these 

TTD values, we computed the MTTD, as depicted in Fig 

23. A lower MTTD indicates that the system predicts and 

responds to brute force IPs more promptly, minimizing the 

potential damage caused by malicious actors. By blocking 

the malicious IPs upon detection, the system prevents 

further compromise of the network and reinforces the SOC's 

defensive capabilities. 

 
Fig. 20. A TTD Value Captured from the Frontend 

 

 
Fig.  21. A TTD Value Captured from the Frontend 
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Fig. 22. A TTD Value Captured within the Backend Console 

 
Fig. 23.  MTTD Calculation from the Frontend

 

2)  Results of System Effectiveness for Mean Time to 

Respond (MTTR): Mean Time to Respond (MTTR) is a 

critical performance metric that evaluates how swiftly the 

system implements appropriate mitigation measures upon 

detecting security incidents. In the developed system, the 

primary focus is on minimizing the MTTR to block the 

brute-force IPs in the firewall as soon as they are detected. 

Fig 24 shows a TTR value captured in the front end, 

representing the time taken to respond to the detected 

attacks. Fig 25 depicts a TTD value capture within the 

backend console. These values enable us to calculate the 

MTTR, as illustrated in Fig 26. 
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Fig.  24. A TTR Value Captured in the Frontend 

 
Fig. 25.  A TTD Value Captured within the Backend Console 
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Fig.  26. MTTR Calculation from the Frontend

 
Fig.  27.  Reputation Check for Blocked IP (113.21.232.39) 
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By carefully checking the console messages and analyzing 

the MTTD and MTTR values, it is confirmed that the attacks 

are blocked at their first attempts, proving the system's 

effectiveness in blocking IPs before causing any damage. 

Furthermore, the developed SOC successfully classifies both 

Digital Ocean dedicated attacker's brute force attacks and 

random brute force attacks from around the world, 

showcasing the system's effectiveness in generalizing and 

classifying different attack types correctly. IPs from these 

attacks are added to the firewall deny list, preventing them 

from conducting further attacks. Fig 27 is a reputation check 

of one of those blocked IPs (randomly selected for checking), 

which is 113.21.232.39 

In conclusion, the results demonstrate the strong performance 

and effectiveness of the ensemble machine learning system in 

detecting and classifying cyber threats in a security operations 

center. 

G. Research Challenges and Threats to Proposed Model 

Validity 

This section sheds light on the challenges encountered 

during the research journey, primarily in the realms of 

cybersecurity and machine learning. These hurdles were not 

only anticipated but also essential for refining the developed 

ensemble model. The researchers overcame these challenges 

by applying innovative solutions and methodologies, 

ultimately contributing to the advancement of the field. 

The research encountered several challenges inherent to the 

cybersecurity and machine learning domains. Addressing 

these challenges was critical to obtaining accurate and reliable 

results. The lack of comprehensive literature discussing 

Hidden Markov Models in the context of cybersecurity posed 

a significant obstacle. Nevertheless, we proceeded with the 

research, aiming to address this identified knowledge gap and 

provide a novel contribution to the field. Additionally, 

obtaining a suitable and diverse cybersecurity dataset with 

sufficient labeled data was challenging. However, we applied 

careful data preparation techniques and used stratified 

sampling to preserve the original class distribution, ensuring 

balanced and representative datasets for training and 

evaluation. The compatibility issues between different model 

architectures, specifically LSTM and XGBoost, demanded 

innovative solutions. By aligning and combining the outputs 

of the two models, we successfully integrated them into the 

ensemble system. 

During the development of the unique ensemble model 

combining HMM, LSTM, and XGBoost for cybersecurity 

anomaly detection, we encountered significant challenges. 

One major obstacle was the lack of comprehensive literature 

specifically discussing Hidden Markov Models in the context 

of cybersecurity anomalies. HMMs are unique generative 

machine learning models, and their application in the 

cybersecurity domain is relatively unexplored. Nevertheless, 

we proceeded with the project to address this knowledge gap 

and make a novel contribution to the field. Another challenge 

was the scarcity of publicly available datasets that fulfil the 

requirements for the research. The ideal dataset should follow 

the Markov property and contain features relevant to 

cybersecurity anomalies. Unfortunately, finding such a 

dataset proved to be a difficult task within the time 

constraints of the project. 

Data preparation is crucial in developing machine learning-

based intrusion detection systems. During this phase, we 

encountered several challenges, including: 

 

1)  Unbalanced Data: The accuracy of machine learning 

models can be significantly affected by an unbalanced 

dataset, where normal traffic far outweighs malicious activity. 

To address this, we applied balancing techniques to ensure 

accurate model training. 

2)  Outdated Data: To effectively detect evolving attacks, 

intrusion detection systems require training on current 

datasets. Using outdated data could negatively impact the 

model's performance, so we ensured the dataset was up to 

date. 

3)  Lack of Diversity: Effective intrusion detection systems 

should be able to detect a wide range of attacks. We 

addressed this challenge by curating a diverse dataset with 

various attack types, targets, and methodologies. 

4)  Limited Data Size: Machine learning models require a 

large volume of data to generalize effectively. Although we 

had a limited dataset, we used stratified sampling and other 

techniques to make the most of the available data. 

5)  Label Quality: Accurate labeling of data is essential for 

training reliable machine learning models. We ensured high-

quality labeling standards to improve model accuracy and 

reliability. 

Overcoming these data preparation challenges was critical 

to developing an accurate and effective ensemble model for 

cybersecurity anomaly detection. The modeling phase 

presented its own set of challenges, and they include: 

1)  Completely Different Model Architectures: One of the 

significant hurdles in the modeling phase was dealing with 

completely different model architectures for the LSTM and 

XGBoost models. As mentioned earlier, the LSTM model 

requires sequential data in the form of 3-dimensional arrays, 

while the XGBoost model expects tabular data in 2-

dimensional arrays. To address this, we carefully 

preprocessed the data and ensured that the input data were 

appropriately formatted for each model. 

2)  Compatibility of Predictions: Integrating the outputs of 

the LSTM and XGBoost models into the ensemble model 

required handling different prediction formats. The LSTM 

model produced probabilities for each class, while the 

XGBoost model generated class labels. To combine these 

predictions effectively, we developed a mechanism to align 

and harmonize the outputs, ensuring seamless integration in 

the ensemble model. 

3)  The Nature of the Dataset vs. the Approach Taken: 

Working with a limited dataset posed challenges in designing 

the ensemble model. We had to carefully allocate the 

available data for training, testing, and validation sets while 

ensuring a justified distribution of classes among them. Only 

7267 records remained after the reduction. Careful utilization 

was crucial for HMM, LSTM, XGBoost, and ensemble model 

training and testing. We utilized various techniques, such as 

stratified sampling in sklearn train_test_split, to preserve the 

original class distribution and prevent data leakage. 

Despite these challenges, the ensemble model proved 

effective in identifying and classifying various cyber threats 

accurately, showcasing its robustness and reliability in real-

world scenarios. 
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VI. CONCLUSION 

This study makes significant contributions to the field of 

cybersecurity and threat detection within Security Operations 

Centers (SOCs). The study introduces and successfully 

demonstrates an ensemble machine learning approach that 

combines Gaussian Hidden Markov Models (HMM), Long 

Short-Term Memory (LSTM), and XGBoost algorithms, 

achieving an impressive average F1-score of 99% in 

identifying major web threats, including Brute Force Attacks, 

Cross Site Scripting (XSS), and SQL Injection, while 

minimizing false detections. The study evaluates the 

ensemble model's real-world efficacy using actual network 

traffic data and controlled testing with simulated attacks, 

presenting a comprehensive assessment of its operational 

efficiency and effectiveness within SOC environments. These 

contributions collectively advance the state of the art in 

cybersecurity practices and threat detection, providing 

valuable insights for future research endeavours and practical 

applications. 

A. Future Works and Research Directions 

Future works and research directions stemming from this 

study offer exciting prospects for further advancing 

cybersecurity practices and threat detection methodologies in 

Security Operations Centers (SOCs). Firstly, exploring the 

integration of emerging machine learning techniques, such as 

deep learning models and reinforcement learning algorithms, 

could enhance the ensemble model's predictive capabilities, 

potentially increasing detection accuracy and adaptability to 

evolving threats. Secondly, delving deeper into real-time 

threat monitoring systems and the incorporation of anomaly 

detection methods, coupled with the analysis of encrypted 

traffic, could further strengthen SOC defences against 

sophisticated attacks. Thirdly, investigating the scalability 

and resource efficiency of the ensemble model, particularly in 

large-scale network environments, will be crucial for its 

practical implementation. Additionally, research efforts may 

focus on the development of user-friendly interfaces and 

visualization tools that empower SOC analysts in interpreting 

model outputs and facilitating more informed decision-

making. Lastly, fostering interdisciplinary collaborations with 

experts in network security, cryptography, and artificial 

intelligence can foster innovative solutions and cross-

pollination of ideas to address emerging cybersecurity 

challenges effectively. These future works and research 

directions collectively aim to propel the field of cybersecurity 

forward, ensuring the continued adaptability and robustness 

of SOC operations in an ever-evolving threat landscape. 
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