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Abstract—Safety equipment detection is an important

application of object detection, receiving widespread attention
in fields such as smart construction sites and video surveillance.
Significant progress has been made in object detection due to
the rapid development of deep learning. Multi-scale targets and
complex scenes increase the likelihood of false positives and
missed detections, which can affect the accuracy of the detection.
To address this issue, this study proposes YOLOv7-DSE. It is a
small complex target scene detection network based on the
improved YOLOv7. Also, we have created a private dataset of
safety equipment. First, we enhanced the ELAN and MP
backbone networks. Backbone is replaced by ordinary
convolution by the depthwise separable convolution. We
enabled the backbone network to extract deeper image features
without increasing the amount of parameters and computation.
Simultaneously, the model incorporates the EIOU loss function
to improve its convergence speed and positioning effect.
Secondly, we propose a new ELAN-SPD structure in the head
network. Based on the ELAN structure, a space-to-depth
convolutional layer is added to fully downsample the feature
map, preserving all learnable features. Our network model can
better detect objects with significant size differences faced with
complex scenes. YOLOv7-DSE achieved the mAP of 82.38%,
surpassing the original YOLOv7 with 2.64%. The
YOLOv7-DSE model has a minor size compared to the baseline
model. Our improvement has reduced the model parameters by
22.4%.

Index Terms—space-to-depth convolution, YOLOv7, Object
detection, EIOU

I. INTRODUCTION
HE rapid growth of the power industry has been
accompanied by numerous high-risk incidents and

frequent safety operation accidents. A primary cause of these
safety accidents is the improper use or failure to wear
electrical safety equipment by workers. This may result from
prolonged exposure to high-voltage environments or the
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disregard for personal safety measures. It is an urgent issue to
enhance the inspection of electrical operation safety
equipment used by workers. Traditionally, safety equipment
inspection involves personnel supervision. Workshop
supervisors take turns to conduct visual observations. This
method is inefficient and costly. Subjective results are not
conducive to identifying safety hazards. Consequently, there
is an urgent need within the traditional electricity industry for
a more efficient and lightweight algorithm to inspect
operation safety equipment.
With the development of computer vision technology,

object detection has become an important area of research in
computer vision. The developmental process can be broadly
categorized into the subsequent phases: hand-crafted
feature-based object detection, which began from 2001 to
2012. The earlier object detection techniques involved a
combination of machine learning algorithms, like Haar
features[1], HOG features[2], SVM[3], and Adaboost[4],
along with hand-crafted features. Those methods were
effective during that time but lacked universality and
exhibited weak performance while dealing with intricate
scenarios. Object detection methods based on deep learning
arose in 2012-2016. It all started with the application of deep
neural networks in the 2012 ImageNet[5] competition, as
demonstrated by AlexNet[6]. Since then, deep learning has
garnered significant interest from researchers in the field of
computer science. In 2014, Ross Girshick's RCNN[7] made
the target detection method based on deep learning surpass
the hand-crafted feature method for the first time. In 2015,
Fast R-CNN further improved its speed while maintaining its
accuracy. In the same year, the YOLO[8] algorithm was
proposed to further improve detection speed and accuracy.
These algorithms all use convolutional neural networks
(CNN) to extract features from images, which are then
combined with classifiers or regressors for object detection.
Object detection algorithms based on a one-stage method
have been used since 2016. One-stage method directly
regresses the position and category of objects from images,
without generating candidate boxes first. While these
methods have faster detection speeds, their accuracy is
relatively lower. Examples of mature one-stage methods
include SSD[9], YOLOv2[10], RetinaNet[11], and
CornerNet[12]. Object detection algorithms based on
two-stage methods have been used since 2018. Two-stage
object detection methods generate candidate anchor boxes
first and then classify and regress the positions of objects
within those candidate anchor boxes. Compared with
one-stage methods, two-stage methods usually have higher
accuracy but slower detection speed. Examples of
well-known two-stage object detection methods are Faster
R-CNN [13], Mask R-CNN [14], and Cascade R-CNN [15].
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Deep learning-based object detection technology has seen
extensive adoption in engineering construction in recent
years. As a result, experts and scholars worldwide have
shown a heightened interest in algorithms that detect safety
equipment usage. Given that safety helmet detection
algorithms are relatively mature. However, there is a scarcity
of research on the detection of other safety equipment used
during operations. This study aims to enhance the detection
methods for worker safety equipment by leveraging safety
helmet detection techniques. Therefore, it is necessary to
investigate the current state of research on safety helmet
detection algorithms.
Many researchers have attached the importance of the

detection of safety helmets. Wen et al. [16] proposed a
circle/arc detection algorithm based on the improved Hough
transform in 2003 and applied it to detect safety helmets in
ATM monitoring systems. Rubaiya et al. [17] proposed a
human detection algorithm in 2016, which combines the
frequency domain information of the image with the
Histogram of Orientation for the detection of construction
workers. Li et al. [18] proposed the ViBe background
modeling algorithm in 2018. Pedestrians are located
accurately and quickly by using a real-time human
classification framework. The framework relies on the
segmentation results of moving objects. Finally, head
positioning, color space transformation, color feature
recognition, and other methods are used to detect wearing
helmets according to the pedestrian detection results. Wu et
al. [19] enhanced the YOLOv3 network model in 2018. It
effectively overcomes challenges such as varied helmet
colors, partial obstruction, multiple objects, and low image
resolutions.
After analyzing the research, specific areas need

improvement in the algorithmic investigation of deep
learning-based detection of safety equipment. (1) Building
comprehensive datasets is a priority. Current detection
datasets for safety operation equipment are scarce, with

limited coverage and scenes. A larger and more diverse
dataset is necessary to enhance algorithm robustness.
Therefore, it is necessary to build a larger and diversified
dataset to improve the robustness of the algorithm. (2)
Additionally, multi-category safety equipment testing should
be considered. Workers in electrical environments require
various equipment, including insulating gloves and safety
operating bars. (3) Finally, the optimization of the algorithm
cannot be overlooked. The safety equipment detection
algorithm faces challenges. Identifying small targets and
lightweight detecting models necessitate further optimization.
Our paper proposes a safety operation equipment detection
algorithm. Compared with the baseline network, our network
has better performance on detection accuracy and model size.
The main contributions of this paper are in four aspects. (1)
We propose a detection method for workers' electrical safety
equipment based on an improved YOLOv7 network model.
The depthwise separable convolutions are used to replace the
convolutions in the MP1 and ELAN of the backbone. And
SPD is used to replace the convolution of ELAN on the head.
(2) We have built a set of private data sets to make the
network model achieve better performance. (3) We introduce
the EIOU calculation in the loss function. It uses the
minimum difference between the width and height of the
target anchor box. It improves the localization effect of the
model's object detection box in complex scenes. (4) We have
done relevant comparative experiments and ablation
experiments to verify the performance improvement of the
network model.
The remainder of this paper is organized as follows:

Section I describes the current national and international
related work on safety equipment detection. Section II
introduces the baseline YOLOv7 network. Section III
describes our proposed DSConv, SPD, and EIOU in detail.
Section IV describes our experimental procedure and
discusses the experimental results in detail. Conclusions and
introspection are presented in Section V.

Fig. 1. YOLOv7 Network Structure
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The opening section explores the context of network
models. The evolution of computer vision and advances in
object detection techniques are involved in Section I.
Furthermore, the section reviews the historical progress of
safety equipment and summarizes the limitations of
contemporary research. Subsequently, the section outlines
the contributions and related works of this paper. Finally, the
section discusses the organization of future sections.

II. THEMODEL STRUCTURE OF YOLOV7
Wang et al. [20] proposed YOLOv7. It is one of the

well-known object detectors that has both accuracy and speed.
The network structure is depicted in Figure 1. It comprises
three main components: the image input component, the
backbone feature extraction component, and the head feature
fusion component.

A. Input
The input part of the YOLOv7 network model uses the

following four tricks. Mosaic data enhancement uses four
images for random scaling, clipping, and arrangement. It
mainly solves the problem of small object detection. It
enhances the dataset and amplifies the number of minor
targets after random fragmentation and recombination. In
turn, it enhances the robustness of the network model.
Adaptive computing of anchor boxes utilizes a combination
of genetic algorithms and K-means clustering to calculate the
optimal frame. The predicted values are then used to
calculate the best possible recall rate of the frame, achieving
the purpose of random data augmentation. The self-adaptive
anchor frame changes from the conventional approach.
Instead of scaling the source image to a standardized size
before feeding into the backbone network, it adjusts the
anchor frame dynamically. It dynamically adjusts the
minimum amount of black borders required based on the
actual usage scenario. This eliminates the redundancy of
information and improves the processing speed. YOLOv7's
input reuses YOLOv5's preprocessing mode as a whole. We
think that this preprocessing mode is mature in the field of
target detection. Next, we analyze the backbone and head to
find out what can be improved.

B. Backbone Network YOLOv7
The backbone feature extraction network part of the

YOLOv7 algorithm model is composed of four CBS
structures, ELAN structures, and MP1 structures. The
convolution layer, batch normalization layer, and activation
function layer are coupled together to form a CBS structure.
The four CBS architectures have distinct strides. They utilize
convolutions with a stride for feature extraction and
convolutions with two strides for downsampling. The ELAN
architecture separates the input feature matrix into two
channels. One of the channels passes through a single CBS
module. Another channel is combined with five additional
CBS modules. Two channels will flow through a final CBS
module. ELAN structure is an exceptionally efficient
network architecture. It is capable of regulating the shortest
and longest gradient paths. This capability enables the
network model to learn more features and increases its
robustness. MP1 structure performs sufficient downsampling
of the image through two branches. One approach involves

passing the data through a maximum pooling layer followed
by a 1×1 convolution to adjust the number of channels. The
other method uses a 1×1 convolution followed by a 3×3
convolution for downsampling. To achieve more image
features without adding parameters to the network model, we
need to modify the convolutional layer of the backbone
network.

C. Head Network YOLOv7
The head part of the YOLOv7 algorithm model converges

the feature maps extracted from the backbone feature
network via SPPCSPC, CBS, MP2, and ELAN-R. The output
terminal utilizes the RepVGG structure, producing prediction
results in three distinct sizes. The SPPCSPC module divides
the input feature matrix into two branches. One branch goes
through three CBS modules that perform pooling and
splicing operations at core dimensions of 5×5, 9×9, and 13×
13, respectively. Upon traversing two CBS modules, the
second branch proceeds to a CBS module dedicated to
channel fusion. The ELAN-R module is highly similar to the
ELAN module, differing only in the number of channels. The
integration occurs in the channel fusion module following the
completion of a single CBS module on the second branch.
The MP-2 module resembles the MP-1 module but has a
double number of channels. YOLOv7's head architecture
bears similarity to the YOLOv5 within the family system
model. However, it remains anchor-based, lacking
decoupled heads for classification and prediction.
Consequently, the unique fusion effect for detection is
underemphasized. Thus, enhancing the head network is
essential to improve small object detection efficacy.
This section delves into the strengths and weaknesses of

the YOLOv7 network model. YOLO models are designed for
speed. It is necessary to strengthen the capability of the
backbone network for efficient feature extraction and refine
the head network to enhance the accuracy of target detection.
These are crucial aspects to be tackled in this study.
Specifically, the network model will be optimized to better
cater to smaller targets and as a result, enhance the detection
efficiency of safety operation types of equipment for
workers.

III. YOLOV7-DSE
The main structural improvements proposed for YOLOv7

are as follows: Depthwise separable convolutions are used to
replace the standard convolutions in the MP1 and ELAN
components of the backbone. The Head network introduces
space-to-depth convolutions to enhance small object
detection. The proposed detector's structure, YOLOv7-DSE,
is illustrated in Fig 2.

A. Backbone Network MP1-DSC and ELAN-DSC
In our selected baseline network model, the backbone

network is essential for extracting features from images. We
have improved the backbone to reduce the volume of the
model. We have configured the network application
background to be in the power operation site. Consequently,
our goal is to reduce the model's parameter count and
computational complexity. As a result, we have enhanced the
depthwise separable convolutional layer [21] within the
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backbone network.
Depthwise separable convolution is composed of two

separate stages: depthwise and pointwise convolutions.
Depthwise separable convolution extends the standard
convolutions by applying them independently to each input
channel. This stage is succeeded by pointwise convolution,
which maps the depthwise convolution's output channels into
a new channel space. The depthwise separable convolution
process is illustrated in Fig. 3.
To showcase the enhanced performance, we must calculate

and compare the parameters and computational costs of
standard convolution against depthwise separable
convolution. This enables us to reach well-informed
conclusions. W denotes the width of the convolutional kernel,
while H signifies its height. Cin represents the number of
input channels, and Cout represents the number of output
channels. The parameters P can be expressed as follows:

in outP W H C C    (1)
W’ represents the width of the image, H’ represents the

height of the image, and the calculation result C can be
expressed as:

( ' 1) ( ' 1) in outC W H W W H H C C         
(2)

Taking a 5×5 image input with 3 channels as an example.
We achieve a 3×3×4 feature map by regular convolution
requires a 3×3×3×4 convolution kernel. The parameter
quantity of its convolutional layer is:

3 3 4 3 108conP      (3)
The computation quantity of its convolutional layer is:

3 3 (5 3 1) (5 3 1) 3 4 972conC            (4)
When applying depth-separable convolution, begin by

completing the depthwise convolution process. Then,
proceed to a filter of just a 3×3 convolutional kernel. Finally,
use pointwise convolution to generate a feature map of 3×3
×4, for which a 1×1×3×4 convolutional kernel size is
necessary. The parameter quantity of the DSC convolutional
layer is:

3 3 (5 3 1) (5 3 1) 3 4 972
dsc depthwise pointwiseP P P 

           (5)
The computation quantity of its convolutional layer is:

3 3 (5 2) (5 2) 3 1 1 3 3 3 4 351
dsc depthwise pointwiseC C C 

             
(6)

Depthwise separable convolution uses fewer computations
and parameters compared to standard convolutional layers
for producing feature maps of equivalent size. Consequently,
given the same computational budget and parameter
constraints, depthwise separable convolution can be applied
to deepen the neural network layers. We utilize it on the
backbone network to extract more advanced image features,
thereby enhancing the performance of the baseline network
model. Section V presents ablation experiments that
underscore the effectiveness of depthwise separable
convolution in feature extraction.

B. Head Network ELAN-SPD
The main function of the network model's head component

Fig. 2. YOLOv7-DSE Network Structure

Fig. 3. Process of DSC
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is to identify target categories and positions in feature maps
generated by the backbone network. Traditional CNN
networks generally perform well with high-resolution images
and reasonably sized detection targets.However, this method
often produces a large amount of redundant pixel information.
Small targets usually provide limited information for the
network model to learn and are characterized by lower
resolutions. Detecting small targets continues to be an
extremely challenging task. In many cases, small and large
targets coexist in the same images. This coexistence can
affect the network model's deep learning process, potentially
leading to undetected small targets.
To address this challenge, we incorporated the SPD

(space-to-depth) convolutional layer [22] into the head
network. ELAN-SPD is an adaptation of the ELAN module
in YOLOv7, enhanced by the addition of the SPD module to
improve small object detection performance. The main
differences between ELAN-SPD and ELAN lie in the CBS
layer. The ELAN structure is shown in Fig. 4. And the
improved module structure is demonstrated in Fig. 5. SPD
convolution addresses the limitations of typical CNN models
and enhances them. It effectively prevents information loss
due to stride convolution and pooling operations. It ensures
crucial data retention for the model to learn. Using
convolution with one stride can retain more fine-grained
features and prevent the feature information loss associated
with larger convolution strides.
P represents the proportion of the original image, S refers

to the sub-feature map, O denotes the original feature map, M
stands for the intermediate feature map, A represents the
length and width of the feature map, K1 signifies the depth of
the feature map, and K2 represents the filter. The operational
principle of SPD is as follows: The original image is
partitioned into several sub-feature maps. If the original
feature map O(A, A, K1) is uniformly divided based on
component O(P, P), then (x/P×y/P) sub-feature maps are
obtained. Downsampling the segmented sub-feature maps,
when P=2, four sub feature maps S0,0, S1,0, S0,1, S1,1 can be
obtained, and the size of each sub feature map is (A/2, A/2,
K1). At the same time, the original feature map O underwent
downsampling at a multiple of 2. The sub-feature maps S0,0,

S1,0, S0,1, S1,1 downsampled and concatenated into the
intermediate feature map M based on channel dimensions.
The spatial dimension of M has been changed to 2 and the
number of channels has been doubled.These feature map
changes can be expressed by the following formulas as:

0 0

0

[0 : : ,0 : : ]
[1: : ,0 : : ]

S O A P A P
S O A P A P




，

1，

…

1 0 [ 1: : ,0 : : ]
[0 : : ,1: : ]
[1: : ,1: : ]

PS O P A P A P
S O A P A P
S O A P A P

  





，

0,1

1,1

…

1, [ 1: : ,1: : ]PS O P A P A P  1

…

1, [ 1: : , 1: : ]P PS O P A P P A P    1

(7)
After the SPD feature layer, a non-strided convolutional

layer with K2 filters is incorporated. The futher
transformation of original feature is from O(A, A, K1) to
F(A/P, A/P, K2 ). And the implementation of non-strided
convolutional layer can retain maximum discriminative
feature information and avoid the loss of feature information
caused by convolution stride size. The process of SPD can be
illustrated in Fig. 6.
We enhanced the ELAN of the YOLOv7 head network by

implementing the SPD convolution module to create the
ELAN-SPD. Targets with small resolutions are divided into
multiple sub-feature maps, which are merged into
intermediate feature maps. Discriminative information is
isolated using the K2 filter. Finally, feature information is
extracted from the original image.

C. Loss Function EIOU
The baseline model in this paper employs the CIOU loss

Fig. 4. Structure of ELAN

Fig. 5. Structure of ELAN-SPD

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 572-581

 
______________________________________________________________________________________ 



function [23]. It takes into account three crucial geometric
factors: the overlapping area, distance between center points,
and transverse longitudinal ratio. Set the prediction box to P,
the target box to Pgt, and c and cgt represent the center points
of the prediction box and the tagets box respectively.
E represents the Euclidean distance between two center

points, and d represents the diagonal length of the minimum
bounding box that can cover the prediction box and the target
box. And w, wgt represent the widths of the prediction and
target boxes, res, while h and hgt represent the heights of the
prediction and target boxes, respectively. β represents the
weight function, where v measures the difference in the
aspect ratio. It can be represented by the following formul as:

2
2

4 (arctan arctan )
gt

gt

w w
h h




 
(8)

=
(1 )

v
IOU v


  (9)

CIOU loss function can be expressed by the following
formula:

 2

2

,
1

gt

CIOU

b b
L IOU

C


   
(10)

Prior experiments have shown that the CIOU loss function
significantly improves convergence and detection rates over
its predecessor. However, the definition of variable v, based
solely on the aspect ratio difference, can occasionally hinder
the effective optimization of model similarity. Consequently,
we refined the baseline loss function by adapting it to the
EIOU loss function [24], introducing an innovative loss
computation method. The EIOU calculation method is shown
in Fig. 7.

The loss function is comprised of three components: IOU
loss, distance loss Ldis, and positioning loss Lasp. The values
of the width and height of the smallest frame covering the
predicted and target frames are denoted by hw and hc,
respectively. The EIOU was calculated as:

dis asp

2 2 2

2 2 2 2

+L

( , ) ( , ) ( , )1
( ) ( ) ( ) ( )

EIoU IoU

gt gt gt

c c c c

L L L

E c c E w w E h hIoU
w h w h

 

    


(11)

This approach allows for the retention of the advantageous
properties of the CIOU loss function while also allowing for
the direct minimization of the disparity between the width
and height of the predicted and intended bounding boxes
through the application of EIOU loss. It can enhance the
localization accuracy and convergence speed of anchor boxes
in object detection. These effects enable model to percorm
more accurately in complex scenriors of work space. And the
detection performance can be improved.

IV. EXPERIMENTS

This section provides an elaboration of the experimental
dataset, and details the data analysis and data preprocessing
procedures. Therefore it introduces com used evaluation
metrics for object detection and conducts comparative
experiments as well as ablation experiments.

A. Data Sets
In deep learning, the quality of our dataset often

determines the effectiveness of our training. To guarantee
successful training, we compiled a private dataset of
representative images from diverse sources. It encompasses
images from power worksites and internet. The dataset
includes 2613 high-definition images, each with a pixel value
of 4032×3024. We utilized LabelImg to annotate our target
categories and location information for each image in the
dataset.And we converted them into the XML format needed

Fig. 6. YOLOv7-DSE Network Structure

Fig. 7. EIOU Calculation Method

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 572-581

 
______________________________________________________________________________________ 



for training. Our dataset features six label types: Badge
(monitoring armband), Person (all present), Glove (insulated
gloves), Wrong Glove (non-insulated gloves), Operating Bar
(insulated operating bar), and Power Checker (test pen).
Table I displays examples of each dataset label.

TABLE I
LABEL SAMPLE DIAGRAM

Name of Label Description Image Style

Badge
Supervisors at the
work site wear red

armbands

Glove
Insulating gloves
worn by workers at

the work site

Wronggloves Lack of insulated
gloves

Operating bar Insulated operating
bar

Person All present

Power checker High voltage
testing pen

Using original high-resolution images in the training set
may hinder the detection of smaller targets. Therefore, this
study preprocesses images by applying enhancements like
rotation, flipping, cropping, and scaling. This not only boosts
training efficiency, but also enhances small target detection
and the model’s generalization capability.On the one hand, it
improves our training efficiency.

B. Experimental Evaluation Factors
In deep learning, we applied the confusion matrix for

evaluation using precision, recall, and mAP values were used
as indicators of experimental evaluation. R denotes the recall
rate, the percentage of correctly predicted samples by the
model in the original set. It can be expressed as:

Recall TP
TP FN


 (12)

P represents accuracy, which refers to the proportion of
correct samples to all samples in the original sample. It can be
expressed as:

Precision TP
TP FP


 (13)

In the experiment, another parameter is needed to combine
recall and accuracy, namely average accuracy mAP. To
measure the performance of the network model, which can be
expressed as:

1

1 n

k i
k

mAP AP X
k 

 
(14)

C. Experimental Configuration
The computer operating system used in the experiment

was Windows 10, with a CPU model of Intel (R) Core (TM)
i7-10700F CPU @ 2.90GHz, a GPU model of Geforce
RTX3070, 16GB of graphics memory, and 16GB of memory.
The model is based on Python 1.8, using CUDA version 11.0
and Cudnn version 8.0.4. Utilizing pre-trained weights from
YOLOv7 and the Adamax optimizer, we addressed data
insufficiency and significantly improved the learning speed
and accuracy of our network model. We configured the batch
size to 16 and the learning rate to 0.001 to prevent model
overfitting, closely tracking the loss value of the worker
safety equipment detector’s bounding boxFigure 8 illustrates
that after 100 epochs, the training and validation loss values
of our detector converged.
We diligently monitored recall and accuracy to maintain

optimal performance of the network model during training.
Table II presents variations in recall and accuracy over
various epochs, indicating that our model reached peak recall
and precision after 100 epochs.

D. Comparison of Other Models
In the study, to showcase the improved performance of our

network model, we conducted horizontal comparative
experiments utilizing the same dataset and experimental
settings. Compare the method proposed in this study with
those proposed in seven other sources from the literature,
including YOLOv4 by Alexey Bochkovskiy et al. [25], and
Faster RCNN by Shaoqing Ren et al. [26]. RCNN by Ross

Fig. 8. Training and Validation Losses for YOLOv7-DSE
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Girshick et al. [27], YOLOv5 by Glenn Jocher et al.
CEAM-YOLOv7 by S Liu et al. [28], YOLOv7-RAR by Y
Zhang [29], and YOLOv7 by Chien Yao Wang et al. [30]

Figure 9 illustrates that the YOLOv7 algorithm achieves a
precision of 86.23% for detecting all categories when the
confidence threshold is set to 0.5. Figure 10 demonstrates that
the improved YOLOv7-DSE algorithm achieves a higher
precision of 90.41% for detecting all categories at the same
confidence threshold of 0.5. YOLOv7-DSE has improved the
precision by 4.18%.

Figure 11 portrays that the YOLOv7 algorithm achieves a
recall of 90.38% for detecting all categories when the
confidence threshold is set to 0.5. Figure 12 demonstrates that
the improved YOLOv7-DSE algorithm achieves higher
recall of 93.72% for detecting all categories at the same
confidence threshold of 0.5. YOLOv7-DSE has improved the
recall by 3.34%.

TABLE II
TRAINING PROCESS OF YOLOV7-DSE

Epoch Recall(%) Precsion (%)

0 0 0
10 82.6±0.05 74.2±0.05
20 85.8±0.03 76.1±0.04
30 86.3±0.05 77.3±0.03
40 90.1±0.04 79.4±0.04
50 91.2±0.03 80.7±0.03
60 91.4±0.05 82.9±0.05
70 91.8±0.05 84.5±0.05
80 92.5±0.04 86.4±0.04
90 93.1±0.03 88.9±0.02
100 93.7±0.03 90.4±0.02

Table III showcases the mAP performance metrics for
each model. Horizontal comparison tests revealed that our
improved network model surpasses the performance of other
models on our custom dataset. Results demonstrate a 2.7%
mAP improvement of our model over the YOLOv7 baseline.
The optimized YOLOv7-DSE algorithm has a model size of
only 73.1MB, which is a 22.4% reduction compared to the
baseline network YOLOv7. This demonstrates that the model
has achieved a lightweight effect. Furthermore, Figure 13
shows mode enhanced detection of small objects.

TABLE III
THE COMPARISON OF MODELS

E. Ablation Study
This paper introduces four modules aimed at enhancing

performance. The ablation study seeks to validate the
performance enhancements contributed by each module indi-

Fig. 9. Precision for YOLOv7

Fig. 10. Precision for YOLOv7-DSE

Fig. 11. Recall for YOLOv7

Fig. 12. Recall for YOLOv7-DSE

Models mAP F1 Model
size

Miss
rate

RCNN 52.67% 0.54 514.2MB 0.1%

Faster-RCNN 58.96% 0.60 523.6MB 0.08%

YOLOv4 72.94% 0.74 103.2MB 0.06%

YOLOv5 75.75% 0.74 101.6MB 0.06%

YOLOv7 79.74% 0.80 94.2MB 0.05%

YOLOv7-DSE 82.38% 0.84 73.1MB 0.04%

CEAM-YOLOv7 80.44% 0.81 96.4MB 0.04%

YOLOv7-RAR 79.86% 0.79 84.3MB 0.05%
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TABLE IV
ABLATION STUDY

Baseline YOLOv7 MP1-DSC ELAN-DSC ELAN-SPD Epoch Batchsize mAP Model
size

√ 100 16 79.74% 94.2MB
√ 100 16 80.25% 81.7MB
√ √ 100 16 80.57% 70.3MB
√ √ √ 100 16 82.38% 73.1MB

-vidually to the entire model. Modules were sequentially
integrated into the original algorithm and tested at each stage
using mAP and model size as the metric. The ablation
experiment was conducted on YOLOv7, and the modules
included in the sequence are MP1-DSC, ELAN-DSC, and
ELAN-SPD. Experimental results are detailed in Table IV.
Results indicate that each module contributes to the overall

model performance enhancement. Notably, ELAN-SPD
provides the most significant improvement to the overall
model. In YOLOv7, ELAN-SPD enhances the mAP of the
model by 1.29%. Finally, the MP1-DSC module and
ELAN-DSC module increased mAP by 0.51% and 0.32%,
respectively. When the optimized depthwise separable
convolution is frozen, the model's parameter count increases
by 22.4%.
To illustrate the enhancement of the SPD convolutional

layer in the head network for detecting small objects, the
mAP value was greatly improved by substituting the ordinary
convolutional layer with SPD convolutional layer. Table V
indicates that the detection capability of all small targets was
substantially enhanced. This largely resolves issues related to
inaccuracies and missed detections of small targets.

V. CONCLUSION
This study introduces an enhanced algorithm using

YOLOv7-DSE to detect workers's safety equipment.
Comparative and ablation experiments were conducted. The
experiments showed a 2.64% increase in mAP over the
baseline YOLOv7 model. The optimized YOLOv7-DSE
algorithm has a model size of 73.1MB, which is a 22.4%
reduction compared to the baseline network YOLOv7. The
enhanced YOLOv7-DSE model detects small objects with
greater accuracy than competing algorithms. The detection
results show our refined model effectively corrects false
positives and false negatives.
However, the model's comprehensive network layers

require advanced hardware and substantial memory use
during detection. This hinders its deployment in standard
embedded systems. Therefore, future research will focus on
streamlining the model for lightweight network construction
without compromising accuracy. Additionally, we will
investigate advanced object detection networks to further
address this challenge. Real-time object detection in video
streams is also one of the future research directions.

Fig. 13. Detection Results for YOLOv7-DSE

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 572-581

 
______________________________________________________________________________________ 



TABLE V
PERFORMANCE COMPARISON OF THE YOLOV7 MODELS FOR EACH CATEGORY ON THE TEST SET
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