

Abstract— Cyberattacks can be avoided if threats are

identified in advance and robust cybersecurity measures are in

place to protect infrastructures. However, in recent years,

cyber threats and data breaches have become more prevalent,

exploiting vulnerabilities and causing significant financial

damage and organizational harm. This often involves

compromising sensitive personal information, emphasizing the

need for proactive defence strategies led by experienced

security professionals. Traditional methods of threat detection

involve laborious log analysis due to the multitude of logs

generated by network devices. However, ensemble machine

learning techniques offer automation within intrusion

detection systems, streamlining the threat detection process.

This study investigates various ensemble methods, such as

blending and stacking, to enhance detection capabilities, both

manually and automatically identifying potential cyber

threats. The methodology involves implementing a stacking

blending ensemble model and conducting feature selection to

improve performance. Additionally, a web application

interface is developed using the Python Flask web framework

to facilitate model deployment and management. Evaluation

includes testing on real production network traffic and the

CICIDS2017 Thursday-WorkingHours-Morning dataset, with

intentional web attacks executed to assess system effectiveness.

The ensemble model is evaluated using the Thursday Morning

Dataset, achieving high precision, recall, and F1-score of 0.99,

with an overall accuracy of 99% in binary classification tasks.

These results validate the model's robustness and effectiveness

in identifying real-time network traffic patterns and potential

security incidents, demonstrating its potential to enhance

cybersecurity measures.

Index Terms—Cybersecurity, Intrusion Detection System,

Machine Learning, Stacking, Blending Ensemble Model

I. INTRODUCTION

s technology advances, so do the complexities of cyber

security risks and attack methods [1], [2]. Malicious

actors now employ sophisticated tools and technologies for

swift, targeted assaults that can yield significant harm and

gather vast amounts of data [3], [4], [5]. In this dynamic

landscape, the Security Operations Center (SOC) plays a

central role, continuously monitoring an organization's IT

infrastructure to swiftly detect and mitigate cybersecurity

Manuscript received April 5, 2024; revised September 27, 2024.

F. Femi-Oyewole is a PhD Candidate at Covenant University Km 10 Ota.

Ogun State Nigeria. (corresponding author; phone: +234 80 98186081; e-

mail: Favour.Femi-Oyewole@Stu.cu.edu.ng).
V. Osamor is a Professor of Computer and Information Sciences at

Covenant University, KM 10 Ota, Ogun State, Nigeria (e-mail:

victor.osamor@covenantuniversity.edu.ng).
D. Okunbor is a Professor of Mathematics and Computer Science at

Rice University, Fayetteville State University, Fayetteville, California

USA. (e-mail: diokunbor@uncfsu.edu).

threats. Whether managed internally or outsourced, SOC

teams are entrusted with overseeing and maintaining

cybersecurity technologies and evaluating threat data to

bolster the organization's security posture [6]. They employ

an array of tools, including firewalls, intrusion detection and

prevention systems, and security information and event

management (SIEM) systems, while adhering to security

best practices such as robust password policies, multi-factor

authentication, and regular security audits [7].

In the realm of cybersecurity, Security Operations

Centers (SOCs) leverage advanced technology and

sophisticated computer forensics tools to detect, prevent,

and respond to issues related to cyber threats and

cyberattacks [8]. The effectiveness of a SOC hinges on its

ability to efficiently scrutinize and analyse vast volumes of

data, enabling the identification of malicious event patterns

[9]. At its core, the SOC meticulously monitors and

classifies a multitude of network events, encompassing both

benign and malicious activities.

SOCs are the recommended best practice on which large

and medium-sized organisations depend for cybersecurity

incident detection, notification, and response. Many

organisations or enterprises have established SOCs as

efficient solutions for monitoring cybersecurity [10]. SOCs

function as a core unit within security operations, typically

perceived not as a singular entity or system but as an

intricate structure responsible for managing and improving

an organisation's overall security posture. SOCs serve as

centralized defence units within medium or large

organizations. The function of SOCs involves identifying,

analysing, and addressing cybersecurity threats and

incidents using personnel, procedures, and technology as

shown in Fig 1 [11], [12], [10]. The effectiveness of SOCs

has been demonstrated in enhancing an organization's

security posture by proactively addressing, identifying,

analyzing, and responding to cybersecurity incidents [13].

SOCs are indispensable strategic resources for

organizations, actively identifying, preventing, and

facilitating the swift recovery from cyberattacks. Given the

heightened prevalence of cybercrimes and cyberattacks, the

role of SOCs is pivotal for organizations. The year 2017, in

particular, witnessed some of the most severe and notable

security breaches, exemplified by the Equifax breach, where

hackers gained access to approximately 145.5 million user

account credentials.

The stolen information included personal identities,

account numbers, vehicle license numbers, and banking

information of around 5 million individuals. This breach

had significant financial implications, but perhaps even

more damaging was the loss of consumer trust and the

Ensemble Machine Learning Approach For

Identifying Real-Time Threats In Security

Operations Center

A

Favour Femi-Oyewole, Victor Osamor, Daniel Okunbor

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

Fig. 1. SOC Highlevel Architecture ([14] and owned by the authors).

erosion of the company's brand which had been built over

many years [15]. Incidents like the Equifax breach have

compelled businesses to recognize the rapidly changing

threat landscape and attack strategies, necessitating a shift

away from basic firewall and antivirus measures toward

more comprehensive and resilient processes, such as

establishing a dedicated Security Operations Center [16]. To

prevent sensitive information breaches, companies must

proactively identify vulnerabilities and threats, enabling

early incident detection for rapid response and, in worst-

case scenarios, faster recovery. Establishing a Security

Operations Center (SOC) equipped with intrusion detection

systems and security information and event management

(SIEM) is the most effective way to strategically oversee,

analyse, and manage an organization's security strategy

[17].

The challenges and drawbacks of SOCs include:

1) Detecting Sophisticated Attacks: Detecting sophisticated

attacks poses a challenge for analysts. The complex nature

and stealthy techniques employed in modern attacks make

them particularly difficult to detect. According to [18], the

complexity of these attacks presents difficulties for analysts

in identifying them within extensive and intricate datasets.

Analysts often have to depend on their experience to

counter these attacks, especially when the attacker

successfully bypasses existing technical controls.

2) Large Volume of Alerts: SOC analysts struggle with a

significant challenge related to the large number of alerts

they encounter. The volume of alerts often makes it difficult

for analysts to detect actual attacks amidst the multitude of

notifications. [19] highlighted the presence of false

incidents (false positives), emphasizing that not all alerts

translate into legitimate incidents. Researchers propose

several techniques to tackle this issue, including limiting log

collection to essential assets/devices, adjusting policies, and

filtering out unnecessary alerts (noise) [19]. Despite these

recommendations, literature evidence indicates that analysts

persistently face difficulties in managing the overwhelming

volume of alerts they handle.

3) Incident Management and Incident Handling Complexity:

SOC analyst's primary responsibility is to respond to

incidents, and all incidents must be handled in a way that

minimizes further damage [20], [21]. In addition, analysts

are under time constraints when dealing with incidents [21].

Detecting an attack is one thing; dealing with it through the

incident-handling process is quite another. Detecting and

managing security incidents (attacks) is critical to a

SOC’s success. Incident management involves collaborating

with (or escalating to) other teams, either internal or

external to the organization, to reduce or eliminate the

impact of any attack [22]. Since the complexity of incident

handling can be intimidating for less experienced analysts,

they must rely on the guidance of more experienced

analysts. With literature suggesting that SOCs are having

difficulty retaining experienced analysts, dealing with

complex incidents becomes difficult.

4) Analyst Burnout: The issue of burnout represents a

significant challenge for SOC analysts and has become a

focal point for researchers [23]. Researchers widely agree

that burnout is the outcome of various organizational,

environmental, and human factors, including alert fatigue,

stress, workload, and anxiety. These factors, in turn,

contribute to turnover among analysts [21], [24].

5) False Positives: False positives (FP) are among the

numerous challenges confronting SOC analysts. FP refers to

the instances of 'false alarms' presented to analysts [18],

[24]. These alarms, while not legitimate attacks (true

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

positives), misleadingly prompt analysts to initiate

investigations, ultimately resulting in a waste of analyst

time. FP contributes to the high volume of alerts faced by

analysts. Similar to the alert volume, FPs also arise from

collecting excessive logs. [20] caution that high FPs may

lead to an IDS operator completely disregarding alerts.

Factors contributing to FPs include system

misconfigurations and weak signature/detection strings

designed by the vendor or the analysts, which inaccurately

match legitimate network traffic. Recommendations for

reducing FPs include policy tuning and the application of

machine learning [25]. Businesses can also invest more

effort in addressing misconfiguration issues to alleviate the

burden on analysts. Tuning policies and filtering out false

positives are integral aspects of an analyst's responsibilities

[19].

6) False Negatives: A challenge encountered by SOC

analysts is false negatives (FN). FNs typically occur when a

detection system fails to identify legitimate security events,

presenting a difficulty for analysts [26], [18]. Analysts must

then resort to alternative indicators on the network, such as

employing behavioural analytical techniques, to identify

malicious activity.

7) Assessment Methods: SOC managers typically anticipate

high operational performance from their analysts [27], [23].

Nevertheless, research indicates a deficiency in appropriate

metrics and criteria for evaluating the analysts'

performance. The challenge lies in cases where analysts and

managers do not align on how performance should be

measured, and managers encounter difficulty in formulating

effective metrics. [23] assert that analysts derive benefits

from well-defined metrics as their bonuses and promotions

are determined based on these metrics. Analysts seek

objective metrics that encompass various aspects of their

work.

8) Workloads: [28] argue that SOC analysts struggle with

more alerts than they can effectively investigate. This is in

line with [25], who attribute the heightened workload

primarily to the overwhelming number of alerts that

analysts need to handle. Workload is a significant challenge

faced by SOC analysts. Previous research indicates that an

increased workload also hampers analysts' ability to

maintain situational awareness, vigilance, and attention

[20]. [20] posit that workload adversely affects analyst's

monitoring, analysis, and response capabilities. The authors

further argue that attention has an impact on the response

time of operators (analysts), and the same applies to eye

movement in terms of vigilance. These human factors

contributing to suboptimal performance are often

underexplored or insufficiently measured to track how

performance can be monitored and enhanced.

9) Tacit Knowledge: The challenge associated with tacit

knowledge extends beyond the SOC environment, as many

professions encounter similar issues. Nonetheless, within

the SOC environment, tacit knowledge can impede or delay

investigations. A key problem with tacit knowledge is that

experienced analysts may struggle to articulate the rationale

behind their actions, making it difficult for less experienced

analysts to learn. One potential solution to this challenge is

for SOCs to implement playbooks or run books,

accompanied by thoroughly documented processes that less

experienced analysts can refer to for decision-making

support within SOCs.

10) Experienced Shortage: Analysts encounter challenges

related to a shortage of experience and skills. The frequent

turnover of analysts poses difficulties for SOCs in retaining

their most experienced and qualified professionals [29].

This presents a dilemma for less experienced analysts, as

the chance to learn from experienced counterparts becomes

limited. Given the ever-evolving nature of cyber threats,

analysts need periodic training, whether through in-house

programs or external paid training, to ensure they possess

the skills necessary to counteract attackers [27].

11) Repetitive and Manual Processes: The utilization of

repetitive, manual, and monotonous step-by-step processes

in certain SOCs has been identified as a source of

dissatisfaction among SOC analysts [28], [27], [24].

Adhering strictly to these rigid processes may impede the

creativity of analysts within the SOC [23]. Moreover,

relying on manual processes and analyses proves highly

inadequate for enterprise organizations, emphasizing the

need for a shift toward automation [23], [19]. The

integration of SIEM technologies, coupled with security

event visualization systems, can alleviate some of the

burdens associated with manual and repetitive procedures

[29], [30].

12) Communication issues Between Teams: Inefficient

communication among analysts is identified as a challenge

in SOCs [27]. [21] emphasize the importance of

communication and information sharing for SOC success,

noting that team members often struggle to find time for

communication when under pressure. The lack of effective

communication within the team has an impact on overall

performance [21]. [23] assert that SOCs should prioritize

addressing communication gaps to ensure analysts do not

feel isolated or left behind.

To address these challenges, machine learning models

have been integrated to predict malicious attacks, mitigate

the risk of false positives, optimize efforts, and reduce costs

and time. False negatives, which pose substantial risks to

organizations and can result in significant damage, are also

a concern. Additionally, the extensive involvement of

security analysts and other personnel in SOCs exacerbates

the challenges of false positives and negatives, potentially

introducing human errors into SOC processes. This research

proposes a system that leverages various machine learning

techniques to effectively classify threats, address false

positives and negatives, minimise model overfitting, and

identify new patterns in incoming traffic. Moreover, the

proposed system aims to reduce human errors stemming

from increased human interactions within SOCs [31].

Machine learning (ML) is reshaping the cybersecurity

landscape, serving as a potent tool against the ever-evolving

threat landscape. These algorithms excel in processing vast

datasets at speeds beyond human capability, unveiling

concealed patterns, anomalies, and compromise indicators

[32], [33]. One of ML's pivotal roles in cybersecurity is its

capacity to augment threat detection by discerning subtle

deviations from established patterns and identifying

anomalies that may signal potential attacks, including

previously unseen ones. Additionally, ML streamlines

incident response by automating labour-intensive tasks like

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

log analysis and alert prioritization, thus reducing false

positives and negatives. Its adaptability allows it to evolve

alongside the threat landscape, learning from each

encounter and progressively enhancing its capabilities [34],

[35], [36].

This research focuses on the detection of internal and

external network threats using traditional intrusion detection

systems (IDS), a critical component of the SOC. In the

realm of threat detection within network traffic, the

challenges of false positives and false negatives are

prominent, consuming substantial time and resources [37],

[38]. Existing network threat detection criteria or signatures

often prove inefficient, leading to elevated false positive

rates (Kumar, 2007) [39].

This research employs machine learning techniques for

developing threat detection systems, a choice grounded in

the rationale outlined in subsequent subsections, which also

elucidate the critical role of the SOC. Machine learning-

driven SOC systems leverage advanced analytics to

proactively identify real-time cyberattack patterns, thereby

mitigating potential harm. Within the SOC framework,

SIEM plays a crucial role by integrating security

information management (SIM) and security event

management (SEM). SIM collates data from diverse

sources, while SEM identifies and responds to security

incidents, collectively reinforcing the organization's security

posture [40]. SIEM systems aggregate data from various

sources, including network devices, servers, applications,

and security equipment, facilitating precise data analysis for

informed decision-making. Leveraging advanced analytics

such as machine learning and artificial intelligence, SIEM

identifies unusual behaviour and triggers alerts upon

detecting anomalies. These alerts empower SOC analysts to

swiftly investigate and neutralize potential threats. In

essence, the SOC serves as a vigilant guardian of an

organization's digital assets, employing a range of tools and

strategies, with SIEM and machine learning augmenting its

capabilities to promptly and accurately detect and respond

to cybersecurity incidents.

This study aims to enhance the effectiveness of Security

Operations Centers (SOCs) in identifying and mitigating

security threats by developing and evaluating an ensemble

machine learning approach tailored for network threat

detection. The aim of this study was achieved with the

following specific objectives:

1) To collect and preprocess relevant data from various

sources for analysis;

2) perform data aggregation and exploratory data analysis

formulate a predictive model using ensemble machine

learning techniques;

3) develop an application programming interface (API) to

provide intelligent security information;

4) evaluate the proposed ensemble machine learning model

using real-world network traffic data.

II. RELATED WORKS

 [41] introduced the use of the Bryant Kill Chain method for

intrusion detection. A virtual Windows 7 workstation was

used to simulate a corporate environment, and pen testing

was done using the Kali Linux default toolset on 26 security

test cases picked by the researcher. Default LogRhythm

SIEM and the Deconstructed Kill chain method were used

for evaluation. Their framework was able to detect 25 out of

their 26 test cases (achieving a 96% detection rate), while

the default LogRhythm detected 7 out of 26 (achieving a

26.9% detection rate). Their framework demonstrates the

ability to align log data or SIEM events with more

descriptive event categories. The test cases were limited to

attacks coming from the remote shell (rsh) and malware

installations. Also, real-time user behaviour (server-clients)

was not included in the virtual environment simulation.

 [25] presented a user-centric machine learning system

that leverages big data of various security logs, alert

information, and analyst insights to the identification of

risky users. The system provides a complete framework and

solution to risky user detection for enterprise security

operation centers. The authors also demonstrated that the

learning system can learn more insights from the data with

highly unbalanced and limited labels, even with simple

machine learning algorithms. The authors used a Multi-

Layer Neural Network (MNN) with two hidden layers, a

Random Forest (RF) with 100 Gini Split trees, a Support

Vector Machine (SVM) with a radial basis function kernel,

and a Logistic Regression (LR). Their model though

intelligent, achieved a low detection accuracy.

 [42] proposed a new network forensics framework that

uses fully adaptive and computational intelligence

approaches to enhance the security operating centers. This

model is an accurate and useful ensemble machine learning

tool that analyses network flow in real time to detect

encrypted or malware traffic with low computing power

usage. The authors utilized an ensemble architecture,

combining SVM, ANN, Random Forest (RF), and k-Nearest

Neighbors (k-NN) to identify malicious activities from data

streams. Despite performing similarly or slightly less

accurately than other models on all datasets, the novel

framework presents a promising approach for the timely

detection of malicious traffic in computer networks.

 [43] proposed a novel visualization system for finding

out network-based Underneath attacks (VISNU), which can

help security experts of the CSOC to analyse security events

more effectively. The VISNU classifies the security events

according to each organization and displays them based on

both real-time and accumulated information, such as

appearance patterns and history. The proposed algorithm

represented security occurrences in cubes, and the height of

accumulated cubes and colours was used as an indicator for

a security threat. The authors developed the formula height

of the cubes. The experimental results demonstrated that it

is beneficial for finding abnormal activities from the

security events and provides a better understanding and

insights for analyzing them. Their method is limited to some

abnormalities and needs improvement.

 [44] proposed a study that aimed to solve the problem of

identifying and ranking malicious activities in enterprise

networks based on their level of risk. They developed a

system called MADE that uses machine learning techniques

with security log data to detect suspicious communication.

Unlike other methods which use detection methods, MADE

relies on supervised learning to prioritise the most critical

areas for enterprise hosts contacted in one month while

detecting previously unnoticed malicious activities.

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

However, it has some limitations such as not being able to

detect HTTPS malicious communication appropriately. The

system also risks being compromised by adversaries who

could exploit its features through adversarial attacks,

negatively affecting overall performance. Despite these

challenges, authors demonstrated MADE's effectiveness in

detecting previously unnoticed malicious activities (18 out

of 100), showing the system's potential usefulness in

protecting enterprise networks from cyber threats while

boasting high precision rates and limited false positives.

 [45] introduced a novel intelligence-driven cognitive

computing SOC that is based exclusively on progressive,

fully automatic procedures. The SOC implements the

Lambda machine learning architecture that can analyse a

mixture of batch and streaming data, using an Extreme

Learning Machine neural network with Gaussian Radial

Basis Function kernel (ELM/GRBFk) for the batch data

analysis and a Self-Adjusting Memory k-Nearest Neighbors

classifier (SAM/k-NN) to examine patterns from real-time

streams. The method performs poorly with huge volumes of

real-time data. Also, the model introduces latency.

 [46] presented an automated malware screening and

pattern identification model using three machine-learning

approaches. To test the proposed approach, the authors

employed several well-known malware assaults such as

WannaCry, DBGer, Cerber, Defray, GandCrab, Locky, and

nRansom. The training logs and pattern extraction were

obtained from the Cuckoo sandbox environment. Their

investigations revealed that the TF-IDF approach is capable

of identifying most of the malware detection characteristics

when compared to other techniques like ET (randomized

trees). However, the ET technique is more robust in

handling input volatility and dynamic changes in data flow

patterns. Overall, the study aims to address security

challenges handled by intelligent security.

 [47] utilised Gaussian mixture models (GMMs) to detect

XSS through web requests and web responses representing

the integration of the dual-stage model. Word2Vec model

was used for feature engineering on normal and XSS

payloads on web traffic datasets (response and requests).

Then trained using GMMs, and their model was evaluated

using ROC (Receiver operating characteristic). Their model

successfully used both response and requests for analytics

and prediction of Cross-Site Scripting (XSS) events instead

of single stage most current research use. The evaluation

metrics showed that their dual-stage model was more

effective than a single model. The model was not evaluated

on real-time traffic data and real-time XSS payloads. 2. The

proposed model was not integrated into a SIEM for real-

time alarm generation and prevention mechanism.

 [48] presented a revolutionary graphical system that

enables security analysts to grasp a comprehensive picture

of SIEM rule execution & alert scenarios that might occur

in preparation depending on the closest condition

graphically and in real-time. Aside from actual rule

monitoring, it also allowed security analysts to investigate

the reasons behind alarms in an orderly and effective

manner using online accounts. The created ruleset was

connected to create a graphic representation of the reasons

behind protection warnings. Their suggested solution allows

security analysts to examine the status of several rules in

real-time, analyse susceptible rules, and undertake

discovery using login details. In other phrases, a security

researcher may profit from concentrating just on the

constraints that may cause an alarm.

 [49] presented a novel SOC incident categorization and

prioritizing strategy that utilizes graph monitoring to

identify a selection of ML features. By adopting diagram

characteristics, their research shows improved accuracy

rates with multiple ML classification approaches. The

investigation used three statistical algorithms: LR,

XGBoost, and DNN. Results revealed DNN as the highest-

performing clustering algorithm with an 8% improvement

in the classifier for both threshold and magnified feature

packages that include diagram functionalities showing area

under curve values of 91% and 99%, respectively.

 [50] introduced a new ensemble learning classifier to

detect wireless networking assaults. The method combines

SVM (Support Vector Machine) and LR (Logistic

Regression) models using a pooling algorithm to increase

efficiency, reduce misclassification, and improve overall

recognition accuracy. By analyzing the data inside the KDD

CUP sample that has 41 characteristics, this approach

should immediately catch any attack. Further examination

utilizing the Spyder IDE revealed that the EL ensemble

methods achieved a remarkable prediction performance of

99.2% with a confidence interval of only 0.8 percent. The

current body of research on SOC and ensemble learning

techniques falls short. To address this gap, we conducted a

thorough literature review, and, in this section, we will

examine a few relevant articles that shed light on the

behavior of SOC and ensemble learning.

 [51] proposed a unique approach for approximate

representations of skewed datasets using positive sequence

approximations. The improved depictions were then fed into

an attack detection model specifically designed for

industrial control system settings. This model, which

employs DNNs and DT classifiers, effectively identifies

information security through the novel representation. To

assess the technique's performance, researchers evaluated it

using ten cross-validations with two real ICS datasets and

compared it to Random Forest, Deep Neural Network, and

AdaBoost, as well as traditional classifications and existing

systems in research. The suggested method exceeded

expectations with its exceptional performance while being

universally applicable that can readily be integrated into

existing ICS systems.

 [52] presented evaluation methodology in SOCs. The

author asserted that SOCs are a solution for companies

seeking to handle regulation through threat monitoring.

However, there is currently no conceptual method that

encompasses procedures, staff, and technology despite the

paradigms covering the technical aspects of these

operations. Therefore, it would be beneficial for

organizations and stakeholders considering developing,

purchasing, or selling similar services to assess the efficacy

and development of the products supplied. This study

suggests a categorization or evaluation methodology for

SOC operations that considers both skills and maturity of

benefit rendered.

 [19] proposed a comprehensive framework that

comprises log capture, evaluation, incident response,

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

notification, management as well as regular. This approach

also entails a Cyber Battle Plan backed by the CSOC

architecture and overlaid on top of Protective Management

Controls (PMCs). Additionally, the challenges and benefits

of implementing SOC are examined.

 [12] conducted 18 moderate discussions with SOC

researchers and managers from various industrial sectors to

identify and address challenges faced by SOC. The analysis

of interview data revealed both technical and non-technical

obstacles in SOC operations. Moreover, the study

uncovered inherent conflicts between SOC directors and

analysts that could compromise productivity and quality if

left unresolved. From these findings, the authors distilled

lessons applicable to both future educational research

industries and SOC administration. They call for further

studies aimed at improving the effectiveness and efficiency

of SOCs.

 [31] performed a more profound, discovery-oriented

participant observation with a security expert on system

security limits, including the accuracy & integrity of their

alerts. Their findings show that, notwithstanding all FPs, the

vast majority are caused by innocuous impulse alarms

described by genuine activity in the external structure,

which experts may choose to avoid. To virtually assess the

adequacy and efficacy of security solutions, suppliers and

investigators must be able to distinguish between different

sorts of FP. Warning verification is a time-consuming

process that might lead to alarm exhaustion &, ultimately,

desensitization.

 [53] proposed a framework for secure information

exchange in power generation. Their suggested approach

monitors security conditions within electricity networks and

issues alerts to companies upon detecting suspicious threats.

The proposed system entails collecting public data linked to

electromagnetic safety and scanning available power control

technology on the Internet resulting in an understanding of

global security architecture and overpower systems. An e-

xtendable honeypot technology is subsequently installed to

detect real-time security and intelligence states of power

systems. Additionally, cyber risks are combined using a

data structure around the transmission lines to capture

holistic security consciousness. Investigation findings reveal

that their framework can identify control efficacy in real-

time hence successfully protecting it from infiltration and

incursion.

A. Summary of Gaps Identified in Literature

There is a lack of literature on security operations

centers. Only a few studies on security operations centers

have been published recently. Most security operations

center material is based on best practices and security

vendor blogs and presentations. There are few research

publications on security operations centers using machine

learning. This Chapter reviewed the essential concepts of

NN and DL that lay the groundwork for the work presented

in the following chapter, which will provide a detailed

explanation of the proposed system and how the data flows

through the HMM architectures. In this work, the research

study explores the implementation of an XGBoost and

LSTM for information extraction; both of these

architectures have been used for tasks with significant

success rates. As described in the project, there is previous

work on obtaining security-related information in the

Security Operation Center. However, after careful

consideration of the literature review, it seems as though

there is a lack of research on utilizing ML methods for SOC

implementation. There have been many studies focusing on

machine learning and other aspects of cyber security, but

none specifically speak to integrating a SOC. Moreover, to

the best of the knowledge gathered by conducting the

comprehensive literature review, currently, there is almost

zero Deep learning-based end-to-end approach exists for the

SOC. Hence, an end-to-end fully functional ensemble

machine learning approach for the SOC is provided as the

main project outcome. The ensemble-based model

implemented is based on HMM with gradient boosting

(XGBoost) and LSTM working together for better

predictions. All in all, it's an unprecedented deep learning

ensemble-based model for SOC. To further clarify this

specific combination of the HMM, LSTM, and XGBoost

ensemble model, it hasn't been implemented yet when it

comes to predicting cyber threats or the SOC itself both in

the research purposes and the industrial level. Again, there

are several papers focused on stock market analysis using a

similar ensemble approach, but non-existent for the cyber

security or SOC domain. Thus, using this particular

methodology or ensemble approach for the security

operations center is unprecedented and should provide a

huge value and a great impact on the fields of cyber

security, the security operations center, and hence, the IT

security domain in general.

The effectiveness of SOC technologies stands as a

linchpin in thwarting modern threats that continually evolve

in sophistication and scale. However, despite their vital role,

a conspicuous gap in the existing literature becomes

apparent when one seeks research specifically tailored to

Security Operation Center technologies. This gap presents a

compelling opportunity for further investigation and

exploration into the intricate workings of SOC technologies

and their optimization.

Bridging the Gap with Emerging Technologies: The

landscape of cybersecurity technologies is in a perpetual

state of flux, with the rapid emergence of new tools and

innovative approaches. Notably, technologies such as

Artificial Intelligence (AI), Machine Learning (ML), and

Big Data analytics have gained prominence for their

potential to revolutionize SOC capabilities. However, there

exists a noticeable void in research dedicated to probing the

depths of these emerging technologies and their

transformative potential within SOC environments. Delving

into how AI, ML, and Big Data analytics can be harnessed

to elevate detection accuracy, expedite response times, and

fortify the overall security posture within the SOC

represents a significant avenue for scholarly exploration and

practical implementation.

There is a research gap in the cyber security field when it

comes to effectively deploying publicly available real-world

or synthetic datasets. Most of the datasets available are

imbalanced and directly affect the end –results, thus the

traditional usage of dataset-balancing techniques needs

more research, and new techniques are welcomed. An

imbalanced dataset occurs when the number of instances

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

belonging to one class is significantly higher than the

other(s). This can make it difficult for machine learning

algorithms to accurately classify data, as they may become

biased toward the majority class and neglect the minority

class. In this context, the minority class often represents the

class of interest, such as a cyber-attack or malicious

behaviour. Because the overwhelming amount and sizes of

daily network logs are mainly related to “BENIGN”

activities.

III. RESEARCH METHODOLOGY

The solution proposed in this study addresses the

challenges by introducing an ensemble model based on the

Hidden Markov model, XGBoost and LSTM to enhance the

security posture of SOC. Additionally, it provides solutions

for addressing the class imbalance issues, aiming to

implement an effective threat detection model in SOC. This

section discusses the design of the proposed framework as

well as the core logic of the proposed model. The proposed

model is committed to detecting malicious threats in real-

time while reducing fatigue on the SOC analyst to the barest

minimum. This includes the design of a Hidden Markov

model to solve the feature/pattern extraction issues to

reduce computational time and space.

The proposed model is designed to address the challenges

of the existing SOC security posture. It integrates an

ensemble model based on the Hidden Markov model,

Random Forest, XGBoost, and LSTM to achieve real-time

detection of malicious patterns in SOC infrastructure. The

proposed model includes several important elements that

collaborate to ensure the system's effectiveness, as

illustrated in Fig 2. Firstly, a comprehensive dataset of

network logs, intrusion alerts, and system logs was collected

from various sources. To ensure the quality of the data, a

thorough data cleaning process was executed, eliminating

any inconsistencies, errors, or noise that may exist in the

dataset. The data balancing technique was then

implemented to tackle the class imbalance problem.

Additionally, the framework integrates an ensemble model

for the classification task. The Hidden Markov model,

Random Forest, XGBoost, and LSTM models were

combined to enhance the accuracy of the classification

process.

A. Data Collection

In this section, the data collection process is explored as a

critical phase in preparing the dataset for comprehensive

analysis. The dataset under consideration, "Thursday-

WorkingHours-Morning-WebAttacks.pcap_ISCX.csv,"

originates from the esteemed "CICIDS2017 Thursday

Morning Hours Dataset," recognized for its significance in

the field of cybersecurity research. The data collection

endeavors aimed to encompass a wide spectrum of network

traffic scenarios and potential security incidents. The

selected dataset comprises a total of 458,968 records and an

intricate structure comprising 85 columns, including the

pivotal label column, as thoughtfully summarized in Table

I.

TABLE I
DATASET INFORMATION

Dataset

Name

Total

Records

Total

Columns

Non-

Null

Values

Missing

Values

Data

Types

Thursday
WorkingHours-

Morning-

WebAttacks

458,968 85 170,366 288,602 Float/ObJ

B. Data Preprocessing

The crucial phase in machine learning is the data

preparation and cleaning process, where the raw network

logs are transformed into a suitable format for machine

learning algorithms to detect malicious patterns [58]. Before

proceeding with experiments to develop the proposed SOC

cybersecurity detection model with optimal detection rates,

a few steps must be taken to drop unused columns, and

missing values and eliminate duplicated features and

columns. as they can impact the effectiveness of the

proposed model. The next step involves transforming

categorical features into numerical representations and

encoding non-numerical string values as integers for

utilization in training the proposed model. In the context of

network log datasets, this transformation is achieved using a

Label Encoder known for its effectiveness in encoding

string and categorical features into numerical values [54].

Through this process, non-numerical values are assigned

integer values ranging from 0 to 𝑛 − 1, rendering them

suitable for preprocessing by machine learning algorithms.

Despite the class label being categorical features, it remains

unaltered, as the original categories are crucial during

processing for classifying different types of attacks in

various forms and testing different approaches. Since the

LSTM and HMM are part of the proposed ensemble model,

it is essential to convert the network log datasets into

sequences necessary for training the LSTM and HMM

models.

After the label encoder has been applied to the network

log datasets, the next step involves normalizing the data.

Failure to normalize the data can result in a situation where

one feature dominates others, even if the dataset possesses

numerous advantageous features. To preprocess the data,

both min–max normalization and Z-score normalization are

employed. The choice of normalization technique for

detecting cyberattacks in SOC relies on the specific

characteristics of the data and the algorithm in use.

For the CIC-IDS-2017 dataset, the min–max

normalization was utilised due to the widely varying ranges

of its features. This technique ensures that all features share

the same scale by transforming numeric column values

ranging from 10,000 to 100,000 into a numeric range from 0

to 1. Importantly, this transformation maintains the

distinctions in value ranges without sacrificing information.

The implementation of min–max normalization utilises a

scaling formula known as "min–max scaling," as

normalized data often enhances the efficiency of training a

machine learning algorithm [55]. While the min–max

method may eliminate some outliers, its impact on system

performance is negligible, as the detection task is

specifically designed to identify long-term attacks [56],

[57].

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

The important background for a machine learning model

involves developing an algorithm that enables the model to

learn from patterns once the dataset has undergone

preprocessing. While some datasets consist of both training

and test data, the network log datasets utilized in this study

are individual, undivided datasets. Consequently, following

normalization, the model is prepared in a state that can be

utilised by the proposed algorithm by partitioning the

datasets into two segments: 70% for the training set and

30% for the testing set.

Fig. 2. Structure of the Proposed Model

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

C. Feature Selection

Feature selection techniques aim to streamline the

model's intricacy by reducing the input feature while

retaining only those that hold significance and relevance for

implementing the model. This process serves the purpose of

decreasing execution time and enhancing the performance

of the model. The effectiveness of any model, given a high-

quality dataset, hinges on the process of feature selection. In

this study, the focus is to extract the essential independent

features that exhibit robust relationships with the dependent

features. Otherwise, the model might attain an accuracy

performance below 75%, which is deemed unacceptable for

a cybersecurity model intended to counter sophisticated

threats and enhance the efficiency of SOCs infrastructure.

In this study, the feature selection process involves

leveraging feature importance scores obtained from three

different models: XGBoost, Hidden Markov Model

(HMM), and LSTM. Each of these models indicates the

significance of each feature in contributing to the detection

of malicious patterns. The XGBoost model is trained on the

network log datasets, and the important scores are extracted.

Following that, the HMM is also trained on the sequential

dataset to capture hidden states, and emission probabilities

are then used as features. Additionally, an LSTM model is

designed for sequence modeling, and it is trained on

sequential data. Each model provides a ranking or score for

each feature based on its contribution to the model's

performance. The scores obtained from different models,

including XGBoost, HMM, and LSTM, are then combined.

This is achieved by using an aggregation technique. The

next phase involves setting up a threshold based on their

importance scores. Features that surpass the threshold are

considered relevant and selected for the next stage. The

final selected features from the reduced feature set are then

used for training the proposed ensemble model.

D. Data Balancing and Splitting

Imbalanced datasets refer to datasets where the

distribution of observations is uneven, indicating that one

class label may have a substantial number of instances,

while others have fewer. This situation is prevalent in

classification problems. Various techniques can address this

issue, such as oversampling or undersampling the majority

class or a combination of both. Upon analysing the network

log datasets, an imbalanced class distribution was identified,

primarily driven by its heightened occurrence in the dataset.

In the case of CIC-IDS-2017, the number of legitimate

samples exceeds the proportion of malicious samples. This

could result in a biased cyberattack detection model and

negatively affect the detection rate. In this study, the Edited

Nearest Neighbors (ENN) algorithm, specifically the

Synthetic Minority Over-sampling Technique combined

with ENN (SMOTE-ENN), was applied to the network log

datasets to establish a balanced distribution among the

classes. The SMOTE-ENN technique works by augmenting

the minority class samples through linear interpolation,

while simultaneously reducing the majority class samples

using ENN, which eliminates noisy instances. Additionally,

any sample with a class label differing from at least two of

its three closest neighbors is removed by SMOTE-ENN.

The network log datasets were divided into a 70%

training set and a 30% test set ratio, with a majority of the

data assigned to the training set and a smaller portion set

aside for testing purposes.

E. Designing the Machine Learning Model

Three machine learning algorithms were utilized in the

study to implement the proposed cyberattack detection

model within SOC infrastructure. The approach involved

leveraging the strengths of each model and employing the

stacking ensemble technique to make the final prediction to

detect unknown attacks or new instances. The machine

learning algorithms utilised in this research include HMM,

XGBoost and LSTM.

1) HMM Model: The HMM algorithm is characterized as

a doubly stochastic process, comprising an underlying

stochastic process that is unobservable and can be

investigated through another set of stochastic processes. In a

Markov model, the state is directly observable, whereas in

an HMM, the state is associated with a probability

distribution across a set of outputs (observations). Hence, a

sequence of observations produced by an HMM does not

directly reveal the sequence of states. A representation of a

Hidden Markov Model is expressed in Equation 1.1.

 λ=[A,B,π] (1.1)

where denotes the state transition matrix, denotes

the matrix of observation probabilities, and denotes the

initial state probabilities in the Hidden Markov Model.

Three fundamental problems that are to be solved

include: In the first problem, considering a set of

observations in Equation 1.2 and the HMM in Equation 1.1,

the probability of the given observation sequence is

computed in Equation 3.3.

 (1.2)

 (1.3)

In the second problem, considering a set of observations

in Equation 1.2 and the HMM in Equation 1.1, an optimal

state sequence is computed in Equation 1.4.

 (1.4)

In the third problem, considering a set of observations in

Equation 1.2, the parameters of the HMM model in

Equation 1.1 are adjusted such that Equation 1.3 is

maximized.

The first problem can be addressed through either the

forward method or the backward method; the second

problem is solved by employing the Viterbi algorithm, and

the third problem can be addressed using the Baum-Welch

algorithm (BW). To estimate the parameters of the HMM,

the first problem must be solved by determining the

probability value of an observation sequence. Once the

parameters are estimated, the model can be trained using

either the forward or backward method. The forward

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

variable in Equation 1.5, denotes the probability of the

partial observation sequence when the current state, qt, is

produced with the state at time , given the model .

) (1.5)

After initializing the forward variable as expressed in

Equation 1.6 and applying the induction formula in

Equation 1.7, an optimal model is obtained, until Equation

1.8 converges and is maximized, where Equation 1.9

denotes the probability of state at time moving to at

time and is the probability of the observable

state at time given the hidden state at .

 (1.6)

) (1.7)

 (1.8)

 (1.9)

The next problem involves determining the sequence of

hidden states that is most probable, considering the HMM

model and the observation sequence expressed in Equation

1.2.

The Viterbi algorithm, a dynamic programming

approach, is utilized to identify the most probable sequence

of states, known as the Viterbi path, based on a given

sequence of observations. Equation 1.10 introduces the

dynamic programming approach for Hidden Markov

Models (HMMs), emphasizing the Viterbi algorithm. The

initial condition and the induction formula are expressed in

Equation 1.10 and Equation 1.11.

 (1.10)

 (1.11)

where denotes the probability of the most

likelihood state sequence of the first observations and as

its final state. By utilizing the dynamic programming

algorithm, the Viterbi algorithm identifies the most

probable hidden state at time T, as expressed in Equation

1.12 for a given observation sequence, when Equation 1.13

is maximized.

 (1.12)

 (1.13)

The Baum-Welch algorithm enhances the optimization of

the HMM model by re-estimating the parameters

recursively until the model converges when Equation 1.3 is

maximized, as expressed in Equation 1.14.

 as nd

 (1.14)

Modern sophisticated attacks follow a series of

cybersecurity kill chains such Reconnaissance (State R):

Observation: System X is under low-frequency scans from

various sources; Weaponization (State W): Observation:

Development or acquisition of malicious tools; Delivery

(State D): Observation: Delivery of the weaponized

payload; Exploitation (State E): Observation: Exploitation

of vulnerabilities in the target system (System X);

Installation (State I): Observation: Installation of malware

or malicious components; Actions on Objectives (State O):

Observation: Achieving the objectives, such as data theft or

system manipulation.

The proposed model employs a classification technique

that considers the states to detect the stages of the

cybersecurity kill chain. Since the malicious stages (states)

are concealed within the event logs, the proposed model

adopts the HMM. In this model, the sequence of transitions

between malicious states is concealed, and it is observed

through a sequence of emitted observations. The actions

observed in event logs serve as emitted observations, while

the sequence of concealed states forms a series of attack

steps displayed in the upper layer. The lower layer shows

the corresponding observations ss depicted in Fig 3. This

mapping allows for the representation of each cybersecurity

kill chain stage as a distinct state in the HMM. The

observations associated with each state provide a way to

capture the characteristics or indicators of the attack at that

specific stage.

The Baum-Welch algorithm enhances the optimization of

the HMM model by re-estimating the parameters

recursively until the model converges when Equation 1.3 is

maximized, as expressed in Equation 1.14.

 as nd

 (1.14)

Modern sophisticated attacks follow a series of

cybersecurity kill chains such Reconnaissance (State R):

Observation: System X is under low-frequency scans from

various sources; Weaponization (State W): Observation:

Development or acquisition of malicious tools; Delivery

(State D): Observation: Delivery of the weaponized

payload; Exploitation (State E): Observation: Exploitation

of vulnerabilities in the target system (System X);

Installation (State I): Observation: Installation of malware

or malicious components; Actions on Objectives (State O):

Observation: Achieving the objectives, such as data theft or

system manipulation.

The proposed model employs a classification technique

that considers the states to detect the stages of the

cybersecurity kill chain. Since the malicious stages (states)

are concealed within

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

Fig. 3. Attack Stages in the Cybersecurity Kill Chain

the event logs, the proposed model adopts the HMM. In this

model, the sequence of transitions between malicious states

is concealed, and it is observed through a sequence of

emitted observations. The actions observed in event logs

serve as emitted observations, while the sequence of

concealed states forms a series of attack steps displayed in

the upper layer. The lower layer shows the corresponding

observations ss depicted in Fig 3. This mapping allows for

the representation of each cybersecurity kill chain stage as a

distinct state in the HMM. The observations associated with

each state provide a way to capture the characteristics or

indicators of the attack at that specific stage.

2) LSTM Model: A Recurrent Neural Network (RNN) is

a neural network structure designed for tasks involving

sequence learning. Within the category of RNNs, LSTM

stands out as a specialized variant. The Simple Recurrent

Neural Network (RNN) iterates through sequence

components, relying solely on the information from the

preceding sequence component to handle the current

timestep. Hence, encountering the challenge of gradient

vanishing. LSTM addresses this limitation by introducing a

memory cell state that can retain information over multiple

timesteps, ensuring a persistent record of previous

information. The cell states run concurrently

with the hidden states , which receive input

sequences at each timestep. Within LSTM, three

mechanisms are employed to govern the interaction with the

cell state, determining which elements of the sequence to

retain, forget, or update. The first step in LSTM is to

identify the information that is not necessary and decide on

what information is going to be thrown away from the cell

state. This decision is formed by a sigmoid layer called the

‘forget gate layer as expressed in Equation 1.15.

 (1.15)

where denotes the output from the preceding

timestamp, denotes the new input data, and denotes the

bias. The second phase involves determining the new

information to be stored in the cell state. This consists of

two components: first, a sigmoid layer known as the input

gate layer which determines the values to be updated, and

second, a 'tanh layer' that is responsible for generating a

vector of new candidate values that can be added to the state

as expressed in Equation 1.16 and Equation 1.17.

 (1.16)

 (1.17)

In the third phase, Equation 1.16 and Equation 1.17 are

combined to generate an update to the state as expressed in

Equation 1.18. This stage is responsible for updating the

previous cell state, C(t-1), into the new cell state. The

previous steps have already determined what to do and are

now being executed. First, the old state is multiplied,

effectively forgetting the elements determined to be

forgotten previously. Second, the result is added to the cell

state, incorporating the new candidate values scaled by the

proportion determined for updating each state value.

 (1.18)

The final stage is the output stage, where the output is

designed to support the cell state in a refined manner. First,

a sigmoid layer is applied, which determines the segments

of the cell state that will be included in the output. Second,

the cell state undergoes a tanh operation (to constrain values

between −1 and 1) and is multiplied by the output of the

sigmoid gate. This ensures that only the part decided upon

are included in the final output as expressed in Equation

1.19 and Equation 1.20.

 (1.19)

 (1.20)

3) XGBoost Model: XGBoost was primarily

developed for enhanced speed and performance through the

utilization of gradient-boosted decision trees. It serves as a

tool for machine boosting. XGBoost, short for eXtreme

Gradient Boosting, is efficient in maximizing memory and

hardware resources for tree boosting algorithms. It offers

advantages such as algorithm improvement, model tuning,

and deployability in various computing environments.

XGBoost excels in executing three major gradient boosting

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

techniques: Gradient Boosting, Regularized Boosting, and

Stochastic Boosting. Additionally, it facilitates the

incorporation and fine-tuning of regularization parameters,

setting it apart from other algorithms. XGBoost proves

highly effective in reducing computing time while ensuring

optimal utilization of memory resources. It exhibits Sparse

Awareness, meaning it can handle missing values, support

the parallel structure in tree construction, and possesses the

distinctive ability to perform boosting on additional data

that has already been integrated into the trained model.

Additionally, XGBoost has various configurations to

reduce overfitting and enhance the overall performance of

detecting malicious patterns, resulting in improved

accuracy, efficiency, and feasibility. One of these

configurations involves adding regularization to the loss

function, resulting in the objective function expressed in

Equation 1.21.

where denotes the objective function, denotes the

number of predicted malicious threats, denotes the

training error of the sample, and denotes the

regularization function.

4) Random Forest Model: The RF model consists of

decision trees and serves purposes of both classification and

regression problems. When used for classification, the

predictions are made by taking a majority vote of the

decision tree predictions. On the other hand, for regression,

the final result is obtained by averaging the outputs of the

individual trees. In the intrusion detection system training

phase, a separate training real-time network traffic dataset

 is generated for each tree using samples from the original

network traffic training dataset, . To create each tree split,

a subset of features is randomly selected, and a

measurement is applied to determine the feature that should

be used for the split. Due to this randomization, multiple

trees are generated, which typically leads to improved

prediction performance when combined. RF models offer

several advantages over commonly used machine learning

methods, including shorter model training time, robustness

in handling inconsistent datasets, the ability to incorporate

feature importance in classification, and internal metrics for

assessing feature impact. RF is trained for intrusion

detection by using different feature sets.

F. Hyperparameter Tuning

The model's parameters are learned from the data, and

hyperparameter tuning is employed to determine the

optimal best-fit for the learning algorithm. It can be

conceptualized as a configuration for the model that must be

fine-tuned, as the optimal values for one dataset may differ

from those of other datasets to attain high precision and

accuracy. These values are set before the initiation of the

learning process.

The random search cross-validation was employed in this

study to identify the best hyperparameters for the attack

detection models. This approach combines the advantages

of grid search, such as conceptual simplicity, ease of

implementation, and trivial parallelism, with the advantage

of sampling random points. Unlike grid search, random

search does not assign equal importance to every

combination of hyperparameters. Due to the significance of

multiple hyperparameters in terms of accuracy, speed, and

the handling of false negatives and false positives, the

following hyperparameters were selected in this study to

mitigate overfitting.

1. In the XGBoost algorithm, the feature subsampling for

constructing individual trees is controlled through column

subsampling by the tree. The learning rate determines the

step size in each iteration, and regularization terms were

applied to the feature weights (L1 Regularization Term on

Weights). The subsample parameter regulates part of the

training data used to develop the tree, while the column

subsampling by tree parameter controls the selected features

for choosing a split candidate.

2. In the HMM algorithm, the utilization of the hidden

state approach is essential. The selection of this technique

directly impacts the model's efficacy in capturing the

underlying patterns within the dataset. Additionally, it

dictates the number of states within the HMM, influencing

the model's ability to identify malicious patterns in the data.

This approach strikes a balance between conceptual

simplicity, ease of implementation, and the ability to

explore the hyperparameter space efficiently. The focus on

mitigating overfitting through the application of the hidden

state technique underscores the study's commitment to

enhancing the model's generalization to new, unseen

attacks, contributing to the overall effectiveness of detecting

sophisticated attacks.

3. The random search cross-validation technique was

used to determine the learning rate in the LSTM algorithm.

Using the random search cross-validation technique to

explore learning rates for LSTM models on the CSE-CIC-

IDS2017 dataset ensures an optimal configuration that

maximizes the model's effectiveness in cyberattack

detection. This approach aligns with the primary objective

of efficiently dealing with the hyperparameter space to

achieve superior model performance.

G. Proposed Ensemble Model

The proposed ensemble model combines three high-

performing algorithms to enhance threat detection in SOCs.

It aggregates the predictions from each model and uses a

stacking mechanism to make the final prediction for the

class label of a new instance. An ensemble model that

combines HMM, LSTM, and XGBoost for cyberattack

detection in SOC infrastructure provides an in-depth

solution. The ability of the ensemble to leverage the

strengths of different models improves accuracy,

and robustness, resulting in a more effective defence against

a wide range of cyberattacks.

The function of the HMM algorithm in the ensemble is to

detect temporal dependencies and patterns in sequential

data. The HMM algorithm contributes to the ensemble by

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

simulating normal network or system activity. The HMM

algorithm performs well at detecting deviations and

malicious patterns from learned patterns. Its strength lies in

capturing the sequential nature of malicious threats, making

it useful for understanding attack progressions.

The LSTM algorithm excels at capturing long-term

dependencies in sequential data, which is essential for

understanding how malicious threats evolve. LSTM

contributes to the ensemble by providing insights into subtle

and complex patterns. The ability of LSTM to identify

malicious patterns over long periods contributes to the

ensemble's understanding of the temporal aspects of

malicious threats. The algorithm's ability to learn from

historical network log datasets makes it advantageous in

detecting sophisticated attacks.

XGBoost, as a decision tree ensemble, provides a new

perspective by paying attention to feature interactions and

classifications. XGBoost contributes to the ensemble by

robustly classifying instances based on various

features. XGBoost can perform an array of features and

capture complex relationships between them. It excels at

classifying instances, making it useful for detecting patterns

associated with cyberattacks.

The combination of these models increases the likelihood

of detecting a wide range of malicious threats, thus

enhancing overall detection ability. When compared to

individual models, the proposed model is inherently more

robust and adaptable. When one model fails to detect a

specific type of attack, others may compensate. This

ability enables it to adapt to changing threat landscapes,

providing a more reliable defence against evolving

malicious threats. The proposed ensemble model is less

prone to overfitting in the training data due to the

combination of HMM, LSTM, and XGBoost. Due to the

different strengths of these algorithms, the proposed model

can balance biases and reduce the risk of overfitting,

resulting in a more generalized and efficient cyberattack

detection model in SOC infrastructure.

The ensemble model is developed through a

comprehensive set of steps that incorporate the strengths of

HMM, LSTM, and XGBoost models, as depicted in

Appendix A. The steps for implementing the blending

ensemble model include:

1) Feature Extraction: HMM is utilized to create new

features from the existing data, generating different

components ranging from 1 to 5. These features are then

used for subsequent training and testing.

2) Data Splitting: The enhanced dataset is split into

training and testing sets in an 80:20 ratio, and the training

set is further divided into a smaller training set and a

validation set.

3) Normalization and Label Encoding: The features in the

training, validation, and testing sets are normalized using a

StandardScaler to have zero mean and unit variance. The

labels (y values) are encoded using a LabelEncoder,

converting categorical data into numerical values.

4) Model Training: Two different models are trained: an

XGBoost model with varying numbers of trees (100, 200,

300, 400, 500) and an LSTM model with LSTM layers and

a Dense output layer. The LSTM model is compiled using

the Adam optimizer and the categorical cross-entropy loss

function.

5) Model Prediction: Both LSTM and XGBoost models

make predictions on the test set. These predictions are then

inverse transformed using the LabelEncoder to return them

to their original format.

6) Ensemble Learning-Stacking: The script employs a

blending ensemble strategy by using predictions from the

LSTM and XGBoost models, along with the original

features from the validation and test sets. These new

datasets are used to train a meta-classifier, which, in this

case, is a Random Forest model.

7) Evaluation: The performance of the Meta Classifier is

evaluated on the test set, and predictions are obtained for

the test set and inversely transformed using the

LabelEncoder. The script presents the confusion matrix and

classification report for the meta-classifier's predictions.

H. Integration of the SOC Application Programming

Interface for Intelligent Security Information

One of the objectives of the study is to improve existing

SOCs by integrating a novel stacking ensemble model based

on the combination of HMM, LSTM and XGBoost for

intrusion detection system (IDS). The SOC analyzes both

external and internal threats by monitoring network traffic

logs in real-time with the developed ensemble ML IDS. The

proposed model was tested for performance evaluation

using standard machine learning evaluation metrics after

accounting for overfitting. The system was deployed in a

real-world environment where it successfully detected web

attacks as expected. The testing was conducted on the local

host before deploying it in cloud systems.

Digital Ocean cloud service was utilized to create cloud-

based scenarios for testing and evaluating the proposed

system using real network traffic data. Several other cloud

service providers were considered, such as AWS and IBM

Cloud; however, Digital Ocean was chosen mostly due to its

appealing subscription. Digital Ocean exclusively offers

Linux servers as their droplets; therefore, the models,

intrusion detection system, and security operations center

had to be deployed in a Linux-compatible mode. The

system was originally developed on a Windows platform.

Most of the libraries and packages that had been previously

used had to be adapted to be compatible with Linux.

The latest version of "CICFLOWMETER," a software

tool designed for flow-based analysis of network traffic,

commonly used in intrusion detection and network security,

was leveraged with specific modifications, including feature

renaming. The feature names created in version four were

different from an older version that had been used to

generate the original CICIDS2017 dataset. Missing features

in the newest CICIDS2017 flowmeter were created within

the intrusion detection system prediction logic using

feature/data aggregation methods.

The study utilized the Flask web framework to create a

user-friendly interface for integrating the proposed model

into the API. Flask is a lightweight, easy-to-use web

framework that enables the speedy implementation of both

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

web applications and APIs. It is built on two reliable

components, namely, the Werkzeug WSGI toolkit and the

Jinja2 template engine.

To implement the API, it is necessary to import the

trained models alongside their associated objects, such as

the Standard Scaler and Label Encoder. The Python code

imports both models and objects, utilizing them to generate

predictions based on the incoming network traffic feed. As

the API operates, the implemented model and objects are

loaded into memory.

Fig 4a depicts the index route that is responsible for

returning the index page of the project. The predicted route

depicted in Fig 4b is a POST request endpoint that is used

for predicting malicious files, with "files" as the route

argument or API payload. The Threat_Events route in Fig

4c is a GET request endpoint that returns predicted threat

instances stored in the system, while the predictions route in

Fig 4d shows previous predictions stored for various

monitoring on the system. Additionally, there are other

routes, as depicted in Fig 4e, which represent various

modular functionalities for different functions in the system.

To define the various routes for an API, we utilized the

Flask web framework, which creates distinct endpoints to

handle different tasks. These endpoints, in Figures 4a to 4e,

are unique URLs that allow users to access specific

functionalities offered by the API.

To create different pathways, the web framework

provides routing functionality. In Flask, for instance, one

can define routes using the @app.route() decorator which is

a special type of function that modifies the behaviour of

another function. When user requests are sent to a particular

URL, the framework redirects them to an appropriate

function corresponding to the endpoint associated with that

URL. Afterwards, this function handles and processes the

request and issues an output response back to the user.

Dividing an API into different routes results in a system

that is modular and well-organized. Each route can be

designated to perform a specific function or a group of

related functions, facilitating smoother management and

maintenance for the API over time. The typical number of

API routes ranges from 5 and above. These routes

essentially serve as API endpoints for monitoring threat

events, sending alerts, retrieving data, connecting to pickled

models for prediction, and other modular functionalities

used in this implementation.

Moreover, utilizing a web framework with routing

functionality provides certain benefits, such as pre-

implemented security protocols and error-handling features.

These benefits guarantee reliable operation and safeguard

against potential threats, enhancing the overall security and

stability of the API.

Fig. 4. API Endpoints

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

IV. IMPLEMENTATION

A. Model Evaluation Metrics

The study measured precision, recall, and f1 score to

evaluate the proposed model's attack detection accuracy.

True positive (TP), true negative (TN), false positive (FP),

and false negative (FN) values are utilized to determine

these parameters. They can be formalized in the context of

detecting malicious threats as follows.

1) TP: The total number of correctly predicted

malicious instances.

2) TN: The total number of correctly predicted

legitimate instances.

3) FP: The total number of incorrect predictions of

legitimate instances.

4) FN: The total number of malicious instances that

were incorrectly predicted.

Accuracy measures the proportion of accurate predictions

made by the model for detecting real-time threats in SOC.

This ratio is determined by dividing the total number of

correct predictions by the overall number of predictions,

which includes both cyber attacks and benign ones. The

calculation for accuracy is depicted in Equation 1.22.

Precision measures the proportion of correctly classified

instances among the overall predicted instances to be

malicious threats, as shown in Equation 1.23. In Equation

1.24 the recall is determined by the proportion of malicious

threat instances out of all compromised instances. The F1-

score is the harmonic mean of precision and recall as

expressed in Equation 1.25.

Accuracy= (TN+TP)/(TN+TP+FN+FP) (1.22)

Precision= TP/(TP+FP) (1.23)

Recall= TP/(TP+FN) (1.24)

F1-score=2×(recall×precision)/(recall+precision) (1.25)

B. Evaluating the Proposed Model with Real-

World Network Traffic Data

Evaluating the proposed model with real-world network

traffic data was achieved using two approaches. The first

approach involves using standard machine learning

evaluation metrics as discussed in Section 4.1. The second

approach was executed within the API. This approach

involves using real-world traffic data to simulate attacks.

This means that actual web attacks were conducted on the

network where the API was deployed, and the ability to

detect these attacks by the integrated ensemble model was

tested. This involved no labels as the real, raw network

traffic flow logs captured by tcdump and cicflowmeter were

passed into the API for detection.

The evaluation metrics in the second approach include:

1) Mean Time to Detect: The Mean Time to Detect

(MTTD) is used to measure the performance of a security

operations center. MTTD measures the average time taken

to detect or predict a security incident also known as a

cyberattack. In the developed system Time To Detect or

TTD is continuously calculated and monitored during the

continuous analysis of the ongoing network traffic. The

TTD is determined by the timestamps associated with the

start time (when the network flows in question are captured

during the tcpdump) and end time (the timestamp when the

attack is identified), especially in this case of identifying

brute force IPs.

To capture the network traffic continuously the

developed system follows an approach of capturing

consecutive PCAP files using a loop with each PCAP

representing a 15 seconds of network activity. This is done

within the Start_Capture function as shown in Fig 5.

Fig. 5. Network Capturing

Within the loop, these PCAP files are converted into

CSV inside the replace_csv function (using the

CICFLOWMETER and are subsequently loaded into the

data frame called df as shown in Fig 6. As these data frames

are loaded, the update_chart(df) function is called for each

data frame. This function is responsible for processing each

df dataset using the developed ensemble model, enabling

continuous monitoring of the ongoing network traffic.

Fig. 6. Converting PCAP File to CSV

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

In the network analysis phase based on the TD and

MTTD calculation, if a brute force attack is detected, the

TTD is calculated for each run as new “df” datasets are

processed by the update_chart() function. As mentioned

earlier, the end_time for TTD calculation is recorded by the

developed system when it predicts an IP address as a brute

force IP as shown in Figure 6. The current timestamp when

the detection is done is recorded for this purpose. On the

other hand, the start_time for TTD calculation is derived

from the timestamp of the brute force IP from the “df”

itself. This timestamp is recorded when the PCAP file is

generated from the tcpdump network traffic capturing.

Furthermore, the earliest occurrence of the corresponding

brute force IP is selected for retrieving its timestamp as the

start_time as shown in Fig 7.

Fig. 7. Evaluating Brute Force Attack Based on TTD and MTTD

The TTD is then calculated by subtracting the start_time

from the end_time. This TTD calculation provides an

estimate of the time taken to predict/detect the

corresponding brute force attack. Then the MTTD is

calculated as follows. Note that this is done in the front-end

programming for displaying it to the user who is using the

SOC as expressed in Equation 1.26.

First, for detections amount of TTDs is calculated

and summed together. Then this value is divided by the

number n to calculate the MTTD. The formula is applied

using a custom function in the Java scripting section in the

monitor.html file.

As shown in Fig 8, the MTTD is calculated for

consecutive 5 TTD values. The TTD values obtained in

different runs can vary depending on the number of records

included in the Dataframe. For example, the df Dataframe

instances with a higher number of records may result in

longer TTD values. Such occasions are during active and

aggressive brute force attacks. These may result in

comparatively longer TTD values and ultimately longer

MTTD values. Conversely, Dataframe instances with fewer

records may lead to shorter MTTD values. Moreover, TTD

is also highly dependent on its start_time which is recorded

during the tcpdump as shown in Fig 9.

To clarify, the TTD value is higher for the malicious IP

flows which are timestamped during the starting of the 15-

second PCAP capture, than the ones timestamped during the

end of the 15 second PCAP capture. However, as long as

the tcpdump is the first contact of the attacks with the

system, it is still important to use the tcpdump timestamps

of the network flows as the start_time for the TTD

calculation.

Fig. 8. MTTD Calculation for Five Consecutive TTD Values

Fig. 9. Custom Mean Function

2) Mean Time to Respond: Like the MTTD, the Mean

Time To Respond (MTTR) is another important

performance metric that can be used to measure the

performance of a security operations center. MTTR simply

defines the average time taken to respond to and mitigate a

security incident once it has been detected or predicted by a

system. In the developed system, first, the TTR or Time To

Response is calculated based on two sets of timestamps, the

recorded current time set as the detection of a brute force IP

being the start_time of the TTR and the recorded current

time of an application of a firewall rule being the end_time

of the TTR.

As discussed earlier, the proposed model flags brute

force attacks with specific IP addresses associated with

these attacks. Following the detection, the system responds

to block the brute force attack by applying a new firewall

rule to block the corresponding malicious IP address. The

firewall rule application is done inside the

apply_firewall_rule function using the UFW

(Uncomplicated Firewall) which is a netfilter firewall

designed with a command-line interface as shown in Fig 10.

This response action is critical to prevent any unauthorized

access attempts and protect the network.

Fig. 10. Firewall Deny Rule

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

When a brute force IP is detected during the processing

of a Dataframe (df), the system records the current

timestamp as the end_time of the TTD as shown in Fig 11.

This end_time becomes the start_time of the TTR

calculation and is used as a parameter of the

apply_firewall_rule function. The end_time for TTR is

taken when the firewall rule is successfully applied to block

the brute force IP, indicating the completion of the incident

response process, though the difference between the

start_time of TTR and the end_time of TTR provides an

estimate of the time it takes the developed system to

respond and implement the necessary mitigation measures

for a detected brute force attack as shown in Fig 12.

Fig. 11. Brute Force IP Detection Based on MTTR Calculation

Fig. 12. Firewall Deny Rule and Calculating TTR

Like in the MTTD, MTTR is calculated by calculating

the average time taken for multiple TTR actions in the

front-end as expressed in Equation 1.27.

First, for firewall rule applications n amount of TTRs

are calculated and summed together. Then this summed

value is divided by the number to calculate the MTTR as

shown in Fig 13.

Fig. 13. MTTR Calculation for Consecutive Five TTR Values

V. RESULT AND DISCUSSION

This section presents the experimental results of the

proposed ensemble intrusion detection model, which

incorporates stacking, bagging, and majority voting models.

The chapter also discusses the experimental results obtained

from undersampled and minority-sampled datasets using

ensemble model techniques. A comparison was executed to

determine the most efficient model for real-time detection

of malicious threats in a network.

A. Result of the Proposed Model for the Multi-

Class Classification

The confusion matrix in Fig 14 shows that 1018 instances

belong to the Benign class, and the model correctly

predicted all of them as Benign. There are no instances that

were incorrectly predicted as Class Benign. 1017 instances

belong to Class Brute Force, and the model correctly

predicted 928 of them as Class Brute Force. However, 5

instances were predicted as Class SQL Injection and 84

were predicted as Class XSS when they belong to Class

Brute Force. 1018 instances belong to Class SQL Injection,

and the model correctly predicted all of them as Class SQL

Injection. There are no instances that were incorrectly

predicted as Class SQL Injection. 1017 instances belong to

Class XSS, and the model correctly predicted 978 as Class

XSS. However, there is 1 instance that was predicted as

Class Benign, 36 were predicted as Class Brute Force, and 2

were predicted as Class SQL Injection when they belong to

Class XSS. The classification report for the stacking

blending ensemble is shown in Table II.

Table II

 CLASSIFICATION REPORT OF THE PROPOSED STACKING

BLENDING MODEL FOR THE MULTI-CLASS CLASSIFICATION

 precision recall f1-score support

BENIGN 1.00 1.00 1.00 1018
Web Attack ?

Brute Force 0.96 0.91 0.94 1017

Web Attack ? Sql
Injection 1.00 1.00 1.00 1018

Web Attack ?

XSS 0.92 0.96 0.94 1017

accuracy 0.97 4070

macro avg 0.97 0.97 0.97 4070
weighted avg 0.97 0.97 0.97 4070

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

Fig. 14. Confusion Matrix of the Proposed Stacking Blending Ensemble Model for the Multi-Class Classification

The class-wise evaluations and the overall evaluation

include:

1) Class-Wise Evaluation: In the test set, there are 1018

instances of the first class, which is BENIGN. The model

performed well in this class with precision, recall, and F1

scores of 1.00, indicating that all instances of this class were

correctly predicted by the model. The second class, called

Brute Force, contains 1017 samples in the test set.

According to the evaluation metrics, this model classifies

instances belonging to this category with high precision,

recall, and F1 scores of 0.96, 0.91, and 0.94, respectively.

This indicates that the model correctly identifies 96% of the

instances within this class and accurately categorizes

approximately 91% of them. The test set contains a third-

class of 1018 instances. The precision, recall, and F1 scores

of this class are all perfect with a value of 1.00. This

indicates that the model accurately predicted all the

instances involved in this particular class. The test set has

1017 instances in the XSS class. It achieved precision,

recall, and F1 scores of 0.92, 0.96, and 0.94, respectively.

Thus, the model accurately predicted 92% of the examples

belonging to this class and recognized precisely 96% of the

instances that belong to it as expected.

2) Overall Evaluation: Precision is the proportion of true

and positive predictions among all positive predictions. A

high precision score indicates that the model is making

fewer false positive predictions. The report shows that for

all classes, the model has a precision score ranging from

0.92 to 1.00, indicating high precision overall. Recall

measures how well a model predicts the positive instances

in a dataset. A high score indicates that the model

accurately identifies a large proportion of actual positives.

In this report, recall scores between 0.91 and 1.00 show that

the model has high recall across all classes. F1-score: The

F1-score is a statistical tool used to balance precision and

recall by taking the harmonic mean between them. Scores

obtained from 0.94 to 1.00 in this report suggest excellent

performance across all classes for the model employed here.

Accuracy is the proportion of accurately classified instances

among all instances. According to this report, the model's

overall accuracy stands at 0.97, indicating that it is

performing well. The macro average is a performance

metric that averages the precision, recall, and F1-score of

each class. It provides an overall measure of the model's

performance without considering the imbalance in instances

across different classes. This report indicates good overall

performance with a macro average of 0.97 for all metrics

used in the evaluation. The report calculates the weighted

average by combining metrics such as precision, recall, and

F1-score for every class based on the number of instances in

each category. This measure indicates the model's overall

performance while accounting for unequal instance

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

distribution across different classes. The resulting weighted

average of 0.97 implies a good overall performance of the

model.

B. Result of the Proposed Model for the Binary Class

Classification

For the malicious threat (class 0), 99% of instances

predicted as malicious threats are indeed malicious. This

indicates a low rate of false positives. The model also

captures 99% of all actual instances of malicious threats

(class 0), demonstrating high sensitivity. The model

achieved an F1-score of 99%, suggesting an outstanding

overall performance in classifying malicious threats (class

0) as depicted in Table III

For the legitimate traffic (class 1), among the instances

predicted as legitimate traffic, 99% are truly legitimate. This

implies an extremely low rate of false negatives. The model

identifies 99% of all actual instances of legitimate traffic

(class 1), indicating high sensitivity. The model achieved an

F1-score of 99%, signifying an effective balance between

precision and recall for classifying legitimate traffic (class

1).

TABLE III

CLASSIFICATION REPORT OF THE PROPOSED STACKING

BLENDING MODEL FOR THE BINARY-CLASS CLASSIFICATION

 precision recall f1-score support

 0 0.99 0.99 0.99 1552

 1 0.99 0.99 0.99 1501

 accuracy 0.99 3053

 macro avg 0.99 0.99 0.99 3053

weighted avg 0.99 0.99 0.99 3053

The result in Figure 15 depicts the Area Under the Receiver

Operating Characteristic Curve (AUC_ROC score). The

objective of the AUC-ROC score is to detect and respond to

cyberattacks efficiently. Fig 15 shows that the model

achieved an AUC-ROC score of 0.99. This result indicates

that the model is accurate and capable of classifying benign

network activities from malicious patterns associated with

cyberattacks. The model's high true positive rate

(Sensitivity) combined with an AUC of 0.99 indicates that it

is capable of detecting malicious patterns effectively. This

is critical for efficient detecting and responding to security

incidents, thereby reducing potential damage from cyber

threats.

A model with a high AUC-ROC score generally has an

optimized detection threshold. Therefore, the model is tuned

to achieve a balance between detecting as many attacks as

possible (high recall) and minimizing false alarm rate (high

precision). As a result, SOC teams can rely on the proposed

model for continuous security monitoring, as well as have

confidence in the model's ability to accurately flag

suspicious activities, enabling SOC analysts to focus on

genuine threats and take prompt action to protect the

organization's resources.

Fig 16 depicts the outcome of the cross-validation. The

cross-validation results show consistently high accuracy

across five-folds, with an average accuracy of around 0.999.

This result shows that the model performs consistently well

across various subsets of the training data. Consistency is

important in machine learning because it indicates that the

model's performance is stable and not heavily influenced by

specific data points or subsets. An average accuracy of

0.999 is high, indicating that the model is efficient at

correctly classifying malicious network patterns in real-

time. This degree of accuracy is frequently indicative of a

well-trained model with outstanding predictive abilities. As

a result, there is high confidence in the model's ability to

generalize well to new data points (unseen attacks). This is

essential in real-world applications where the model must

perform well with new, previously unseen attacks

Fig. 15. AUC-ROC Score of the Proposed Model

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

Fig. 16. Cross-Validation of the Proposed Model

C. Benchmarking with Existing Models in Literature

A comparison of the proposed model to those reviewed in

the literature reveals that it outperforms all other AI models

for binary classifications, as shown in Table IV because the

datasets used in this work have not been explored in the

literature, the proposed model was trained on the same

dataset used by the previous researcher to ensure a fair

comparison.

TABLE IV

BENCHMARKING OF THE PROPOSED MODEL WITH EXISTING

MODELS

Authors Models Accuracy Precision Recall
F1-

Score

[59] AE 98.5% 98% 98% 98%

[59] KNN 99% 98% 99% 98%

[59] LDA 96% 96% 96% 96%

[59]
LST

M
99.2% 99% 99% 99%

[58]
L-

SVM
99% 98% 98% 98%

[59] MLP 94.6% 94% 94% 96%

[59] QDA 99% 99% 98% 98%

[59]
Q-

SVM
64% 64% 64% 63%

Ours
Propose

d Model
99% 99% 99% 99%

D. Practicability and Generalization to Real-World

Environments

The effectiveness of any machine learning model,

particularly in cybersecurity, hinges not just on its

performance metrics in controlled environments but also on

its practicability and generalization to real-world scenarios.

This is particularly true for AI-driven cybersecurity models.

This section evaluates the proposed model's ability to meet

these requirements and compares it to state-of-the-

art approaches that make use of the KDD CUP dataset,

which is an established benchmark for intrusion detection.

The KDD CUP dataset has been extensively utilized to

evaluate machine learning models designed for detecting

various cyber threats, including DDoS attacks. For instance,

[60] combined logistic regression and support vector

machine (SVM) as an ensemble learning technique to detect

DDoS attacks in real-time. This study achieved a

remarkable 99.2% accuracy in detecting DDoS attacks,

setting a benchmark in the field due to its high accuracy and

strong generalization capabilities. However, when the

proposed stacking blending model was applied to the same

KDD CUP dataset, it achieved an improved accuracy of

99.6%. This represents a significant improvement, with an

absolute increase of 0.4% in accuracy. While this

improvement might seem marginal, even small gains in

detection accuracy can have a significant impact on

cybersecurity, particularly when handling large volumes of

network traffic where false positives or missed detections

could lead to severe consequences. This result indicates that

the model's strong generalization across different

environments enables it to be adapted to various network

configurations and threat models with minimal retraining.

This adaptability makes it a valuable tool for organizations

aiming to strengthen their cybersecurity defences. The result

also suggests that the proposed model will not only perform

well in controlled test environments but also has the

potential for deployment in practical settings where the

unpredictability and diversity of threats are significantly

higher.

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

This means that the proposed model's consistently high

detection rates and minimal false positives are essential for

reducing the operational burden on SOC analysts. In

addition, the model’s ability to reduce the number of false

alarms allows security personnel to concentrate on genuine

threats. Hence, enhancing the overall efficiency of the SOC

infrastructure.

E. Environmental Setup of the Testing and Evaluation in

Controlled and Real-World Environments

This section discusses the evaluation and testing

procedures to assess the effectiveness and reliability of the

developed Intrusion Detection System (IDS) and its

associated API. Two key aspects are explored: evaluation in

a production environment with real network traffic data and

control testing with simulated attacks.

1) Evaluation in the Production Environment (No

Labels): The deployed model in the SOC environment was

evaluated using real network traffic data converted to a

continuously updating CSV dataset using tcpdump and

CICFlowMeter. The ongoing network traffic in the network

was captured in real-time and fed into the ensemble model.

2) Creating A Linux Attacker PC in Digital Ocean: An

Ubuntu-based attacker PC was installed to validate the API

using actual network traffic to replicate and simulate

attacks, such as Brute Force attacks on the web server, as

shown in Fig 17.

3) Attacking the API with Brute Force Attack (Real-Time

Monitoring): Fig 18 depicts the execution of a brute force

attack using the Hydra technique. The IDS/API detects

brute force attacks in "real-time" (with about a 10-second

lag; this lag is for the prediction logic to take place for the

updated CSV records upon the fetch calls from the front

end, which is inevitable), as shown in Fig 19.

A brute force attack involves attempting various

username and password combinations until the attacker

gains entry into the targeted system or application. The

attacker uses automation tools like Hydra to quickly guess

thousands of login credentials from their list, testing the

Security Operation Center's Intrusion Detection System

(IDS) effectiveness. Often, an external source, like a

password.txt file, contains credential pairs that are tried out

by the tool on multiple systems in rapid succession. Hydra

is a widely used software for brute force attacks. This

malicious tactic involves repeatedly guessing the username

and password combinations until the correct match is found.

Hydra automates this process by rapidly trying different

username and password combo variations, significantly

reducing the time it would take to discover the right

credentials.

Fig. 17. The Linux Attacker PC

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

Fig. 18: Conducting Brute Force Attack

Fig. 19. Real-Time Detection for Brute Force Attacks

F. Results of System Effectiveness for Mean Time to

Detect (MTTD) and Mean Time to Respond (MTTR)

This section presents the outcomes of evaluating the

system's efficiency in promptly detecting security incidents,

measured by Mean Time to Detect (MTTD), and

responding effectively, assessed through Mean Time to

Respond (MTTR). The MTTD metric reflects the system's

ability to identify threats swiftly, particularly in the case of

brute force attacks, while a lower MTTR indicates the

system's agility in implementing mitigation measures.

1) Results of System Effectiveness for Mean Time to

Detect (MTTD): Mean Time to Detect (MTTD) is a crucial

metric that measures the system's ability to promptly

identify and respond to security incidents, such as brute

force attacks. We gained valuable insights into the ensemble

model's performance by continuously calculating Time-to-

Detect (TTD) values and obtaining MTTD values. Fig 20

and Fig 21 display TTD values captured from the front end.

Fig 22 depicts a TTD value capture within the backend

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

console. These values represent the time taken to detect the

brute-force IPs after the attacks were initiated. Using these

TTD values, we computed the MTTD, as depicted in Fig

23. A lower MTTD indicates that the system predicts and

responds to brute force IPs more promptly, minimizing the

potential damage caused by malicious actors. By blocking

the malicious IPs upon detection, the system prevents

further compromise of the network and reinforces the SOC's

defensive capabilities.

Fig. 20. A TTD Value Captured from the Frontend

Fig. 21. A TTD Value Captured from the Frontend

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

Fig. 22. A TTD Value Captured within the Backend Console

Fig. 23. MTTD Calculation from the Frontend

2) Results of System Effectiveness for Mean Time to

Respond (MTTR): Mean Time to Respond (MTTR) is a

critical performance metric that evaluates how swiftly the

system implements appropriate mitigation measures upon

detecting security incidents. In the developed system, the

primary focus is on minimizing the MTTR to block the

brute-force IPs in the firewall as soon as they are detected.

Fig 24 shows a TTR value captured in the front end,

representing the time taken to respond to the detected

attacks. Fig 25 depicts a TTD value capture within the

backend console. These values enable us to calculate the

MTTR, as illustrated in Fig 26.

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

Fig. 24. A TTR Value Captured in the Frontend

Fig. 25. A TTD Value Captured within the Backend Console

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

Fig. 26. MTTR Calculation from the Frontend

Fig. 27. Reputation Check for Blocked IP (113.21.232.39)

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

By carefully checking the console messages and analyzing

the MTTD and MTTR values, it is confirmed that the attacks

are blocked at their first attempts, proving the system's

effectiveness in blocking IPs before causing any damage.

Furthermore, the developed SOC successfully classifies both

Digital Ocean dedicated attacker's brute force attacks and

random brute force attacks from around the world,

showcasing the system's effectiveness in generalizing and

classifying different attack types correctly. IPs from these

attacks are added to the firewall deny list, preventing them

from conducting further attacks. Fig 27 is a reputation check

of one of those blocked IPs (randomly selected for checking),

which is 113.21.232.39

In conclusion, the results demonstrate the strong performance

and effectiveness of the ensemble machine learning system in

detecting and classifying cyber threats in a security operations

center.

G. Research Challenges and Threats to Proposed Model

Validity

This section sheds light on the challenges encountered

during the research journey, primarily in the realms of

cybersecurity and machine learning. These hurdles were not

only anticipated but also essential for refining the developed

ensemble model. The researchers overcame these challenges

by applying innovative solutions and methodologies,

ultimately contributing to the advancement of the field.

The research encountered several challenges inherent to the

cybersecurity and machine learning domains. Addressing

these challenges was critical to obtaining accurate and reliable

results. The lack of comprehensive literature discussing

Hidden Markov Models in the context of cybersecurity posed

a significant obstacle. Nevertheless, we proceeded with the

research, aiming to address this identified knowledge gap and

provide a novel contribution to the field. Additionally,

obtaining a suitable and diverse cybersecurity dataset with

sufficient labeled data was challenging. However, we applied

careful data preparation techniques and used stratified

sampling to preserve the original class distribution, ensuring

balanced and representative datasets for training and

evaluation. The compatibility issues between different model

architectures, specifically LSTM and XGBoost, demanded

innovative solutions. By aligning and combining the outputs

of the two models, we successfully integrated them into the

ensemble system.

During the development of the unique ensemble model

combining HMM, LSTM, and XGBoost for cybersecurity

anomaly detection, we encountered significant challenges.

One major obstacle was the lack of comprehensive literature

specifically discussing Hidden Markov Models in the context

of cybersecurity anomalies. HMMs are unique generative

machine learning models, and their application in the

cybersecurity domain is relatively unexplored. Nevertheless,

we proceeded with the project to address this knowledge gap

and make a novel contribution to the field. Another challenge

was the scarcity of publicly available datasets that fulfil the

requirements for the research. The ideal dataset should follow

the Markov property and contain features relevant to

cybersecurity anomalies. Unfortunately, finding such a

dataset proved to be a difficult task within the time

constraints of the project.

Data preparation is crucial in developing machine learning-

based intrusion detection systems. During this phase, we

encountered several challenges, including:

1) Unbalanced Data: The accuracy of machine learning

models can be significantly affected by an unbalanced

dataset, where normal traffic far outweighs malicious activity.

To address this, we applied balancing techniques to ensure

accurate model training.

2) Outdated Data: To effectively detect evolving attacks,

intrusion detection systems require training on current

datasets. Using outdated data could negatively impact the

model's performance, so we ensured the dataset was up to

date.

3) Lack of Diversity: Effective intrusion detection systems

should be able to detect a wide range of attacks. We

addressed this challenge by curating a diverse dataset with

various attack types, targets, and methodologies.

4) Limited Data Size: Machine learning models require a

large volume of data to generalize effectively. Although we

had a limited dataset, we used stratified sampling and other

techniques to make the most of the available data.

5) Label Quality: Accurate labeling of data is essential for

training reliable machine learning models. We ensured high-

quality labeling standards to improve model accuracy and

reliability.

Overcoming these data preparation challenges was critical

to developing an accurate and effective ensemble model for

cybersecurity anomaly detection. The modeling phase

presented its own set of challenges, and they include:

1) Completely Different Model Architectures: One of the

significant hurdles in the modeling phase was dealing with

completely different model architectures for the LSTM and

XGBoost models. As mentioned earlier, the LSTM model

requires sequential data in the form of 3-dimensional arrays,

while the XGBoost model expects tabular data in 2-

dimensional arrays. To address this, we carefully

preprocessed the data and ensured that the input data were

appropriately formatted for each model.

2) Compatibility of Predictions: Integrating the outputs of

the LSTM and XGBoost models into the ensemble model

required handling different prediction formats. The LSTM

model produced probabilities for each class, while the

XGBoost model generated class labels. To combine these

predictions effectively, we developed a mechanism to align

and harmonize the outputs, ensuring seamless integration in

the ensemble model.

3) The Nature of the Dataset vs. the Approach Taken:

Working with a limited dataset posed challenges in designing

the ensemble model. We had to carefully allocate the

available data for training, testing, and validation sets while

ensuring a justified distribution of classes among them. Only

7267 records remained after the reduction. Careful utilization

was crucial for HMM, LSTM, XGBoost, and ensemble model

training and testing. We utilized various techniques, such as

stratified sampling in sklearn train_test_split, to preserve the

original class distribution and prevent data leakage.

Despite these challenges, the ensemble model proved

effective in identifying and classifying various cyber threats

accurately, showcasing its robustness and reliability in real-

world scenarios.

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

VI. CONCLUSION

This study makes significant contributions to the field of

cybersecurity and threat detection within Security Operations

Centers (SOCs). The study introduces and successfully

demonstrates an ensemble machine learning approach that

combines Gaussian Hidden Markov Models (HMM), Long

Short-Term Memory (LSTM), and XGBoost algorithms,

achieving an impressive average F1-score of 99% in

identifying major web threats, including Brute Force Attacks,

Cross Site Scripting (XSS), and SQL Injection, while

minimizing false detections. The study evaluates the

ensemble model's real-world efficacy using actual network

traffic data and controlled testing with simulated attacks,

presenting a comprehensive assessment of its operational

efficiency and effectiveness within SOC environments. These

contributions collectively advance the state of the art in

cybersecurity practices and threat detection, providing

valuable insights for future research endeavours and practical

applications.

A. Future Works and Research Directions

Future works and research directions stemming from this

study offer exciting prospects for further advancing

cybersecurity practices and threat detection methodologies in

Security Operations Centers (SOCs). Firstly, exploring the

integration of emerging machine learning techniques, such as

deep learning models and reinforcement learning algorithms,

could enhance the ensemble model's predictive capabilities,

potentially increasing detection accuracy and adaptability to

evolving threats. Secondly, delving deeper into real-time

threat monitoring systems and the incorporation of anomaly

detection methods, coupled with the analysis of encrypted

traffic, could further strengthen SOC defences against

sophisticated attacks. Thirdly, investigating the scalability

and resource efficiency of the ensemble model, particularly in

large-scale network environments, will be crucial for its

practical implementation. Additionally, research efforts may

focus on the development of user-friendly interfaces and

visualization tools that empower SOC analysts in interpreting

model outputs and facilitating more informed decision-

making. Lastly, fostering interdisciplinary collaborations with

experts in network security, cryptography, and artificial

intelligence can foster innovative solutions and cross-

pollination of ideas to address emerging cybersecurity

challenges effectively. These future works and research

directions collectively aim to propel the field of cybersecurity

forward, ensuring the continued adaptability and robustness

of SOC operations in an ever-evolving threat landscape.

REFERENCES

[1] M. Abomhara, G. Køien, and M. Alghamdi, "Cyber Security and the

Internet of Things: Vulnerabilities, Threats, Intruders and Attacks,"
Journal of Cyber Security, vol. 4, pp. 65-88, 2021, doi:

10.13052/jcsm2245-1439.414.

[2] F. O. Sveen, J. M. Torres, and J. M. Sarriegi, "Blind information
security strategy," International Journal of Critical Infrastructure

Protection, vol. 2, no. 3, pp. 95-109, 2009, doi:

10.1016/j.ijcip.2009.07.003.
[3] F. G. Bîrleanu, P. Anghelescu, N. Bizon, and E. Pricop, "Cyber

security objectives and requirements for smart grid," Energy Systems

in Electrical Engineering, pp. 607–634, 2018, doi:10.1007/978-981-
13-1768-2_17.

[4] M. Lehto, "Cyber-attacks against critical infrastructure,"
Computational Methods in Applied Sciences, pp. 3–42, 2022,

doi:10.1007/978-3-030-91293-2_1.

[5] J. Kennedy, T. Holt, and B. Cheng, "Automotive cybersecurity:
Assessing a new platform for cybercrime and malicious hacking,"

Journal of Crime and Justice, vol. 42, no. 5, pp. 632–645, 2019,

doi:10.1080/0735648x.2019.1692425.
[6] L. Aijaz, B. Aslam and U. Khalid, "Security operations center — A

need for an academic environment," 2015 World Symposium on

Computer Networks and Information Security (WSCNIS), Hammamet,
Tunisia, 2015, pp. 1-7, doi: 10.1109/WSCNIS.2015.7368297.

[7] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan,

"A survey of intrusion detection techniques in Cloud," Journal of
Network and Computer Applications, vol. 36, pp. 42-57, 2013,

doi:10.1016/j.jnca.2012.05.003.

[8] K. Demertzis, P. Kikiras, N. Tziritas, S. L. Sanchez, and L. Iliadis,
"The Next Generation Cognitive Security Operations Center: Network

Flow Forensics Using Cybersecurity Intelligence," Big Data and

Cognitive Computing, vol. 2, no. 4, pp. 35, 2018.
doi:10.3390/bdcc2040035.

[9] D. Schlette, M. Vielberth, and G. Pernul, "CTI-SOC2M2 – the quest

for mature, intelligence-driven security operations and incident
response capabilities," Computers & Security, vol. 111, p. 102482,

2021. doi:10.1016/j.cose.2021.102482.

[10] Wang, T. Yan, D. An, Z. Liang, C. Guo, H. Hu, Q. Luo, H. Li, H.
Wang, S. Zeng, C. Zhou, L. Ma, and F. Qi, "A comprehensive security

operation center based on Big Data Analytics and threat intelligence,"
in Proceedings of International Symposium on Grids & Clouds 2021

— PoS(ISGC2021), 2021, doi:10.22323/1.378.0028.

[11] J. Muniz, N. AlFardan, and G. McIntyre, Security Operations Center:
Building, Operating, and Maintaining Your SOC, Hoboken, NJ, USA:

Cisco Press, 2015.

[12] F. B. Kokulu, A. Soneji, T. Bao, Y. Shoshitaishvili, Z. Zhao, A.
Doupé, and G.-J. Ahn, "Matched and Mismatched SOCs: A

Qualitative Study on Security Operations Center Issues," in

Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS '19), November 2019, pp. 1955-1970,

doi: 10.1145/3319535.3354239.

[13] C. Hill, "Security Operation Center (SOC) – NASCIO," 2017.
[Online]. Available: https://www.nascio.org/wp-

content/uploads/2020/09/NASCIO-IL-2018-Cybersecurity-SOC.pdf.

[14] M. Vielberth, F. Bohm, I. Fichtinger, and G. Pernul, "Security

Operations Center: A systematic study and open challenges," IEEE

Access, vol. 8, pp. 227756–227779, 2020,

doi:10.1109/access.2020.3045514.
[15] D. J. Marcus, "The Data Breach Dilemma: Proactive Solutions for

Protecting Consumers’ Personal Information," Duke L.J., vol. 68, p.

555, 2018. [Online]. Available:
https://scholarship.law.duke.edu/dlj/vol68/iss3/3

[16] R. Syed, "Enterprise reputation threats on social media: A case of data

breach framing," The Journal of Strategic Information Systems, vol.
28, no. 3, pp. 257-274, Sep. 2019. doi: 10.1016/j.jsis.2018.12.001

[17] B. Faulkner, "Hacking into Data Breach Notification Laws," Fla. L.

Rev., vol. 59, pp. 1097, 2007. [Online]. Available:
https://scholarship.law.ufl.edu/flr/vol59/iss5/5

[18] C. Zhong, J. Yen, P. Liu, and R. F. Erbacher, "Automate cybersecurity

data triage by leveraging human analysts’ cognitive process," in IEEE
2nd International Conference on Big Data Security on Cloud

(BigDataSecurity), IEEE International Conference on High

Performance and Smart Computing (HPSC), and IEEE International
Conference on Intelligent Data and Security (IDS), 2016, pp. 357–363,

doi:10.1109/bigdatasecurity-hpsc-ids.2016.41.

[19] C. Onwubiko, "Cyber security operations centre: Security monitoring
for protecting business and supporting cyber defense strategy," in

International Conference on Cyber Situational Awareness, Data

Analytics and Assessment, London, UK, 2015, pp. 1-10.
https://doi.org/10.1109/CyberSA.2015.7166125.

[20] P. Lif and T. Sommestad, "Human factors related to the performance

of intrusion detection operators," in Proceedings of the Ninth
International Symposium on Human Aspects of Information Security

& Assurance (HAISA), Lesvos, Greece, 2015, pp. 265-275.

[21] B. P. Hámornik and C. Krasznay, "A team-level perspective of human
factors in Cyber Security: Security Operations Centers," in Advances

in Intelligent Systems and Computing, 2017, pp. 224–236,

doi:10.1007/978-3-319-60585-2_21.
[22] S. Kowtha, L. A. Nolan, and R. A. Daley, "Cyber security operations

center characterization model and analysis," in IEEE Conference on
Technologies for Homeland Security (HST), Waltham, MA, USA,

2012, pp. 470-475. https://doi.org/10.1109/THS.2012.6459894.

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

[23] S. C. Sundaramurthy, A. G. Bardas, J. Case, X. Ou, M. Wesch, J.
McHugh, and S. R. Rajagopalan, "A Human Capital Model for

Mitigating Security Analyst Burnout," in Eleventh Symposium On

Usable Privacy and Security (SOUPS), pp. 347–359, USENIX
Association, 2015. [Online].

https://www.usenix.org/conference/soups2015/proceedings/presentatio

n/sundaramurth
[24] C. Zhong, J. Yen, P. Liu, and R. F. Erbacher, "Learning from experts’

experience: Toward Automated Cyber Security Data Triage," IEEE

Systems Journal, vol. 13, no. 1, pp. 603–614, 2019.
doi:10.1109/jsyst.2018.2828832.

[25] C. Feng, S. Wu, and N. Liu, "A user-centric machine learning

framework for cybersecurity operations center," in IEEE International
Conference on Intelligence and Security Informatics (ISI), Beijing,

China, 2017, pp. 173–175. DOI: 10.1109/ISI.2017.8004902.

[26] A. Shah, R. Ganesan, and S. Jajodia, "A methodology for ensuring fair
allocation of CSOC effort for alert investigation," International Journal

of Information Security, vol. 18, pp. 199–218, 2019.

https://doi.org/10.1007/s10207-018-0407-3.
[27] S. C. Sundaramurthy et al., "A tale of three security operation centers,"

in Proceedings of the 2014 ACM Workshop on Security Information

Workers, 2014, pp. 43–50, doi:10.1145/2663887.2663904.
[28] S. C. Sundaramurthy et al., "Turning Contradictions into Innovations

or: How We Learned to Stop Whining and Improve Security

Operations," in Twelfth Symposium on Usable Privacy and Security
(SOUPS), USENIX Association, pp. 237–251, 2016. [Online].

Available: https://www.usenix.org/conference/soups2016/technical-
sessions/presentation/sundaramurthy.

[29] S. Schinagl, K. Schoon, and R. Paans, "A Framework for Designing a

Security Operations Centre (SOC)," in Hawaii International
Conference on System Sciences, Kauai, HI, USA, 2015, pp. 2253-

2262. https://doi.org/10.1109/HICSS.2015.270.

[30] P. Jacobs, A. Arnab, and B. Irwin, "Classification of security operation
centers," in Information Security for South Africa, 2013, pp. 1–7.

https://doi.org/10.1109/ISSA.2013.6641054.

[31] B. A. Alahmadi, "99% False Positives: A Qualitative Study of SOC
Analysts’ Perspectives on Security Alarms," in Proceedings of the 31st

USENIX Security Symposium (USENIX Security), Boston, MA,

USA, 2022.
[32] A. Angelopoulos, E. T. Michailidis, N. Nomikos, P. Trakadas, A.

Hatziefremidis, S. Voliotis, and T. Zahariadis, "Tackling Faults in the

Industry 4.0 Era—A Survey of Machine-Learning Solutions and Key

Aspects," Sensors, vol. 20, no. 1, p. 109, 2020. doi:10.3390/s20010109

[33] V. Naganathan, "Comparative Analysis of Big Data, Big Data

Analytics: Challenges and Trends," International Research Journal of
Engineering and Technology (IRJET), vol. 05, no. 05, pp. 2378-2382,

2018.

[34] N. Kumar, A. C. Sen, V. Hordiichuk, M. T. Espinosa Jaramillo, B.
Molodetskyi, and A. B. Kasture, "AI in Cybersecurity: Threat

Detection and Response with Machine Learning," Journal of

Propulsion Technology, vol. 44, no. 3, 2023. [Online]. Available:
https://www.propulsiontechjournal.com/index.php/journal/article/view

/237

[35] S. K. Hassan and A. Ibrahim, "The role of Artificial Intelligence in
cyber security and incident response," International Journal for

Electronic Crime Investigation, vol. 7, no. 2, pp. 1-8, 2023.

doi:https://doi.org/10.54692/ijeci.2023.0702154
[36] A. Diro, S. Kaisar, A. V. Vasilakos, A. Anwar, A. Nasirian, and G.

Olani, "Anomaly Detection for Space Information Networks: A

Survey of Challenges, Schemes, and Recommendations," 2023.
[Online]. Available: https://doi.org/10.36227/techrxiv.23584530.v1

[37] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E.

Vázquez, "Anomaly-based network intrusion detection: Techniques,
systems and challenges," Computers & Security, vol. 28, no. 1–2, pp.

18–28, 2009. doi:10.1016/j.cose.2008.08.003

[38] A. Mishra, K. Nadkarni and A. Patcha, "Intrusion detection in wireless
ad hoc networks," in IEEE Wireless Communications, vol. 11, no. 1,

pp. 48-60, Feb. 2004, doi: 10.1109/MWC.2004.1269717.

[39] A. Khraisat, I. Gondal, P. Vamplew, et al., "Survey of intrusion
detection systems: techniques, datasets and challenges," Cybersecur,

vol. 2, no. 20, 2019. doi:10.1186/s42400-019-0038-7.

[40] D. S. Sharma and D. S. Srivastava, "An overview on e-learning and
information security management," International Journal for Research

in Applied Science and Engineering Technology, vol. 10, no. 9, pp.

427–435, 2022. doi:10.22214/ijraset.2022.46531
[41] B. D. Bryant and H. Saiedian, "A novel kill-chain framework for

remote security log analysis with SIEM software," Computers &
Security, vol. 67, pp. 198-210, Jun. 2017.

doi:10.1016/j.cose.2017.03.003.

[42] K. Demertzis, P. Kikiras, N. Tziritas, S. L. Sanchez, and L. Iliadis,
"The Next Generation Cognitive Security Operations Center: Network

Flow Forensics Using Cybersecurity Intelligence," Big Data and

Cognitive Computing, vol. 2, no. 4, pp. 35, 2018.
doi:10.3390/bdcc2040035.

[43] M.-J. Kwak, H. G. Kong, K. Choi, S.-K. Kwon, J. Y. Song, J. Lee, P.

A. Lee, S. Y. Choi, M. Seo, H. J. Lee, E. J. Jung, H. Park, N. Roy, H.
Kim, M. M. Lee, E. M. Rubin, S.-W. Lee, and J. F. Kim, "Rhizosphere

microbiome structure alters to enable wilt resistance in tomato,"

Nature Biotechnology, vol. 36, pp. 1100–1109, 2018.
doi:10.1038/nbt.4232

[44] A. Oprea, Z. Li, R. Norris, and K. Bowers, "MADE: Security

Analytics for Enterprise Threat Detection," Proceedings of the 34th
Annual Computer Security Applications Conference (ACSAC '18), pp.

124–136, Dec. 2018. doi:10.1145/3274694.3274710

[45] K. Demertzis, N. Tziritas, P. Kikiras, S. Sanchez, and L. Iliadis, "The
Next Generation Cognitive Security Operations Center: Adaptive

Analytic Lambda Architecture for Efficient Defense against

Adversarial Attacks," Big Data and Cognitive Computing, vol. 3, no.
6, 2019, doi:10.3390/bdcc3010006.

[46] Q. Chen, S. R. Islam, H. Haswell, and R. A. Bridges, "Automated

Ransomware Behavior Analysis: Pattern Extraction and Early
Detection," Science of Cyber Security, pp. 199–214, 2019.

doi:10.1007/978-3-030-34637-9_15

[47] J. Zhang, Y. Jou, and X. Li, "Cross-Site Scripting (XSS) Detection
Integrating Evidences in Multiple Stages," Proceedings of the 52nd

Hawaii International Conference on System Sciences, 2019. [Online].
Available: http://hdl.handle.net/10125/60153.

[48] A. Majeed, R. ur Rasool, F. Ahmad, M. Alam, and N. Javaid, "Near-

miss situation based visual analysis of SIEM rules for Real Time
Network Security Monitoring," Journal of Ambient Intelligence and

Humanized Computing, vol. 10, no. 4, pp. 1509–1526, 2018.

doi:10.1007/s12652-018-0936-7.
[49] N. Jindal, "Automated event prioritization for security operation center

using graph-based features and deep learning," PhD diss., 2020.

[50] M. Beulah and B. Pitchai Manickam, "Detection of DDoS Attack
Using Ensemble Machine Learning Techniques," in Advances in

Intelligent Systems and Computing, vol. 1397, Springer, Singapore,

2022, pp. 333-344. doi:10.1007/978-981-16-5301-8_62.
[51] A. Al-Abassi, H. Karimipour, A. Dehghantanha and R. M. Parizi, "An

Ensemble Deep Learning-Based Cyber-Attack Detection in Industrial

Control System," in IEEE Access, vol. 8, pp. 83965-83973, 2020, doi:

10.1109/ACCESS.2020.2992249.

[52] E. Agyepong, Y. Cherdantseva, P. Reinecke and P. Burnap, "Towards

a Framework for Measuring the Performance of a Security Operations
Center Analyst," 2020 International Conference on Cyber Security

and Protection of Digital Services (Cyber Security), Dublin, Ireland,

2020, pp. 1-8, doi: 10.1109/CyberSecurity49315.2020.9138872.
[53] J. Ding, C. Lu, and B. Li, "A Data-Driven Based Security Situational

Awareness Framework for Power Systems," Journal of Signal

Processing Systems, vol. 94, no. 11, pp. 1159–1168, 2022.
doi:10.1007/s11265-022-01741-y

[54] E. Bisong, "Building Machine Learning and Deep Learning Models on

Google Cloud Platform: A Comprehensive Guide for Beginners (1st
ed.)," pp. 215-229, Apress Berkelely, CA, 2019. doi:10.1007/978-1-

4842-4470-8

[55] K. M. Ali Alheeti and K. McDonald-Maier, "Intelligent intrusion
detection in external communication systems for Autonomous

Vehicles," Systems Science & Control Engineering, vol. 6, no. 1,

2018, doi:10.1080/21642583.2018.1440260.
[56] L. Yang, A. Moubayed, I. Hamieh, and A. Shami, "Tree-based

intelligent intrusion detection system in internet of vehicles," in 2019

IEEE Global Communications Conference (GLOBECOM), 2019,
doi:10.1109/globecom38437.2019.9013892.

[57] M. S. Korium, M. Saber, A. Beattie, A. Narayanan, S. Sahoo, and P. H.

J. Nardelli, "Intrusion detection system for cyberattacks in the internet
of vehicles environment," Procedia Computer Science, vol. 115, pp.

588-595, 2017, doi:10.1016/j.procs.2017.09.169.

[58] Y. Chen, C. M. Poskitt, and J. Sun, "Learning from Mutants: Using
Code Mutation to Learn and Monitor Invariants of a Cyber-Physical

System," in Symposium on Security and Privacy (SP), San Francisco,

CA, USA, 2018, doi:10.1109/SP.2018.00016.
[59] A. Bibi, G. A. Sampedro, A. Almadhor, A. R. Javed, and T.-h. Kim,

"A Hypertuned Lightweight and Scalable LSTM Model for Hybrid

Network Intrusion Detection," Technologies, vol. 11, no. 5, p. 121,
2023, https://doi.org/10.3390/technologies11050121.

[60] Beulah, M., & Pitchai Manickam, B. (2022). Detection of DDoS attack
using ensemble machine learning techniques. Advances in Intelligent

Systems and Computing, 1397, 739-752. Springer, Singapore.

https://doi.org/10.1007/978-981-16-5301-8_62

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2094-2122

__

