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Abstract—Apricot detection is a prerequisite for counting 
and harvesting tasks. Existing algorithms face challenges in 
adapting to the impacts of complex environmental factors 
such as lighting variations, shadows, dense foliage, and the 
uneven distribution of samples in mechanized apricot har-
vesting. This paper proposes an enhanced model, YOLOv7-
DC, based on YOLOv7, to address these challenges. YOLOv7-
DC preprocesses diverse apricot tree samples to accommodate 
real-world harvesting detection scenarios. To improve model 
inference speed and detection accuracy, the detection network 
is redesigned with a new feature fusion method. DCNv2 is em-
bedded within the efficient layer aggregation network (ELAN), 
and PConv is introduced to replace conventional convolutions, 
reducing the parameter impact of DCNv2. The training pro-
cess incorporates the CBAM attention mechanism to enhance 
spatial and channel information. The ConvMixer architecture 
captures spatial and channel relationships transmitted to the 
detection head through the attention mechanism, improving 
the model’s detection accuracy for each specific classification 
sample. Experimental results show that YOLOv7-DC maintains 
good detection speed and recognition rates across various classi-
fication tasks. The improved model achieves a  6.2% increase in 
average detection accuracy compared to previous algorithms, 
with a 13% reduction in model parameters. YOLOv7-DC is 
better suited for handling imbalanced samples and complex 
environmental scenarios.

Index Terms—Apricot biloba detection, YOLOv7, Attention 
mechanism, Feature fusion.

I. INTRODUCTION

APRICOT harvesting recognition has significant applica-
tion value in the agricultural sector. With the continuous

research and development of its efficacy in industries such as 
healthcare and cosmetics, the demand for apricot is steadily 
increasing. Currently, apricot harvesting is primarily done 
manually. Apricot trees have a short growth cycle, and the
work environment is challenging, making them susceptible to 
weather conditions. To improve the efficiency of apricot tree 
harvesting and reduce labor costs, mechanized harvesting has
become an inevitable trend. The primary task of mechanized 
processing is to apply detection and recognition to apricot
trees, with the application of computer vision technology
laying the foundation for subsequent counting and harvest-
ing. In the research on mechanized apricot harvesting, many
scholars have conducted preliminary explorations. In the 
field o f c omputer v ision, K umari [ 1] a nd o thers utilized
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image processing techniques [2] for early automatic detection
of leaves to achieve detection and classification of apricot
harvesting objects. Triki [3] and others proposed a deep
learning-based method called Deep Leaf, using an improved
state-of-the-art instance segmentation method (Mask R-CNN
[4]) to detect and pixel-segment apricot trees. Deep Leaf can
accurately detect each fruit in plant samples and measure
relevant morphological features.

Additionally, many studies have applied YOLO series
algorithms to apricot detection. The initial version of YOLO
introduced the concept of transforming the object detection
problem into a regression problem. Subsequent versions in-
troduced features such as Anchor Boxes, Darknet-19 network
structure, and multi-scale training to support multi-category
detection. YOLOv3 made further improvements by adopting
a deeper Darknet-53 network structure and a strategy of
detecting at different scales. YOLOv4 introduced numerous
technological innovations, including the CIOU loss function,
PANet, SAM, CSPDarknet53, etc., enhancing detection per-
formance and speed. YOLOv5, developed by Ultralytics, is
easier to use and train. However, our research found that the
earlier versions of YOLO still face performance bottlenecks
in apricot detection due to the limitations of their detection
range and are not directly applicable to apricot detection.
Khan [5] and others proposed a new technique to improve
the accuracy of detecting apricot and branch structures. This
method first obtains the basic branch structure and then
applies image processing algorithms to improve the accuracy
of the predicted branch structure before detecting apricot
trees [6]. There are also studies that utilize the Hungarian
(Munkres) algorithm to match branch images of apricot trees
from each day with those from the previous and following
days. This is done to identify the optimal matches between
fruit in a plant image and the corresponding fruit in the
same plant from another day. Ideally, this matching process
groups identical fruits together, allowing the exclusion of
fruits detected from erroneous data. However, these methods
have some shortcomings in recognition tasks in complex
environments. Harvesting recognition in complex environ-
ments requires large-scale and diverse training datasets. The
datasets used in the mentioned studies for harvesting recog-
nition may be relatively small or lack a sufficient number of
complex samples, limiting the model’s generalization ability
in real complex scenarios. Additionally, in complex environ-
ments, target objects may be occluded, posing a challenge
to recognition performance. Most of the previous research
has not adequately addressed occlusion scenarios, resulting
in decreased model performance in occluded scenes. In
order to overcome the aforementioned challenges, this study
employs YOLOv7 as the base detection model for apricot
tree harvesting recognition tasks in complex environments.
However, during the research process, it was observed that
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using YOLOv7 alone might not fully exploit crucial feature
information. To enhance the perceptual ability towards key
features, the CBAM attention mechanism is introduced.
The CBAM attention mechanism [7] is a method designed
to enhance the perceptual ability of convolutional neural
networks by adaptively adjusting the weights of feature maps,
allowing the network to focus more on features contributing
to the classification task. In this paper, we integrate the
CBAM attention mechanism into the network structure of
YOLOv7 to improve apricot tree harvesting recognition per-
formance in complex environments. Additionally, we employ
the strategy of attention feature fusion [8]. This technique
involves weighting different regions of the image, focusing
more attention on key areas, thereby enhancing the accuracy
and robustness of apricot recognition. The attention feature
fusion strategy aims to improve the discriminative ability for
apricot by placing more emphasis on critical regions.

II. ALGORITHM DESCRIPTION

The YOLO algorithm, as a representative of one-stage
object detection algorithms, is based on deep neural networks
for object recognition and localization [9]. It operates at high
speed, making it suitable for real-time systems. YOLOv7 is
currently the most advanced algorithm in the YOLO series,
surpassing its predecessors in terms of accuracy and speed
[10]. YOLOv7 introduces the concept of model reparameter-
ization into the network architecture, which was originally
seen in REPVGG. The label assignment strategy utilizes
YOLOv5’s cross-grid search and YOLO’s matching strategy.
A new network architecture is proposed in YOLOv7, focus-
ing on efficiency. YOLOv7 introduces a training method for
auxiliary heads with the main purpose of increasing accuracy
by adding training costs without affecting inference time. The
auxiliary head is only present during the training process.
YOLO is analyzed in detail, breaking it down into seven
modules: CBS module, CBM module, REP module, MP
module, ELAN module, Upsample module, and SPPCSPC
module.

Regarding the CBS module, as seen in Figure 1, it is
composed of a Conv layer (Convolutional layer), a BN layer
(Batch Normalization layer), and a Silu layer (Activation
function) [11]. The Silu activation function is a variant of the
swish activation function, and their formulas are as follows:

silu(x) = x · sigmoid(x) (1)

swish(x) = x · sigmoid(βx) (2)

CBM module and CBS module are fundamentally similar.
The REP module is divided into two parts: a training
module (train) and an inference module (deploy) [12]. The
training module has three branches: the top branch is a 3x3
convolution for feature extraction, the middle branch is a 1x1
convolution for smoothing features, and the final branch is an
Identity, which does not perform convolution but is directly
moved over [13]. Finally, these branches are added together.
In the inference module, it includes a 3x3 convolution with a
stride of 1, which is transformed from the reparameterization
of the training module. The MP module has two branches
for downsampling. The first branch undergoes a max-pooling
operation for downsampling, followed by a 1x1 convolution
to change the number of channels. The second branch

first u ndergoes a  1 x1 c onvolution t o c hange t he n umber of 
channels, then passes through a 3x3 convolution kernel with a 
stride of 2, which is also used for downsampling. Finally, the 
results of the first a nd s econd b ranches a re a dded together, 
resulting in a super downsampling outcome.

ELAN module is an efficient network s tructure, as shown 
in Figure 2. It controls the shortest and longest gradient 
paths, allowing the network to learn more features and 
exhibit stronger robustness. Regarding the ELAN-W mod-
ule, it is very similar to the ELAN module, with a slight 
difference in the selected output quantity in the second 
branch. The UPSample module is an upsampling module that 
uses nearest-neighbor interpolation. SPP aims to increase the 
receptive field, e nabling t he a lgorithm t o a dapt t o different 
resolution images. It achieves this by obtaining different 
receptive fields through max-pooling [14]. The CSP module 
first d ivides t he f eatures i nto t wo p arts. O ne p art undergoes 
conventional processing, while the other part undergoes SPP 
structure processing. Finally, these two parts are merged 
together, reducing half of the computational load, resulting 
in increased speed and improved accuracy.

III. IMPROVEMENT STRATEGIES

Apricot images collected in the wild may introduce inter-
ference due to complex backgrounds, impacting the detection 
performance of the YOLOv7 model based on convolutional 
neural networks. The attention mechanism, derived from 
studies on human vision, concentrates attention on important 
areas of an image while discarding irrelevant regions in com-
puter vision [15]. This enables the neural network to focus 
on a subset of features. Therefore, the improvement strategy 
in this paper integrates the CBAM attention mechanism 
into the YOLOv7 network, directing the model’s attention 
more towards the apricot itself rather than the background 
environment. The CBAM module combines channel attention 
mechanism and spatial attention mechanism, enhancing the 
feature representation and target localization accuracy of the 
YOLOv7 model by applying attention weighting to both 
the channel and spatial dimensions of the feature map. The 
ConvMixer architecture is employed in the detection head to 
enhance the performance of small target detection. The Con-
vMixer in the detection head helps capture spatial and chan-
nel relationships conveyed through the attention mechanism 
to improve the model’s effectiveness. To address irregular 
apricot sizes and the difficulty i n e xtracting s hape features 
in complex environments leading to subsequent detection 
errors, a feature fusion module is introduced in the back-
bone network by embedding DCNv2 in the efficient layer-
aggregation network ELAN. This enhances the capability to 
extract apricot shape features. Simultaneously, to mitigate 
the decrease in detection speed caused by adding the feature 
fusion module, PConv is used to replace the conventional 
convolution in the backbone network, effectively reducing 
the model’s computational load and improving detection 
speed. The overall architecture of the improved model is 
depicted in Figure 3.

A. CBAM module

To address challenges encountered during mechanical har-
vesting of apricot, including variations in lighting conditions,
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Fig. 1: Detailed Introduction to Partial Modules of YOLOv7

Fig. 2: Detailed introduction of partial modules of YOLOv7

the presence of shadows, and the uneven distribution of
samples within dense foliage, the improved YOLOv7 al-
gorithm with enhanced attention mechanisms incorporates
three CBAM modules in the backbone network. This addition
aims to enhance the network’s feature extraction capabili-
ties. CBAM (Convolutional Block Attention Module) is an
attention mechanism module designed to boost the receptive
field and channel attention of convolutional neural networks.
The CBAM module consists of two sub-modules: the Spatial
Attention Module (SAM) and the Channel Attention Module
(CAM).

The SAM structure is illustrated in Figure 4, aiming to
enhance the model’s perception of important regions by
learning the spatial correlations in image space [16]. It first
applies average pooling and max pooling to the features
and concatenates the resulting feature maps. Subsequently,
a convolution operation is employed on the concatenated
feature map to generate the final spatial attention feature map.
Finally, the learned spatial attention weights are applied to
the original feature map to obtain a feature representation
enhanced with spatial attention.

The CAM structure is shown in Figure 5, aiming to en-

hance the model’s perception of important features by learn-
ing the inter-channel correlations. It initially performs max
pooling and average pooling operations in the channel di-
mension to obtain the max-pooled feature map and average-
pooled feature. In our network architecture, the feature map
processed through the convolutional network is first input
into the channel module. The Channel Attention Module
utilizes the relationships between the channel attention of
features to generate channel attention information, primarily
employed to determine the focus points in the input image.
The calculation formula is as follows:

Mc(F ) = σ(MLP (AvgPool(F )) +MLP (MaxPool(F )))

= (W1(W0(F
c
avg)) +W1(W0(F

c
max)))

(3)

σ represents the sigmoid function, W0 and W1 denote
the shared weights of the MLP (Multi-Layer Perceptron),
AvgPool and MaxPool signify average and max pooling
operations, respectively. During the computation, to integrate
the average-pooled feature F and max-pooled feature FE,
they are forwarded to an information-sharing layer network
composed of multiple perceptron (MLP) layers and hidden
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Fig. 3: YOLOv7-DC Structure

Fig. 4: SAM structure

Fig. 5: CAM structure

layers for information integration. This process generates a
channel attention map, and after processing each channel
feature descriptor through the shared network, the feature
vectors are combined using the SUM operation to obtain the
output. The feature map processed by the Channel Attention
Module then enters the Spatial Attention Module. The Spatial
Attention Module utilizes the spatial relationships of feature
points to generate a spatial attention map, primarily focusing
on the attention points determined by the Channel Attention
Module. The calculation formula for complementary infor-
mation and channel attention is as follows:

MS(F ) = σ(f7×7 [AvgPool(F );MaxPool(F )]) =

σ(f7×7
[
F x
avg;F

x
max

]
)

(4)

Among them, 7 denotes the convolution operation with
a filter size of 7x7. In the process of spatial computation,

the module in the spatial attention map operates by first
performing pooling along the channel axis to generate two
pooled features. These two features are then concatenated to
produce an effective feature descriptor. Subsequently, a stan-
dard convolution operation is applied to generate the spatial
attention map. Through a series of multi-layer perceptrons to
learn channel attention weights, capturing global correlations
between channels to obtain a feature representation enhanced
by channel attention. By combining SAM and CAM together,
the CBAM module can simultaneously consider inter-channel
correlations and image spatial correlations. The application
of the CBAM module in YOLOv7 enables the model to
better capture detailed features of targets, while improving
the detection accuracy of targets in complex backgrounds
and occlusion situations, further enhancing the detection
performance and application effectiveness of YOLOv7. For
the basic convolution block in YOLOv7, the CBAM module
is added after it. This way, each basic convolution block
undergoes processing by SAM and CAM to obtain weights
for spatial information and inter-channel correlations. This
attention mechanism allows the network to adaptively focus
on important areas and features in the image, suppressing
interference from noise and redundant features. In the im-
proved YOLOv7 model in this paper, the detection head
uses the ConvMixer architecture to enhance the performance
of small target detection. The ConvMixer in the prediction
head helps capture spatial and channel relationships passed
to the prediction head features, which are discovered through
deep convolution and pointwise convolution in ConvMixer.
The pointwise convolution in ConvMixer also enhances the
detection capability of the prediction head for small objects
since it processes information at the individual data point
level. Additionally, unlike traditional convolutional neural
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networks, ConvMixer maintains the integrity of the input
structure throughout the entire mixer layer, making it well-
suited for the prediction head of the apricot detection archi-
tecture. The architecture of the ConvMixer layer is shown
in Figure 6. The ConvMixer module itself consists of deep
convolution (specifically grouped convolution, where the
number of groups equals the number of channels) followed
by pointwise convolution (1x1 convolution). After each con-
volution, there is the GELU activation function and activated
BatchNorm (batch normalization). The expressions for the
content of Figure 6 can be formulated as follows:

z′l = BN(σ {ConvDepthwise(zl−1))}) + zl−1 (5)

zl−1 = BN(σ {ConvDepthwise(z′l))}) (6)

B. Feature fusion module

The Efficient Layer Aggregation Network (ELAN) in
YOLOv7 is an efficient network architecture that uses a
residual structure to aggregate feature maps obtained from
each intermediate layer for feature fusion in the final layer.
It can extract feature maps obtained from different con-
volutions and features from different channels. Simulta-
neously, the DCNv2 (Deformable Convolutional Networks
version 2) is embedded into the ELAN network to form
the DCNv2+ELAN module. In the DCNv2+ELAN module,
continuous use of DCNv2 convolution allows feature extrac-
tion at different scales and receptive fields, merging them to
capture details and structural information at different levels,
thereby enhancing the accuracy and robustness of feature
extraction. The structure of the DCNv2+ELAN module is
illustrated in Figure 7. The LeakyReLU activation function
is used instead of the original ReLU function, modifying all
negative weights to non-zero slopes, expanding the range
of the ReLU function, and reducing the issue of apricot
misdetection caused by environmental factors.

The DCNv2+ELAN module enhances the feature ex-
traction capability of the backbone network but introduces
increased computational load and memory access during
detection, leading to an increase in model detection time.
As apricot detection is a real-time process with high speed
requirements, aiming to deploy the model on resource-
constrained mobile operation devices, PConv (Point-wise
Convolution) is used instead of conventional convolution.
This substitution reduces the model’s computational load
while improving the hardware device’s floating-point opera-
tions per second, achieving lower detection latency. Figure
8 provides a detailed explanation of the conventional con-
volution and DCNv2 convolution processes, described by
formulas 3-5.

L =
f

F
(7)

C = h× w × k2 × c2 (8)

M = h× w × 2c× k2 × c2 (9)

In equation (7), it illustrates the relationship between detec-
tion latency (L), model computational load (f), and hardware
floating-point operations per second (F). Equations (8) and
(9) respectively calculate the computational load (C) and the
memory access count (M) during the convolution process,
where h and w represent the height and width of the input

feature map. c is the number of channels in the convolution,
and k is the size of the convolution kernel. As indicated by
equation (7), detection speed is related to both the model’s
computational load and the device’s floating-point operations
per second. The former leads to an extension of model
computation time, and the latter frequent memory access
can cause a decline in hardware processing performance.
Therefore, larger model computational load and frequent
memory access can result in increased latency. Considering
that the number of channels (c) in PConv is 1/4 of conven-
tional convolution, as per equation (8), the computational
load of PConv is only 1/16 of conventional convolution,
significantly reducing the model’s computational load. As
indicated by equation (9), the memory access count of PConv
is approximately 1/4 of conventional convolution, leading
to an improvement in hardware performance by around
four times. Thus, PConv reduces its computational load and
memory access count, optimizing both model and hardware
performance, reducing latency, and enhancing the model’s
detection speed.

IV. EXPERIMENT AND ANALYSIS

A. Experimental Setup
This paper uses the acfr-fruit dataset to meet the diversity

requirements for apricot tree recognition in complex environ-
ments and the authenticity of planting scenes. The dataset
is captured at different time periods and angles, collecting
apricot images with varying levels of density, lighting con-
ditions, and occlusion. It comprises 620 apricot tree images,
with 935 fully annotated instances. In terms of both quantity
and quality, it holds a significant advantage among similar
datasets. Examples of samples from the dataset are illustrated
in Figure 9.

In this experiment, the acfr-fruit dataset is divided into
training and validation sets. The split is based on an 8:2
ratio, considering the clarity of sample targets and the quality
of data. The training set consists of 520 samples, and the
validation set consists of 100 samples, totaling 620 samples
with 1 class of target objects. The dataset is processed
according to the YOLOv7 annotation format. The experi-
mental environment configuration includes the Windows 10
operating system, an RTX 3060 graphics card, a 4-core CPU,
32GB of memory, a 1000GB system disk, CUDA version
2.0.1, and Python language environment version 3.10. The
total number of iterations for this experiment is 300, with
a batch size set to 24. The dimensions for each detection
head are 256, 512, and 1024. Evaluation metrics include
commonly used metrics in object detection tasks: Precision
(P), Recall (R), mean Average Precision at IoU 50 (mAP50),
and the model’s parameter count. Among these, P represents
the average accuracy of the model’s detection results, R
represents the model’s recall rate, mAP50 indicates the mean
Average Precision at IoU 50, and a higher mAP50 value
corresponds to better overall model performance on detection
data. A lower parameter count results in a smaller model size.
To comprehensively verify the effectiveness of each module
in the experimental operation, multiple ablation experiments,
analysis, and comparative experiments are conducted. The
experimental results are compared with and without the
addition of the CBAM fusion attention mechanism and
feature fusion module.
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Fig. 6: ConvMixer structure

Fig. 7: Details of DCNv2 + ELAN module

Fig. 8: Convolution process of conventional convolution (a)
and DCNv2(b)

Fig. 9: An example of the dataset.

B. Ablation Experiments

In the ablation experiments, two modules are selected for
investigation to better study the impact of different modules
on the performance of the YOLOv7 model. Ablation exper-
iments are conducted on the CBAM, ConvMixer, DCNv2,
and PConv modules. CBMA and ConvMixer are collectively
referred to as attention mechanism modules, while DCNv2
and PConv are combined as feature fusion modules for
separate testing. The ablation experiments, as illustrated,
involve comparing neural network models utilizing different
modules. Recall and precision are used as evaluation criteria,

effectively demonstrating the effectiveness of the YOLOv7
model.

In Table 1, it can be observed that the improved model
achieves an accuracy of 0.755 and a recall of 0.712. It’s
worth noting that, with the addition of the PConv module, the
model’s accuracy has slightly decreased. This is attributed to
the primary purpose of the PConv module, which is to reduce
the model’s parameter count. We believe that the precision
loss here is only 0.006, but it contributes to a better balance
between speed and accuracy. Therefore, we choose to retain
this module for subsequent experiments.

C. Comparative Experiments

In the comparative experimental evaluation of the model,
we selected YOLOv3, FastRCNN, YOLOv5, SSD, and
YOLOv7 for comparative experiments, evaluating precision,
recall, and mAP. The number of labels is 935, and the
selected image size is 640*640. The experimental results are
shown in Table 2.

In Table 2, analyzing the mAP values, the best-performing
model is YOLOv7-DC proposed in this paper, with a mAP
value of 0.758, which is a 6.2% improvement compared to
the original YOLOv7 model. The worst-performing model
is FastRCNN, with a mAP value of only 0.523. This is
because FastRCNN, as a classic two-stage model, is not
sensitive to the occlusion situations and the imbalance of
samples in the apricot dataset. In the evaluation of recall and
precision, YOLOv7-DC still maintains good performance
compared to other algorithms, especially in the evaluation
of precision, showing a 7.6% improvement over the original
model. However, there is not a significant increase in recall.
Nevertheless, this still demonstrates the effectiveness of the
model. We present detailed data comparison curves in Figure
6, showing precision, recall, F1, and mAP, which better
illustrate the difference between the improved model and the
original model.

We present detailed data from the experimental process
in Figure 10, illustrating the variations of real data and test
data during the training process. Additionally, we provide a
detailed display of the experimental results obtained at each
iteration.

Finally, the model, trained based on the evaluation of its
parameter count and inference speed. The size of the model’s
parameters and fps values are used as evaluation metrics.
Experimental results prove the effectiveness of retaining
PConv, further validating our assumption of balancing speed
and accuracy. The trained weights also justify the previously
mentioned slight decrease in accuracy by 0.006. In Table
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TABLE I: Comparison of Ablation Study

YOLOv7
Attention mechanism module Feature fusion module

accuracy Recall
CBAM ConvMixer DCNv2 PConv

YOLOv7-1 ✓ 0.679 0.708

YOLOv7-2 ✓ ✓ 0.718 0.674

YOLOv7-3 ✓ ✓ ✓ 0.725 0.650

YOLOv7-4 ✓ ✓ 0.702 0.715

YOLOv7-5 ✓ ✓ ✓ 0.696 0.711

YOLOv7-6 ✓ ✓ ✓ ✓ 0.742 0.698

YOLOv7-7(ours) ✓ ✓ ✓ ✓ ✓ 0.755 0.712

Fig. 10: Demonstration of the training process

TABLE II: Comparison of Ablation Study

Labels Size P R Map@.5

YOLOv3 935 640*640 0.502 0.631 0.578

Fast RCNN 935 640*640 0.513 0.511 0.523

YOLOv4 935 640*640 0.532 0.521 0.536

YOLOv5 935 640*640 0.602 0.614 0.623

SSD 935 640*640 0.521 0.645 0.592

YOLOv7 935 640*640 0.679 0.708 0.696

YOLOv7-DC(ours) 935 640*640 0.755 0.712 0.758

TABLE III: Model parameters and inference speed

Parameters/kb FPS

YOLOv3 120519 39

YOLOv4 182421 65

YOLOv5 104106 47

YOLOv7 115231 79

YOLOv7-DC£¨ours£© 100251 93

4, it can be observed that YOLOv7-DC performs the best,
demonstrating significant advantages in both parameter count
and FPS.

D. Visual Result Analysis

The confusion matrix is an essential tool for evaluating
the performance of object detection models. It helps the
model better focus on important features during training and
prediction. The figure 12 displays the parameters recognized
by the improved YOLOv7 model and the original model in
the confusion matrix.

It can be observed that the results obtained by the
YOLOv7-DC model are 0.72, 1.00, 0.28, while the original
model’s results are only 0.70, 0.00, 0.26. The improved
YOLOv7 model may perform better in apricot detection. In
this experiment, we showcase the visualized results, indicat-
ing that YOLOv7-DC can more accurately identify apricot
harvesting targets in complex environments. The figure below
demonstrates the recognition performance in situations with
complex backgrounds and dense tree branches.

In Figure 11, the detection results of 9 images in complex
backgrounds are showcased, and the model continues to
maintain good detection performance. Particularly in the fifth
image, the model exhibits a low rate of false negatives. How-
ever, in the 8th image, the apricot in the bottom left corner is
not detected, likely due to multiple factors such as lighting
and color. The best performance is observed in the first
image, achieving nearly 100% detection accuracy. Finally,
we show the recognition effect of one set of images. This is

IAENG International Journal of Computer Science

Volume 51, Issue 12, December 2024, Pages 2135-2144

 
______________________________________________________________________________________ 



Fig. 11: Detection effect display

(a) (b)

Fig. 12: Comparison with confusion matrix. (a) YOLOv7.
(b) YOLOv7-DC.

shown in Figure 13. In order to show that YOLOv7-DC can
more accurately identify apricot picking targets in complex
environments, Figure 14 shows the recognition effects of
different algorithms in the case of complex backgrounds
and dense branches. Four images are detected each time.
In Figure 14, the first column shows the detection effect

of YOLOv3, the second column shows the detection effect
of YOLOv5, the third column shows the detection effect of
YOLOv7, and the last column shows the detection effect of
YOLOv7-DC. In Figure 14, the detection effects of different
algorithms on four images with complex backgrounds are
shown in total, and the YOLOv7-DC model still maintains
a good detection effect. Especially in the third image, we
can see that the miss rate of the model is not high. In
the fourth image, the apricot in the lower left corner is
not detected, which is caused by multiple factors such as
illumination and color. The best performance is the second
image, which achieves almost 100% detection. Compared
with the detection results of the other three models, the
performance of the model can be seen more intuitively.
In summary, YOLOv7-DC maintains excellent performance
across various evaluations, especially when facing complex
scenarios, demonstrating robust detection capabilities with
the improved algorithm.
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Fig. 13: Comparison of complex background detection effects

(a) (b)

(c) (d)

Fig. 14: Detection effect display with others. (a) YOLOv3. (b) YOLOv5. (c) YOLOv7. (d) YOLOv7-DC.

V. CONCLUSION

This paper introduces an enhanced model based on
YOLOv7, which improves detection performance by inte-
grating the CBAM attention mechanism and feature fusion
module. The improved model, after training, demonstrates
good detection accuracy and speed on various apricot tree
samples. It not only enhances the average detection accuracy
for each sample category but also significantly improves
the average accuracy for imbalanced sample categories.
Apricot tree detection and recognition hold important ap-

plication potential in agriculture and health care. However,
challenges posed by complex environmental factors such
as lighting variations, shadows, dense foliage, and uneven
sample distribution hinder the desired performance in apricot
detection and recognition, impacting subsequent processing
tasks. Previous research has not adequately addressed these
factors, resulting in unstable model performance in real-
world scenarios. YOLOv7-DC provides an effective solution,
serving as a reference for future research. In the practical
harvesting of apricot, detection and recognition are just the
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initial steps. Subsequent research will primarily focus on
aspects such as counting and analyzing apricot maturity.
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