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Abstract—Addressing the issue of low detection accuracy for
small objects in drone aerial imagery, this paper improves the
YOLOv8n framework. It introduces the Multi-Scale Feature
Aggregation Pyramid (MFPN) and the Efficient Local Atten-
tion Module (ELAM) to enhance feature representation and
positional accuracy. By replacing SE attention with CBAM and
adopting the Mish activation function, channel responsiveness
and the nonlinearity of output features are enhanced. Addition-
ally, the Wise-IoUv3 loss function replaces CIoU, dynamically
adjusting gradient weights based on the quality of anchor
boxes, thereby reducing the impact of low-quality predictions
and geometric penalties in overlapping areas. Validation on
the VisDrone-2019 dataset demonstrates that the proposed
improvements significantly enhance the mAP, proving an en-
hanced detection performance and generalization capability of
the model.

Index Terms—YOLOv8n, UAV detection, multi-scale features,
small target, lightweight algorithms

I. INTRODUCTION

W ITH the rapid advancement of Unmanned Aerial
Vehicle (UAV) technology, UAVs are increasingly

utilized in diverse fields such as agricultural monitoring,
disaster rescue, environmental protection, and urban manage-
ment [1]–[3]. Owing to their high flexibility, low cost, and
extensive area coverage, UAVs are becoming indispensable
tools for a variety of tasks [4], [5]. However, detecting small
targets in UAV aerial images continues to present numerous
challenges.

Since UAVs typically operate at high altitudes, the targets
in the captured images are often small and easily over-
looked [6]. Furthermore, the background in aerial images is
typically rich and complex, often obscuring the targets [7].
In certain scenarios, the high density of targets results in
mutual occlusion [8]. These challenges necessitate enhanced
capabilities for small target detection in UAV aerial imagery.

In recent years, the rapid development of deep learning
technology has significantly advanced the detection of small
targets using UAVs [9]. Researchers have introduced various
methods and techniques in this domain, thereby driving con-
tinuous advancements. Existing main detection algorithms
can be broadly classified into two categories based on their
approach to candidate region generation: ”single-stage” and
”two-stage” algorithms [10]–[12].

Single-stage detection algorithms, such as YOLO (You
Only Look Once), SSD (Single Shot MultiBox Detector), and
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RetinaNet, are notable [13]–[15]. These algorithms simulta-
neously perform target classification and localization using
raw features, without generating candidate regions [16].
While this approach significantly enhances detection speed,
it may compromise accuracy [17]. Although faster, these
algorithms often exhibit less precision compared to those
requiring candidate region generation [18].

The YOLO algorithm conducts target localization and
classification in a single forward pass, whereas SSD performs
detection across feature maps of different scales, excelling
in detecting small targets [19], [20]. RetinaNet utilizes the
Focal Loss function to effectively address class imbalance
issues, thus maintaining high detection speed and enhancing
accuracy [21], [22].

Two-stage detection algorithms, including Fast R-CNN
[23], Faster R-CNN [24], and SPP-Net [25], have demon-
strated superior performance in detecting small targets with
UAV imagery. These algorithms initially generate candidate
regions, followed by precise target classification and localiza-
tion within these areas. Although this approach often yields
higher detection accuracy than single-stage algorithms, it
comes at the cost of reduced detection speed.

To improve the detection accuracy of small targets in
UAV imagery, numerous researchers have proposed effective
techniques. For example, Pan et al. [26] implemented the
ASFF (Adaptive Spatial Feature Fusion) module in YOLOv4,
which adaptively fuses features from various levels, thereby
enhancing the detection capability for small targets. Zhang et
al. [27], the ECA (Efficient Channel Attention) mechanism
was incorporated into YOLOv5, enhancing the model’s capa-
bility to extract features from small targets through automatic
learning of channel importance.

Alaftekin et al. [28] utilized the Mish activation function,
replacing the traditional Leaky ReLU in YOLOv4, which
enhanced the model’s nonlinear expression capability and
thereby improved detection accuracy. Additionally, Zhang et
al. [29] integrated the GhostNet architecture into YOLOv5,
effectively leveraging inter-layer information through dense
connections to boost model performance.

Lin et al. [30] implemented the CBAM (Convolu-
tional Block Attention Module) in YOLOX, employing the
DIoU NMS algorithm to optimize the selection of predicted
boxes, significantly enhancing the model’s accuracy and
performance. Wang et al. [31], an IoU-aware branch was
introduced in YOLOv4 to optimize the IoU loss function,
thereby improving the bounding box regression accuracy for
small targets.

Lastly, Chu et al. [32] adopted a multi-scale feature
fusion method in YOLOv5, constructing a feature pyramid to
perform detection at various scales, significantly enhancing
the detection capabilities for small targets.

Based on the analysis presented above and addressing the
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challenges inherent in drone aerial image target detection,
this study has enhanced the YOLOv8n model, referencing
current research to develop a lightweight aerial target detec-
tion algorithm. The specific improvements are as follows:

• Building upon EfficientNetV2 [33], this study proposes
a lightweight backbone network. By replacing the SE
attention module with CBAM in MBConv, we enhance
the network’s response to critical channels. Additionally,
substituting the traditional activation function with the
Mish function improves the nonlinearity of the output
features, smooths gradients, and avoids saturation phe-
nomena, thereby enhancing activation effects.

• To address the issue of rapid reduction in feature
map dimensions, this study introduces the Multi-Scale
Feature Aggregation Pyramid (MFPN), which optimizes
feature fusion. Additionally, the introduction of a new
detection scale, H2, enhances the detection capabilities
for small objects.

• Devise Multi-Scale Feature Fusion Module (MSFF),
which incorporates the Multi Convolution Module (MC)
and the Feature Enhancement Module (FE) to enrich
feature diversity and enhance detection accuracy. The
structure processes channel and spatial attentions in
parallel, preserving multi-scale detail information, thus
significantly improving the detection capabilities for
small targets in drone aerial imagery.

• To enhance the capability of capturing local semantics
in shallow feature maps, this study introduces the Effi-
cient Local Attention Module (ELAM). ELAM utilizes
bidirectional average pooling and parallel 1D convo-
lutions to process sequence signals, combined with
larger convolution kernels and Group Normalization
(GN), effectively enhancing the expression of positional
information and significantly improving the model’s
ability to handle local features.

• The Half-Wavelet Attention Block (HWAB) [34] is in-
troduced to enhance feature extraction through wavelet
transformations and Dual Attention Units (DAU).
HWAB processes input features through segmentation,
transformation, and inverse transformation, thus im-
proving their representational capacity. Through feature
fusion and residual connections, these enhancements
ultimately boost the model’s ability to capture fine
details.

• Replace the CIoU loss function with Wise-IoUv3 [35],
which utilizes a dynamic non-monotonic focusing
mechanism to enhance detection performance. This
mechanism adjusts gradient weights based on the qual-
ity of anchor boxes, effectively reducing the impact of
low-quality predictions. Furthermore, the loss function
diminishes reliance on geometric penalties when there is
significant overlap in box heights, thereby improving the
model’s generalization ability and overall performance.

The document is organized as follows: Chapter 2 describes
the overall structure of the methods and the implementation
details of each module. Chapter 3 validates the effectiveness
of these methods through experimental tests. Chapter 4
concludes the discussion.

II. METHODOLOGY

A. Lightweight Backbone Network

In modern computer vision tasks, object detection is
widely applied. However, as deep learning models become
increasingly complex and large, the demand for compu-
tational resources also grows. To achieve efficient object
detection in resource-limited environments, the design of
lightweight networks is particularly critical. YOLOv8, an
efficient object detection model, employs the improved CSP-
Darknet53 as its backbone network. Despite its excellent
performance, further lightweight optimization is still required
for UAV aerial target detection scenarios. EfficientNetV2,
through a compound scaling strategy that adjusts the depth,
width, and resolution of the network, achieves an optimized
balance between performance and efficiency, with a higher
computational efficiency compared to CSPDarknet53. There-
fore, this study replaces the backbone network of YOLOv8
with the improved EfficientNetV2 to significantly reduce the
model’s parameters and computational load while maintain-
ing high detection accuracy, thus enhancing computational
efficiency and real-time performance.

1) CBAM-MBConv Module:
The MBConv (Mobile-inverted Bottleneck Convolution) is

a core convolution module in EfficientNetv2, while CBAM
(Convolutional Block Attention Module) represents an inno-
vative attention mechanism that integrates spatial and chan-
nel attentions. This study innovatively designs the CBAM-
MBConv module by combining these two modules, aimed at
enhancing feature extraction capabilities and overall model
performance.

The MBConv module was first introduced in MobileNetV2
and has been widely used in the EfficientNet series, with
its main structure shown in Fig. 1(a). This module employs
an innovative inverted residual structure that expands and
then compresses the feature maps to reduce both parameters
and computational load. The introduced depthwise separable
convolutions, which are divided into depthwise and pointwise
convolutions, significantly reduce the computational com-
plexity.In EfficientNetV2, to further reduce parameter count
and optimize computational efficiency, the Fused-MBConv
was designed for use in the shallower layers of the network.
Its main structure shown in Fig. 1(c).

CBAM is a lightweight attention mechanism that enhances
feature representation by combining channel and spatial
attentions, with its main structure displayed in Fig. 2.

As depicted in Fig. 3, channel attention processes the
input feature maps through parallel max pooling and average
pooling layers, compressing the dimensions from C×H×W to
C×1×1. The features are then processed by a shared multi-
layer perceptron (MLP) structure which initially reduces
the number of features per channel to 1/R of the original
through dimension reduction. After dimension reduction, the
MLP expands back to the original number of channels and
reweights the importance of each channel. This design not
only optimizes parameter efficiency but also enhances learn-
ing and expression of key feature channels. The processed
features are activated by the ReLU function, producing two
activated results. These results are element-wise added, and
through a sigmoid activation function, the final output of the
channel attention is generated. This output is then multiplied
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Fig. 1: Structure of MBConv. (a) MBConv. (b) CBAM-MBConv. (c) Fused-MBConv. (d) CBAM-Fused-MBConv

Fig. 2: Structure of CBMA.

Fig. 3: Structure of CA.

back with the original image, restoring the dimensions to
C×H×W.

As shown in Fig. 4, spatial attention processes the output
from channel attention through max pooling and average
pooling to produce two feature maps of size 1×H×W. These
feature maps are then concatenated using a Concat operation.
They are transformed into a single-channel feature map via
a 7×7 convolution, and this map is subsequently processed
with a sigmoid function to generate the final spatial feature
map. Lastly, this spatial feature map is multiplied by the
original image, restoring the dimensions to C×H×W.

The improved CBAM-MBConv replaces the SE attention
module with the CBAM attention module. The CBMA mod-
ule combines spatial and channel attentions, outperforming
the SE module’s singular channel attention design. Initially,

Fig. 4: Structure of SA.

the CBAM module applies spatial attention to focus on criti-
cal spatial regions to extract contextual information, allowing
the network to more accurately locate information-rich areas
in aerial images. Subsequently, the channel attention mecha-
nism encodes global information for each channel and adjusts
the feature responses based on inter-channel dependencies.
This dual attention strategy enables the CBAM module to
enhance features by not only boosting responses of crucial
channels but also retaining information about key spatial
locations, resulting in a more detailed and comprehensive
feature representation.

2) Improving Activation Functions:
EfficientNetV2 employs the Swish activation function,

which excels in many tasks. However, in complex scenar-
ios, the Mish activation function offers superior nonlinear
transformations, enhancing model performance. This study
replaces the Swish activation function in EfficientNetV2 with
Mish to enhance the model’s feature extraction capabilities.
The definition of the Swish activation function is as follows:

Swish(x) = x · σ(x) (1)

Swish is known for its smoothness and non-monotonic
properties, which aid gradient-based optimization processes.
However, in complex scenarios, Swish exhibits some draw-
backs such as: (1) Gradient vanishing problem: In extreme
negative regions, Swish’s gradient approaches zero, poten-
tially hindering the training of deep networks. (2) Satura-
tion phenomenon: Swish’s output tends to become linear
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in extreme positive regions, possibly limiting the model’s
ability to express non-linearity. (3) Computational complex-
ity: Swish relies on the sigmoid function, which increases
computational complexity. In contrast, Mish addresses these
deficiencies through its unique formula design. The compu-
tation process of Mish is as follows:

Mish(x) = x · tanh(ln(1 + ex)) (2)

Firstly, ln(1 + ex) transforms the input x into a nonlinear
function, ensuring that the output remains within a certain
range. This is followed by the hyperbolic tangent function
tanh, which further enhances nonlinearity. Finally, by mul-
tiplying by the input x, the scale information is preserved
while introducing further nonlinear transformations. Through
these operations, the Mish function effectively enhances the
nonlinearity of the output features, smooths the gradients,
avoids saturation phenomena, and improves the activation
effects.

3) Improved Backbone Network:
This study has designed a lightweight backbone network

based on CBMA-MBConv, taking inspiration from Efficient-
NetV2. CBMA-MBConv is utilized in the deeper layers of
the network, while Fused-CBMA-MBConv is applied in the
shallower layers. The specific designs for each stage are
detailed in Table I.

TABLE I: Backbone Network Design

Stage Module Stride Channel Layers
1 Conv 2 16 1
2 Fused-CBAM-MBConv 1 32 2
3 Fused-CBAM-MBConv 2 64 4
4 CBAM-MBConv 2 128 6
5 CBAM-MBConv 1 256 3

B. Multi-scale Feature Fusion Structure

Yolov8 integrates Path Aggregation Network (PAN) and
Feature Pyramid Network (FPN) to construct a network
structure featuring both top-down and bottom-up pathways.
In this structure, feature fusion effectively complements
shallow spatial information with deep semantic information.
However, each convolutional layer in the backbone network
has a stride of 2, reducing the size of the output feature maps
to one quarter of the input image. This significant downscal-
ing results in less smooth transitions between adjacent layers,
particularly evident in the extraction of target features from
UAV aerial images.

To address this issue, this study introduces a new feature
fusion architecture, the Multi-Scale Feature Aggregation
Pyramid (MFPN). This structure aims to tackle the rapid
reduction in feature map size caused by large strides in the
backbone network. The implementation involves downsam-
pling or upsampling the feature maps output from the back-
bone network to match the dimensions of intermediate layer
feature maps. Subsequently, the feature maps are merged
through an average-weighted fusion operation, addressing the
channel multiplication issue caused by Concat operations,
and further multi-scale features are extracted through a 3×3
convolution layer.

To enhance the detection capabilities for small targets,
this study introduces a new detection scale, H2, into the

model. Positioned in the shallower layers of the network, H2

has a smaller receptive field, which preserves richer local
spatial semantics. Combining the H2 detection head with
existing larger-scale detection heads effectively reduces the
loss of local semantics caused by scale expansion, thereby
improving detection performance for small targets. Although
this addition increases computational and memory overheads,
it significantly enhances the accuracy of detecting small
targets. The overall structure of the model’s neck before and
after improvements is shown in Fig. 5(b).

Fig. 5: Structure of Neck. (a) PAN-FPN. (b) MFPN.

C. Multi-Scale Feature Fusion Module (MSFF)

In the YOLOv8 architecture, the Spatial Pyramid Pooling
Fast (SPPF) structure is applied to the last layer of the
backbone network to enhance multi-scale feature extraction
and object detection performance. This module significantly
accelerates processing speed through consecutive max pool-
ing operations. However, in practical applications such as
UAV aerial imagery, due to complex image features and the
presence of small objects, the original model may lose some
spatial information. Furthermore, max pooling might retain
noise as significant features, leading to false detections.

This study introduces a new feature fusion module, the
Multi-Scale Feature Fusion (MSFF), as illustrated in Fig. 6.
The module consists of multiple convolutional(MC) modules
and feature enhancement(FE) modules working in parallel.
The MSFF module outputs a feature space rich in informa-
tion, as shown in Fig. 6, including multi-scale, channel-level,
and spatial-level feature information.

Fig. 6: Structure of MSFF.

The FE Module consists of channel-spatial attention, serv-
ing as an improvement over the traditional SE module. Its
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structure is shown in Fig. 7. Unlike the SE module, which
focuses solely on channel-wise feature representations, the
FE module considers both channel and spatial aspects of
feature representation. This allows the model to perform
attention calculations simultaneously on channel and spatial
dimensions, enabling more comprehensive extraction and
representation of feature information.

Fig. 7: Structure of FE Module.

The FE module performs parallel computations of chan-
nel and spatial attention weights. The channel attention
component, SE, first performs global average pooling on
each channel to produce a feature space of C×1×1. This is
followed by the calculation of excitation weights through two
fully connected layers. Finally, these weights are multiplied
by the feature space to produce the enhanced feature space
Sse. The specific formula is as follows:

Sse = X · (Ffc2(Ffc1(X))) (3)

Ffc1 = FRelu(Flinear(y)) (4)

Ffc2 = FSigmoid(Flinear(y)) (5)

Here, Ffc1 represents the first fully connected layer perform-
ing a linear transformation followed by the ReLU activation
function, and Ffc2 represents the second fully connected
layer performing a linear transformation and then normal-
izing the weight parameters using the Sigmoid function.
The symbol ’·’ denotes element-wise multiplication across
corresponding channels.

The Spatial Attention (SA) Module performs max pooling
and average pooling across all channels of the feature space
to produce two 1×H×W feature maps. These feature maps
are then concatenated using a Concat operation, followed by
convolution using a convolution kernel. The specific formula
is as follows:

Ssa = X · F 7×7
conv(Fcat(Fmean(X), Fmax(X))) (6)

Ultimately, the output of the complete FE module is
obtained by adding the output feature maps from the SE
and SA modules, as Equation (7) show.

Sfe = Sse + Ssa (7)

The structure of the MC module is shown in Fig. 8. This
module helps expand the receptive field and provides richer
feature information. Unlike traditional multi-scale models,
the MC module utilizes Depthwise Separable Convolutions

(DWConv) instead of dilated or varied scale convolutions.
DWConv decomposes standard convolutions into depth-
wise and pointwise convolutions, reducing the number of
parameters and computational complexity. By employing
DWConv, the MC module significantly enhances precision
while maintaining minimal parameters and computational
complexity. Despite the reduced complexity, the MC module
still achieves substantial precision improvements.

Fig. 8: Structure of MC Module.

The input to the MC module is represented as
[x1, . . . , xC ] ∈ RC×H×W , denoted as X. The multi-scale
feature space mapping is obtained from the MC module. The
specific formula is as follows:

Hi = [hi
1, h

i
2, . . . , h

i
C ] ∈ RC×H×W , i = 1, 2, 3 (8)

H = H1 +H2 +H3 +X (9)

In this context, Equation (8) describes the convolution op-
eration on the feature space, with convolution kernels of
channel count C and sizes 3x3, 5x5, and 7x7 respectively.
In Equation (9) , the symbol ”+” represents feature fusion,
which enhances the information content of the feature maps
while maintaining the same number of channels.

After parallel computations by the FE and MC modules,
the output feature space S of the MSFF module can be
described as follows:

S = H + Sfe (10)

In the MSFF module, the FE and MC modules operate
in parallel. Unlike traditional cascading connections, this
parallel configuration prevents the loss of multi-scale feature
information, ensuring that the output feature space encom-
passes multi-scale, channel-level, and spatial-level features.
Consequently, incorporating the MSFF module significantly
enhances the detection capabilities for small aerial targets.

D. Efficient Local Attention Module

The shallow feature maps of the network have a smaller
receptive field and richer local semantics, capturing low-level
features of the image such as edges, textures, and colors,
which typically exhibit significant locality. Consequently,
this study introduces an Efficient Local Attention Module
(ELAM) into the shallow local information enhancement
module to better capture and utilize these local features,
thereby enhancing model performance.

The core idea of the ELAM, illustrated in Fig. 9, is
to enhance the expression of positional information to im-
prove the efficiency of feature extraction. Initially, positional
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Fig. 9: Structure of ELAM.

information embeddings are extracted from sequence sig-
nals within channels, which are more suitably processed
by 1D convolution than by traditional 2D convolution. 1D
convolution is not only lighter but also more effective in
processing sequence signals. In contrast, although traditional
CA methods using 2D convolution enhance some feature
extraction capabilities, the limitations of 1×1 convolution
kernels result in constraints on feature extraction.

To overcome these limitations, the ELAM employs 1D
convolution kernels of size 5 or 7 to enhance positional
information embedding. This design enables ELAM to more
effectively capture spatial dependencies within areas of in-
terest. Subsequently, the module processes the enhanced
positional information using Group Normalization (GN),
resulting in horizontal and vertical positional attention maps.
Specifically, horizontal and vertical positional information,
processed by 1D convolutions denoted as Fh and Fw re-
spectively, and Group Normalization, produces positional
attention maps yh and yw. These attention maps are then
combined with the input feature maps to produce the final
output Y of the ELA module. The specific computation
formula is as follows:

yh = σ(Gn(Fh(zh))) (11)

yw = σ(Gn(Fw(zw))) (12)

Y = xc × yh × yw (13)

E. Half-Wavelet Attention Module

The architecture of the Half-Wavelet Attention Module
(HWAB) is a modification of the Dual Attention Unit (DAU).
The DAU extracts features using both channel and spatial
attentions and integrates these features to capture richer
contextual information. HWAB further incorporates wavelet
transformations to enhance the efficacy of feature extraction.
The structure of HWAB is illustrated in Fig. 10 and includes
the following steps:

1) Feature Splitting: The input feature map fin ∈
RC×H×W is initially split along the channel dimension into
two parts, fidentity and ft, each sized RC

2 ×H×W . This division
aims to reduce computational complexity while preserving
essential contextual information. fidentity retains the original
domain features, which are not subjected to wavelet transfor-
mation, while ft undergoes Discrete Wavelet Transformation
(DWT) to produce the wavelet domain features fw.

2) Discrete Wavelet Transform (DWT): The feature ft
undergoes DWT to produce the wavelet domain features
fw ∈ R2C×H

2 ×W
2 , transforming the feature maps into the

frequency domain for more efficient feature extraction.
3) Weighted Wavelet Features: The wavelet domain

features fw are processed through the Dual Attention
Unit (DAU) to obtain weighted wavelet features f̂w ∈
R2C×H

2 ×W
2 , where DAU enhances feature expression by

integrating channel and spatial attentions.
4) Inverse Wavelet Transform (IWT): The weighted

wavelet features f̂w are transformed back to the original size
using IWT to produce f̂t.

5) Feature Fusion and Residual Features: f̂t is combined
with fidentity, processed through a 3x3 convolution layer and
Parametric ReLU (PReLU) to create the residual features fr.

6) Output Features: Finally, the shortcut features are
added to the residual features fr through a 1x1 convolution
layer to produce the output features fout ∈ RC×H×W ,
incorporating wavelet attention information.

F. Self-Attention Dynamic Detection Head

The default YOLOv8 model includes three detection heads
located in the deeper layers, potentially resulting in the loss
of shallow features and insufficient semantic representation
in deep feature maps during small object detection tasks. Due
to the richer semantic and more accurate positional informa-
tion in shallow feature maps, researchers have attempted to
enhance small object detection by adding additional detection
heads to capture more shallow features. However, variations
in scale complicate these heads’ ability to comprehensively
understand information across all scales. Addressing these
challenges, this study introduces a Self-Attention Dynamic
Detection Head (SDHead).

SDHead processes the input feature map of size C×H×W
with scale-aware, spatial-aware, and task-aware capabilities.
The computation formula for its attention function is as
follows:

W (F ) = πC(πS(πL(F ) · F ) · F ) · F (14)

πL(F ) · F = σ

(
f

(
1

SC

∑
SC

F

))
· F (15)

πS(F ) · F =
1

L

L∑
l=1

K∑
k=1

wl,k

· F (l; pk +∆pk; c) ·∆mk

(16)

πC(F ) · F = max

(
α1(F ) · FC + β1(F ),

α2(F ) · FC + β2(F )

)
(17)

In SDHead, f(·) is approximated by a 1x1 convolution
layer as a linear function. The activation function σ(x) =
max(0,min(1, x+12)) is an adapted sigmoid function. The
spatial-aware attention module, leveraging feature fusion,
targets critical discriminative regions between spatial loca-
tions and feature layers. This module employs deformable
convolutions to enable sparse learning of attention and aggre-
gates cross-layer features at the same spatial locations. The
number of sparse sampling locations is denoted by K, and
the position pk +∆pk is adjusted by a spatial offset ∆pk to
focus on discriminative regions, with ∆mk representing the
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Fig. 10: Structure of HWAB.

importance weights at position pk, learned from intermediate
input features.

Task-aware attention dynamically adjusts to support tasks
across different scales. FC represents the feature slice of
channel C. The function

[
α1, β1, α2, β2

]T
= θ(·) is a hyper-

function that learns activation thresholds.

G. WIoUv3 Loss Function

The diagram of the loss function parameters is shown in
Fig. 11, where ”Real box” represents the ground truth or
label box, and ”Predicted box” represents the bounding box
predicted by the algorithm. The coordinates (bgtcx, b

gt
cy) denote

the center of the ground truth box, while (bcx, bcy) denote
the center of the predicted box. The dimensions wgt and
hgt represent the width and height of the ground truth box,
respectively, while w and h represent the width and height
of the predicted box. The terms cw and ch denote the width
and height of the minimal bounding box that encompasses
both the predicted and ground truth boxes. The Euclidean
distances ρ(w,wgt) and ρ(h, hgt) measure the differences
in width and height between the predicted and ground truth
boxes, respectively. These parameters are used to calculate
the discrepancy between the predicted and ground truth
boxes, aiding in the optimization of model predictions.

Fig. 11: Parameters of Loss Function.

YOLOv8 employs the Complete Intersection over Union
(CIoU) loss function, whose formula is presented in Equation
(18). However, CIoU’s performance in drone aerial imagery
applications is suboptimal for several reasons. Firstly, CIoU
uses the aspect ratio of the predicted and ground truth boxes
as a penalization factor. If the aspect ratios are the same, but
the widths and heights differ, no penalty is applied, which

can be detrimental to recognition accuracy. Furthermore, the
computational cost of CIoU is significant, especially due to
the calculations involving inverse trigonometric functions,
which can slow down the detection speed.

LCIoU = 1− IoU +
ρ2(b, bgt)

c2w + c2h

+
4

π2

(
arctan

hgt

wgt
− arctan

h

w

)2 (18)

The Wise-IoU loss function incorporates a dynamic non-
monotonic focusing mechanism, significantly enhancing the
detection performance of the algorithm. Wise-IoU is avail-
able in three versions: WIoUv1, WIoUv2, and WIoUv3. The
calculation formula for WIoUv1 is presented in Equations
(19) to (21). As the foundational version, WIoUv1 introduces
distance as a metric for attention. When there is a certain
overlap between the target and predicted boxes, it reduces
the penalties based on geometric measurements, thereby
improving the model’s generalization ability.

LWIoUv1 = RWIoU × LIoU (19)

RWIoU = exp

(
(bgtcx − bcx)

2
+ (bgtcy − bcy)

2

c2w + c2h

)
(20)

LIoU = 1− IoU (21)

WIoUv3 is an enhancement over WIoUv1, detailed in
Equations (22) to (24). It defines the quality of anchor boxes
using the outlier value β, which is used to construct a non-
monotonic focusing factor r. A higher β value indicates
lower anchor box quality, resulting in a smaller r value and
reduced gradient gains, thereby minimizing harmful gradi-
ents caused by low-quality anchor boxes. WIoUv3 employs
a judicious gradient gain allocation strategy, dynamically
adjusting the weights of high and low-quality anchor boxes
in the loss function. This approach ensures the model focuses
on medium-quality samples, thereby enhancing overall per-
formance.

LWIoUv3 = r × LWIoUv1 (22)

r =
β

δαβ−δ
(23)

β =
L∗

IoU

LIoU
∈ [0,+∞) (24)

In this study, the WIoUv3 loss function replaces the CIoU
previously used in YOLOv8. This substitution aims to ad-
dress specific challenges effectively. On one hand, WIoUv3
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Fig. 12: Structure of Our Network.

mitigates the excessive penalization of distance and aspect
ratio, especially when the quality of training data annota-
tions is low, through its dynamic non-monotonic focusing
mechanism. On the other hand, when there is a high overlap
between the predicted and target boxes, WIoUv3 lessens the
penalty on geometric factors, thereby enhancing the model’s
generalization ability with minimal training intervention.

H. Network Structure

The structure of the algorithm proposed in this paper is
illustrated in Figure 12. Incorporating the modules discussed
earlier, we have modified the YOLOv8n network to imple-
ment a lightweight target detection algorithm that enhances
the perception of small targets.

III. EXPERIMENTS
A. Dataset

The experiments in this paper are primarily based on the
VisDrone-2019 [36] dataset, one of the mainstream drone
aerial imagery datasets, collected by the Machine Learning
and Data Mining team at Tianjin University. The VisDrone-
2019 dataset includes 6,471 training images, 548 validation
images, and 1,610 test images. This dataset covers 10 cate-
gories, all of which are common entities in aerial tasks such
as cars, pedestrians, and bicycles.

TABLE II: Experimental Hardware Environment

Parameter Experimental Environment

CPU Intel(R) Xeon(R) Platinum 8370C
GPU RTX 3090 (24G)
Operating System Ubuntu 20.04
Graphics Driver Version 520.56
CUDA Version 11.8
Python Version 3.11.5
Deep Learning Framework Pytorch 2.0.1+cu118

B. Experimental Environment and Parameters

The experiments are based on the YOLOv8n network as
the baseline, with the specific settings shown in Table II. All
network training was conducted using the Adam optimizer
with an initial learning rate of 0.01, a weight decay of 0.0005,
a batch size of 16, and 300 epochs. The input image size was
set to 640×640. All experiments employed default data aug-
mentation methods. Ablation and comparative experiments
were conducted under the same settings, without additional
configurations or training.

C. Evaluation Metrics

This study evaluates the model’s detection performance
using three metrics: Mean Average Precision (mAP), the
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TABLE III: Performance Comparison of Different Models on the VisDrone2019 Dataset

Method mAP@0.5 (%) mAP@0.5:0.95 (%) FLOPs (GB) Params (M)
YOLOv3-spp 36.8 22.6 155.4 62.7
YOLOv3-tiny 16.0 7.0 12.8 8.8
YOLOv3 35.3 17.0 154.6 61.6
YOLOv5n 24.0 12.3 4.1 1.8
YOLOv5s 29.7 16.3 15.7 7.2
YOLOv5m 37.1 20.9 47.9 20.9
YOLOv5l 36.7 21.0 107.6 46.2
YOLOv7-tiny 36.9 19.1 13.2 6.1
YOLOv7 47.6 26.3 103.2 36.7
YOLOv8n 33.8 19.7 8.2 3.1
YOLOv8s 38.3 22.9 28.4 11.1
YOLOv7X+ [37] 41.2 25.3 56.8 23.5
DUCAF-Net [38] 39.38 23.10 - -
Ours 40.3 24.2 19.7 7.9

TABLE IV: Detection results after the introduction of different improvement strategies

Method New Backbone MSFF MFPN+ELAM HWAB SDHead WIoUv3 mAP@0.5 (%) Params (M) FLOPs (GB)
A 33.8 3.1 8.2
B ✓ 34.1 2.8 6.2
C ✓ 35.2 3.25 8.4
D ✓ 38.1 5.5 10.8
E ✓ 35.1 3.8 8.5
F ✓ 35.3 3.9 8.1
G ✓ 34.1 3.1 8.2
H ✓ ✓ ✓ ✓ ✓ ✓ 40.3 7.9 19.7

Note: ✓ represents the presence of the corresponding improvement strategy. The best results are indicated in bold.

number of parameters (Params), and Floating Point Oper-
ations (FLOPs).

Where mAP is used to assess the overall performance
of the network model, with mAP@0.5 representing the
mean Average Precision at an IoU threshold of 0.5. FLOPs
indicate the number of floating-point operations per second,
understood as the computational speed, which can be used
to evaluate hardware performance.

The relevant formulas are as follows:

P = TP
TP+FP (25)

R = TP
TP+FN (26)

AP =

∫ 1

0

P (R)dR (27)

mAP =
∑k

i=1 APi

k (28)

FLOPs = Ci×K2 × C ×W ×H (29)

D. Comparison Experiment

To demonstrate the effectiveness of the proposed algorithm
in detecting small targets in drone aerial imagery, we con-
ducted a comparative analysis using the VisDrone dataset
against classical mainstream models. As shown in Table III,
the values in bold represent the best results for each category
across all algorithms.

E. Ablation Experiments

To validate the effectiveness of the improved algorithm,
a series of ablation experiments were conducted on the
baseline model YOLOv8n using the VisDrone-2019 dataset,
as shown in Table IV. Various enhancement strategies led to

different degrees of improvement in mAP@0.5, with method
G, which integrates all introduced strategies, achieving the
best overall performance at 30.5% mAP@0.5. With the
introduction of these strategies, there was an increase in the
number of model parameters and floating-point operations
(FLOPs), indicating a trade-off between model complexity
and performance enhancement. Nevertheless, the increase in
parameters and FLOPs is relatively modest compared to the
significant improvements in detection accuracy.

F. Interpretability Analysis

This study constructed confusion matrices and generated
heatmaps to interpret the model’s inference process, system-
atically assessing diagnostic accuracy. We demonstrated the
effectiveness of the improved method and the YOLOv8n
model in category recognition. As shown in Fig. 13, the
rows in the confusion matrices represent actual categories,
while the columns represent predicted categories. Values on
the diagonal indicate the percentage of correct classifications,
while off-diagonal values show the proportion of misclassi-
fications.

As depicted in Figure 13a, the confusion matrix of the pro-
posed method has darker areas along the diagonal, indicating
enhanced performance in accurately predicting target cate-
gories. As shown in Figure 13b, the baseline model displayed
a higher proportion of misclassifying small targets such
as humans, bicycles, and awning tricycles as background,
signifying significant miss rates for these categories. Al-
though the improved model has reduced miss rates for these
categories, the proportion of correct predictions remains to
be improved. Moreover, the model excels in handling larger
objects, such as buses, with varying degrees of improved
detection accuracy.
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(a) Confusion Matrix Plot of Our Model

(b) Confusion Matrix Plot of YOLOv8n.

Fig. 13: Confusion Matrix Plot.

G. Vision Analysis

To evaluate the performance of different algorithms in real-
world scenarios, we conducted tests using the VisDrone-2019
dataset and recorded the results. The final test outcomes are
shown in Fig. 14 and Fig. 15, where subfigure (a) illustrates
the detection results of YOLOv8n, and subfigure (b) presents
the results of our proposed algorithm.

As seen in Fig. 14, YOLOv8n exhibited a higher number
of missed detections, particularly for small targets such
as pedestrians and motorcycles, while our algorithm sig-
nificantly reduced the miss rate. Additionally, in Fig. 15,
YOLOv8n demonstrated more false detections, especially
for small objects like cars and pedestrians, whereas our
algorithm effectively minimized these errors. In the third
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(a) Result of Yolov8n.

(b) Result of Our Model.

Fig. 14: Scenarios for Obvious Missed Detection.

(a) Result of Yolov8n.

(b) Result of Our Model.

Fig. 15: Scenarios for Obvious Error Detection.

comparison in Fig. 15, YOLOv8n mistakenly detected a
ground-level container as a truck, while our method avoided
this error, as it did not wrongly classify the container as a
truck due to its enhanced ability to detect small objects and
recognize the absence of essential truck features like the cab
and wheels.

Overall, our algorithm achieved notable improvements in
detection accuracy across various types of objects.

IV. CONCLUSION

This paper presents an improved drone aerial target detec-
tion algorithm based on the YOLOv8n, significantly enhanc-
ing the accuracy of small target detection through innovative
strategies. Initially, a shallow feature enhancement module
merges spatial and semantic information from different lay-
ers, substantially increasing detection accuracy for small
targets such as pedestrians. Moreover, by embedding mid-
scale feature synthesis layers and skip connections into the
traditional feature pyramid structure, the algorithm smooths
feature transitions and reduces feature loss. Additionally, the
incorporation of the MSFF module effectively extracts and
merges features, lowering the miss rate.

In terms of efficiency, the algorithm utilizes partial and
depth-wise separable convolutions, reducing computational
complexity and ensuring rapid inference. The HWAB at-
tention mechanism further refines the focus on critical in-

formation, enhancing overall performance. Testing on the
VisDrone-2019 dataset shows that this algorithm significantly
outperforms the baseline model, especially in detecting small
targets. Compared to other classic algorithms, this algorithm
has lower parameters and higher detection accuracy, demon-
strating extensive potential for applications.

Future work will focus on optimizing computational effi-
ciency and inference time to better adapt to the deployment
needs of edge devices, aiming to enhance the efficiency and
accuracy of drone aerial target detection.
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