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Abstract—Information-Centric Networking (ICN) is 

promising system architecture for distributing popular 
information across the network. Its important feature is the 
node cache. ICN with caching is a very promising featured 
network structural design. There are numerous cache nodes 
distributed in the ICN. Excessive consumption of cache 
information on a tremendous number of nodes dissipates a 
large storage space and causes data redundancy, which 
reduces the cache hit rate. Therefore, an efficient caching 
deployment approach is required to improve the cache hit 
rate. A novel RAndom probit regressive Bucklin DEcision 
Forest classifier (RADEF) technique is introduced in 
Information-Centric Networking (ICN) for minimal network 
latency and higher cache hit rate. In RADEF Technique, 
probit regression and random forest classification processes 
are carried out for ICN with healthcare patient data. First, 
the patient information is collected from different IoT 
devices and registered. Every request to the router node is 
analyzed in the content storage (CS) by using a random 
probit regressive Bucklin decision forest classifier. The 
Bucklin decision forest classifier is an ensemble technique 
that includes a set of weak learners as decision trees (i.e., 
probit regression tree) and IoHT data are selected randomly 
for each decision tree. The Probit regression tree is 
constructed to analyze the patient healthcare data request 
search in the content storage (CS) of the router node in the 
ICN network by using a simple matching coefficient. If the 
copy is present in the content storage, the particular router 
nodes are chosen and deliver the content. If the copy is 
absent, the patient information is stored in the cache. Then, 
the weak learner’s results are combined to make a strong 
output. Then the votes are generated for each decision tree. 
The votes of all decision trees are combined to identify the 
majority votes of data for classification by minimizing the 
error using the Bucklin voting method. In this way, content 
catching is effectively performed in ICN with minimum 
latency and a higher cache hit ratio. Experimental evaluation 
is carried out on factors such as cache hit rate, network 
latency, average request length, average response time, 
server traffic ratio, and hop reduction ratio regarding 
respect to the number of patient healthcare data. The 
analyzed results demonstrate the superior performance of 
our proposed RADEF technique when compared with 
existing methods. 

Index Terms—Information-Centric Networking (ICN), 

IoHT, Content catching, Probit regression, Probit decision 
tree, Bucklin decision forest classifier, Bucklin voting 
method, Content storage, Cache hit ratio 
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I. INTRODUCTION 

CN (Information-Centric Networking) has gained 

popularity as a network that mainly focuses on 

transmitted and received data. The Internet of Things applies 

the characteristics of content caching which is a typical 

feature of ICN. Therefore, designing an efficient caching 

strategy for IC-IoT is able to improve the efficiency of smart 

IoT devices. A Pre-Caching Strategy based on the 

Relevance of smart device request Content, called PCSRC 

was developed in [1] to improve the cache hit ratio and 

minimize the traffic ratio. But the network latency was not 

reduced.  In [2] a cooperative caching method was designed 

to permit distributed edge servers for cooperating with each 

other. However, the cache hit rate was not focused. 

The context-based caching mechanism was developed in 

[3] to achieve the content availability and network 

efficiency. But the average request length was not 

considered. A Co-adjuvant Caching Joint Request 

Forwarding in Information-Centric Networks (CCJRF-ICN) 

was developed in [4] to reduce the content discovery delay, 

content server load, and network congestion. The average 

request length was not minimized by ICN with the 

communication model. An effective isotonic regressive 

adaptive boost classification-based information centric 

network (IRABC-ICN) model was developed in [5] with 

IoHT data.  

A Content Placement based on Normalized Node Degree 

and Distance (CPNDD) was introduced in [6] for content 

caching.  However, the dimensions and network 

characteristics were not analyzed to improve the caching 

decisions and certainly minimize the complexity.  A 

cooperative caching method was introduced in [7] for 

information-centric IoT networks to optimize the cache hit 

rate and decrease the network delay. But the cooperative 

caching scheme was not supported the IoT with Named Data 

Networking (NDN). ICN-based caching strategies were 

developed in [8] to minimize the content retrieval latency 

and improve the cache hit ratio with a focus on IoT-based 

environments. However, the average request length was not 

reduced. 

An efficient content store-based caching strategy was 

introduced in [9] to improve the cache hit ratio, and stretch 

ratio and minimize the content retrieval latency. But it failed 

to integrate caching, forwarding, and optimizations with IoT 

technology. A fog-assisted healthcare IoT system was 

introduced in [10] to attain rapid patient data retrieval with 

minimum latency. However, the analysis of the cache hit 

ratio was not performed. 

An ICN-IoT communication model was developed in [11] 

for a high dynamic platform. However, an efficient 
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mobility-aware forwarding method was not applied to 

update the forwarding status and information while 

maintaining distributed in-caching and processing features. 

An Edge Linked Caching (ELC) method was introduced in 

[12] for information-centric IoT to minimize the response 

latency. However, the performance of ELC failed to test the 

network with rapid mobility.  A Central Control Caching 

(CCC) method was developed in [13] for energy-efficient 

IoT content caching. The method minimizes the response 

latency and increases the cache hit but it failed to extend the 

scheme with the mobility of the key feature of IoT devices. 

 

A. Major Contributions  

In order to overcome the existing issues, a novel RADEF 

technique is introduced with the following novel 

contributions. 

• To improve the caching performance in ICN-IOT, a 

novel RADEF is introduced. That is based on the 

random probit regressive Bucklin decision forest 

classifier. 

• To increase cache hit rate, RADEF uses the random 

probit regressive Bucklin decision forest classifier that 

combines the results of the weak learner as a probit 

regression tree to improve content delivery by 

analyzing the incoming patient healthcare data request 

in the content storage of the router with the help of 

simple matching coefficient. If the content is present, 

the requested data are delivered with minimum 

response time resulting in reducing the network latency. 

• Finally, comprehensive experiment evaluations are 

carried out to estimate the performance of the RADEF 

technique and other techniques along with the various 

metrics.   

B. Outline of paper 

The rest of the article is organized into six dissimilar 

sections as follows. Section 2 reviews the related works. 

Section 3 provides a brief description of the proposed 

RADEF with a neat architectural diagram. Section 4 

describes the experimental settings with the dataset 

description. In section 5, the performance results of the 

proposed RADEF with existing methods are discussed for 

different metrics. Finally, Section 6 concludes the paper. 

 

II. RELATED WORKS 

A double-layer network structure cache robustness 

strategy (CRS) was introduced in [14] based on content 

popularity and node significance. A Packet Update Caching 

(PUC) method was introduced in [15] for Energy Efficient 

IoT-based Information-Centric Networking. But the 

performance of a higher cache hit rate was not archived. A 

content popularity ranking (CPR) method was developed in 

[16] for content caching and minimizing the content 

delivery time.  

  A new content caching method was developed in [17] 

based on the hop count and bandwidth parameters to 

decrease the content redundancy and caching operations. 

However, the performance of the proposed strategy failed to 

analyze mobility-based networks and recent network 

topologies. A Context-based Cache Admission Policy 

(ctxCAP) was introduced in [18] to deal with mobile 

environments for enhancing the performance of caches. 

An enhanced ICN-IoT content caching method was 

introduced in [19] by enabling Artificial Intelligence (AI)-

based collaborative filtering to support heterogeneous IoT 

architecture. However, content retrieval latency was not 

reduced. A new ICN-based testbed approach was designed 

in [20] for naming, routing, and caching that provide 

mobility support. An efficient caching technique named 

PoolCache was developed in [21] for the effective caching 

capacity of nodes. However, the latency was not minimized. 

The content availability at a network was derived in [22] for 

ICN network topology. But it failed to analyze the content 

availability in large-scale ICN networks to investigate the 

impact of the network size on the content availability. A 

novel method called “NB-Cache” was developed in [23] to 

address CS’s performance to improve the throughput and 

minimize the latency. In [24], the combination of elliptic 

curve cryptography-based identity-based cryptosystems and 

edge nodes was implemented in order to securely manage 

the patients’ health data. In [25], Improved Context-Aware 

Data Fusion and Enhanced Recursive Feature Elimination 

Model was implemented for IoT-based patient health data.  

 

III. PROPOSAL METHODOLOGY 

Information-Centric Networking (ICN) is an assured 

network architecture used for efficiently delivering content. 

The Information-Centric Internet-of-Things (IC-IoT) 

connect more devices to the Internet, which allows for 

several significant applications like digital health to become 

a reality. Excessive deployment of cache information on a 

large number of devices wastes more storage space and 

directs data redundancy, which decreases the cache hit rate. 

Caching is the major key solution to this problem. 

Therefore, a novel caching deployment approach is required 

for cache deployment strategy and cache replacement 

strategy to greatly improve the throughput and performance 

of ICN and minimize network latency. The efficiency of 

caching also directly determines the overall performance of 

ICN. Its focus is on the delivery of data objects to the end 

user rather than communication between the client and host. 

To address these aspects, in this work a novel method 

called, the RADEF technique for accurate information 

caching with a higher hit ratio is proposed. Figure 1 shows 

the block diagram of the proposed RADEF technique for 

accurate information catching in IoHT. 

Figure 1 depicts the architecture diagram of the proposed 

RADEF technique to provide accurate information catching 

with lesser latency and higher hit ratio by implementing the 

healthcare scenario. The healthcare architecture comprises 

two entities such as patients P1, P2, P3, . . . Pn  and who send 

the patient healthcare data request DR1, DR2, DR3 . . . DRn  
collected by the IoT device. 

The ICN includes a router node ‘RN’ and cache called 

Content Storage (‘CS’). ICN routers are not only used for 

data forwarding but also cache the data during transit, 

thereby improving hop count and minimize the delay. A 

cache is a high-speed content storage layer which stores a 
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subset of data request. The efficiency of caching effectively 

improves the overall performance of ICN. 
 

 
 

Fig 1. Architecture diagram of proposed RADEF technique 

The patient healthcare data request DR1, DR2, DR3 . . . 

DRn  are obtained from maternal health care dataset through 

the IoHT device for predicting health risks of pregnant 

patients.  Then the Probit Regressive Analysis considered as 

weak classifier analyze patient healthcare data request in the 

Content Storage (‘CS’). During the regression analysis, it 

checks whether the data request with a similar name in CS. 

If the content is present, the particular router node is 

selected to place that content. If the copy is absent, the 

patient information is stored in the cache for further 

processing. In this regression analysis, a router’s cache is 

frequently hit by a patient data request and responds 

immediately with minimum latency and improves the 

throughput. The detailed process of the proposed RADEF 

technique  

 

A. Random probit regressive bucklin decision forest 

classifier-based content caching in ICN 

By applying the proposed RADEF technique, first, the 

patient healthcare data requests are collected from the 

maternal healthcare dataset with the help of an IoT device in 

order to predict the health risks of the patient during their 

pregnancy. The data obtained are formulated in matrix 

format as given below.   

 

 

Where, X denotes an input matrix which contains the 

patient healthcare data request ‘DR’ obtained from dataset 

for each patient ‘Pi’ with the features ‘Fj’. Then the request 

is forwarded to the routers for verifying whether the data 

request with similar name in CS.  

 
Fig 2. Process of data request monitoring in router 

 

Figure 2 illustrates the process of the patient healthcare 

data request monitoring in router. By applying random 

probit regressive analyzed decision forest classification, it 

checks whether the patient healthcare data request with the 

same name is present in ‘CS’. When the copy is present, the 

particular router node is selected to place the content.  If 

copy is not present, the patient information is stored in cache 

for further processing.  

The Bucklin decision forest classifier is a machine 

learning ensemble technique that converts the weak 

classification results into strong ones. The weak classifier is 

a base classification algorithm that difficult to provide 

accurate classification results. But the ensemble classifier 

provides accurate results by combining the results of the 

weak classifier with minimum error.  

Fig 3. Structural design of random probit regressive bucklin decision forest 

classification 

Figure 3 given above depicts the process of the random 

probit regressive bucklin decision forest algorithm to obtain 

strong output results. Let us consider the input of the 

decision forest algorithm is a number of patient healthcare 

data requests
 
 DR1, DR2, DR3 . . . DRn. The bucklin random 

decision forest algorithm constructs a set of weak learners as 

wi ∈ w1, w2, w3, . . ., wk from a probit regression tree. A 

probit regression tree is the machine learning technique that 

is used to analyzes patient healthcare data request search.     
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 A probit regression tree is a decision tree that includes a 

root node linked to the terminal nodes (leave node). A probit 

model is a type of regression where the dependent variable 

(i.e. outcome) takes only dichotomous or binary outcome 

variables either ‘0’ or ‘1’.  The regression tree provides a 

classification result based on Simple Matching Coefficient 

(SMC).  

Fig 4. Probit regression tree 

Figure 4 illustrates the structure of the probit regression 

tree which includes root node, branch node and leaf node. 

The regression tree is a flowchart-like structure in which 

each root node represents a ‘test’ on an input (e.g.) whether 

a patient healthcare data request with the same name is 

present in ‘CS’, each branch represents the outcome of the 

test, and each leaf node represents a class label (decision 

taken 0 or 1).  The root node uses the simple matching 

coefficient for analyzing the patient healthcare data request.  

The coefficient is a statistical method used for comparing 

the similarity and diversity of sample sets. Here, every 

incoming patient healthcare data request to the router node 

is analyzed in the content storage. The matching coefficient 

is formulated as given below, 

 
Where Mcoef  indicates a simple matching coefficient used 

to analyze the incoming patient healthcare data requests 

‘DRi’. ContentCS denotes a router node that seeks the content 

in the content storage ‘CS’. The Mcoef returns the output 

value from 0 to ‘1’.  

 
Where Mcoef returns ‘1’ indicate that the patient healthcare 

data request is present in ‘CS’. When the copy is present, the 

particular router node is selected to place the content. The 

Mcoef returns ‘0’ indicates that the patient information is not 

present in ‘CS’ and it is stored in cache for further 

processing. When the copy is present, the specified router 

node is chosen for delivering the content.   The stored 

information in cache is forwarded to the next hop router 

node for patient healthcare data analysis. 

The base classification technique is not accurate. In order 

to obtain strong results, the entire weak learner’s results are 

combined.  The strong classification results are achieved by 

summing all the weak learner results as given below, 

 
Where, Y denotes an outcome of the ensemble technique, 

wi denotes a predicted result of base classifier (i.e. probit 

regression tree). For each weak learner, the error is 

computed based on the difference between the actual and 

predicted outcomes. Therefore, the error is mathematically 

formulated as given below, 

 
From (5), Er  indicates an error, Ya stands for the actual 

outcomes, Y indicates observed results. After that, the 

Bucklin Voting is applied to rank the results based on the 

error rate. 

The weak learner results having the minimum errors are 

ranked first than the other results. After the ranking process, 

the result with a higher error is removed. This process helps 

to improve the accurate results and minimizes the 

complexity of achieving the ensemble results. This voting 

scheme also prevents an undesirable outcome. Finally, the 

obtained results of weak learners are counted, and identifies 

the majority votes to be elected. 

Y = arg maxk  q(wi)                                    (6) 

From (6), Y signifies the strong ensemble learning 

outcomes, arg max represents an argument of the maximum 

function to find the majority votes (q) of the output ‘Wi’ 

whose conclusion is identified to the kth weak learner 

results. Finally, the ensemble technique results provide the 

majority of the output as final results.  In this way, the 

incoming patient healthcare requests are processed and to 

provide the faster data response speed. This helps to 

minimize the traffic in ICN. As a result, the proposed 

technique accurately responses the number of requests in 

specific time interval resulting it improves the cache hit 

ratio.  The algorithm of random probit regressive bucklin 

decision forest classifier technique is given below.  
Algorithm 1: Random probit regressive bucklin Decision 

Forest classifier-based Information-Centric Networking 

Caching 

Input:  Dataset ‘DS’, features ‘F = F1, F2, . . . , Fn’, 

Router node ‘RN = RN1, RN2, . . . , RNn’, patient 

healthcare data requests DR1, DR2, DR3 . . . , DRn  

Output:   Improve the data transmission  

Begin  

Step 1: for each Dataset ‘DS’ with Features ‘F’ 

Step 2: Formulate input with data requests DR1, DR2, DR3 

. . . , DRn  and features stored in Content Storage ‘CS’ 

Step 3: Construct ‘K’ set of weak learners ‘Wi’ 

Step 4: for each data requests DRi
 
 

Step 5: Analyze patient healthcare data request search in 

content storage  

Step 6:  Apply simple matching coefficient ‘Mcoef’ 

Step 7: if (Mcoef = 1) then 

Step 8: Patient healthcare data request is present in ‘CS’ 

Step 9: Particular router node is selected to place the content 

Step 10: else 

Step 11: Patient healthcare data request is absent in ‘CS’ 

Step 12: Patient information is stored in cache 

Step 13:  end if 

Step 14:  Combine weak learner results   

Step 15:  for each weak learner results 

Step 16:  Calculate error ‘Er’ 

Step 17:  Rank the weak learners 

Step 18:  Find weak learners with minimum error 

Step 19:  Apply the Bucklin voting  

Step 20:  Find arg maxk q(wi)  
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Step 21:  Return strong classified results  

Step 22:  End for  

Step 23:  End for 

Step 24:  End for  

End 

Algorithm 1 describes the step-by-step process of random 

probit regressive Bucklin decision forest classifier-based 

Information-Centric Networking Caching. The number of 

patient healthcare data requests is taken as input to the 

random probit regressive Bucklin decision forest classifier. 

First, the set of weak learners is constructed. For each 

patient healthcare data request, the simple matching 

coefficient is applied for verifying whether the patient 

healthcare data request is present or absent in content 

storage. When the data is present in content storage, the 

particular router node is selected to transfer the content. 

Otherwise, the content is stored in the cache for further 

processing. The output of weak learners is combined to 

construct strong classification results. As a result, higher 

efficiency of content distribution is performed in ICN and 

minimal latency.  

IV. EXPERIMENTAL SETUP 

 In this section, experimental assessment of 

proposed RADEF and existing PCSRC [1] cooperative 

caching [2], Context-based caching mechanism [3], CCJRF-

ICN [4], IRABC-ICN [5] are implemented in Python 

language using Maternal Health Risk dataset taken from 

https://www.kaggle.com/datasets/csafrit2/maternal-health-

risk-data. The main aim of the dataset is to predict risk 

intensity level during pregnancy. The Data has been 

gathered from different hospitals, community clinics, and 

maternal healthcare’s with the help of IoT based risk 

monitoring system. The dataset includes seven features and 

the patient healthcare data or instances are 1014.  The seven 

features are discussed as given below,  

1. Age: Age in years when a woman is pregnant. 

2. SystolicBP: Upper value of Blood Pressure in 

mmHg  

3. DiastolicBP: Lower value of Blood Pressure in 

mmHg   

4. BS: Blood glucose levels is in terms of a molar 

concentration, mmol/L. 

5. BodyTemp:  body temperature in Fahrenheit (F) 

6. HeartRate: A normal resting heart rate in beats per 

minute. 

7. Risk Level: Predicted Risk Intensity Level during 

pregnancy  

Based on the above patient healthcare data, the content 

matching is performed in ICN.  

 

V. PERFORMANCE RESULTS AND ANALYSIS 

In this section, performance analysis of the proposed 

RADEF and existing methods namely PCSRC [1] 

cooperative caching [2], Context-based caching mechanism 

[3], CCJRF-ICN [4], IRABC-ICN [5] are discussed with 

different metrics such as cache hit rate, network latency, 

average request length, average response time, server stretch 

ratio, and hop reduction ratio with respect to the number of 

patient healthcare data. The parameters are described as 

given below, 

Cache hit rate: It is measured ratio of response number of 

requests and total number of requests in specific time 

interval.  The formula for calculating the cache hit rate is 

expressed as follows,  

  
Where ‘CHR’ denotes a cache hit rate, ‘Resp’ denotes a 

response for the number response requests and the number 

of requests obtained by nodes ‘Count’. It is measured in 

terms of percentage (%).  

Network latency: It is an assessment of delay in 

communication over an ICN.  Latency is measured as the 

amount of time consumed for a packet of healthcare data to 

be acquired, transmitted, and processed via multiple routers. 

This is mathematically formulated as given below. 

 
Where, ‘NL’ denotes a network latency, basis of the data 

packets to be obtained ‘DPacq’, number of data to be 

transmitted ‘DPtrans’ and the number of data received at the 

destination end ‘DPrecv’ respectively with respect to the 

requests ‘Reqi’ involved in the simulation. Latency is 

measured in milliseconds (ms). 

Average Request Length: It is evaluated that refers to the 

average number of router nodes transmitted when an interest 

patient data hits the request content. Therefore, the ARL is 

mathematically computed as given below,  

  
Where, ‘ARL’ average request length, ‘HDPresp’ denotes a 

number of hops that a data is responded, ‘RDPresp’ indicates 

a number of responses that a data packet is responded. It is 

measured in percentage (%).  

Average Response time: It is defined as the sum of time 

between request being sent to router and data being received 

by users. Therefore, the ART is mathematically computed as 

given below,  

 
Where, ‘ART’ average response time, ‘Reqi’ denotes a 

number of requests. ‘DRsent’ denotes a request being sent to 

router, ‘Drecv’  data received. Response time is measured in 

milliseconds (ms) 

Server Traffic Ratio: STR is defined as the traffic ratio of 

the requests responded and the total requests. It is measured 

in percentage (%). The mathematical expression for 

determining the server traffic ratio is obtained as given 

below. 

 
Hop Reduction Ratio: HRR is defined as the ratio between 

the number of hops of cache hits and the total number of 

hops of all accesses.  

It is a metric for determining the efficiency of content 

caching decisions and indicates that the cache hit happens 

close to the requesters. The following is the mathematical 

formula for estimating the hop reduction ratio.  
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HRR refers to the hop count traversed by the patient data 

to reach the content provider (i.e., if a cache hit happens) to 

the hop count between the content requester and the server 

i.e., if network routers do not support caching. It is 

estimated in terms of percentage (%). 

Table 1 and figure 5 illustrate a performance comparison 

of the cache hit rate versus cache size ranging from 80 to 

800. As shown in the graph, the performance of the cache 

hit rate using RADEF is considerably improved than the 

other existing methods namely, PCSRC [1] cooperative 

caching [2], Context-based caching mechanism [3], CCJRF-

ICN [4], IRABC-ICN [5]. With the horizontal axis denoting 

the cache size for simulation, the vertical axis represents the 

cache hit rate. However, simulations conducted with a size 

of the cache is 80 resulted in a cache hit rate of 78.75% 

using PCSRC [1], 80% using Cooperative caching [2], 

83.75% using Context-based caching mechanism [3], 

82.25% using CCJRF-ICN [3], 85% using existing IRABC- 

ICN [4] and 88.75% using RADEF respectively.  

For each method, different performance results were 

observed. Finally, the obtained results of the proposed 

RADEF are compared to the existing methods. After getting 

ten results, the average is taken to show the improvement of 

the proposed RADEF. The overall performance results 

indicate that the RADEF increases the cache hit rate by 

12%, 9%, 6%, 8% and 4% when compared to PCSRC [1], 

Cooperative caching [2], Context-based caching mechanism 

[3], CCJRF-ICN [4], IRABC-ICN [5] respectively.  

The reason behind the improvement was due to the 

application of the Random probit regressive Bucklin 

decision forest classifier algorithm. By applying this 

algorithm, patient healthcare data requests are taken as 

input.  

Then the simple matching coefficient is applied to verify 

whether the patient healthcare data request is present or 

absent in content storage. The error rate of the weak 

classifier is minimized and to make a better output by 

applying a Bucklin voting scheme. This helps to improve 

the cache hit rate.     

 
TABLE 1  

CACHE HIT RATE 

Cache Size 

(KB) 

Cache Hit Rate (%) 

PCSRC 
Cooperative 

caching 

Context-based 

caching mechanism 
CCJRF-ICN IRABC-ICN RADEF 

80 78.75 80 81.25 83.75 85 88.75 

160 79.32 81.36 82.15 83.98 86.12 89 

240 80.02 82 82.96 84 86.63 89.74 

320 80.76 82.85 83.65 84.85 87 90.05 

400 81.2 83.1 84.33 85.12 87.45 90.74 

480 82.05 83.89 84.96 85.96 88.1 91.1 

560 82.86 84.06 85 86 88.25 92 

640 83.44 84.65 85.74 87 89.1 92.74 

720 83.98 85 86 87.65 90 93 

800 84.08 85.65 86.78 88.2 90.8 94.3 

 

Fig 5. Performance comparison of Cache hit rate 
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TABLE 2  

NETWORK LATENCY  

Cache Size 

(KB) 

Network Latency (ms) 

PCSRC 
Cooperative 

caching 

Context-

based 

caching 

mechanism 

CCJRF-

ICN 

IRABC-

ICN 

Proposed 

RADEF 

80 5.8 6.3 4.9 5.2 4.2 3.8 

160 8.2 9 6.2 7.8 5.35 4.84 

240 10.55 12.62 8.65 9.7 7.16 6.6 

320 14.65 16.02 10.3 12.5 8.25 7.2 

400 15.5 17.8 11.32 13.66 10.35 8.5 

480 18 20.20 13.25 15.02 11.45 10.8 

560 20.3 22.33 15.10 17.05 13.15 11.2 

640 22.08 24.78 17 20.32 15 12.48 

720 26.1 28.33 19.2 22.52 16.25 14.76 

800 30 32.10 22.5 24.10 18 16 

 

Fig 6. Performance comparison of network latency 

Table 2 and figure 6 illustrate the network latency results 

using the six methods, PCSRC [1] cooperative caching [2], 

Context-based caching mechanism [3], CCJRF-ICN [4], 

IRABC-ICN [5] and RADEF. From the above figure, with 

the network latency analysis provided on the y-axis and 

cache size given on the x-axis, both the performance factors 

are identified to be proportionate with each other. Here, the 

cache sizes are taken in the ranges from 80 to 800 and the 

number of requests ranges from 20 to 200 for calculating the 

network latency. As shown in figure 6, increasing the 

number of cache sizes results in an increase in the 

performance of network latency also. But, with simulations 

performed using 80 cache size and 20 requests, time 

consumed in content caching using the RADEF method was 

found to be 3.8ms, 5.8ms using PCSRC [1], 6.3ms using 

cooperative caching [2], 4.9ms using Context-based caching 

mechanism [3], 5.2ms using CCJRF-ICN [4], and 4.2ms 

using IRABC-ICN [5]. The averages of ten performance 

results are compared to existing methods. The overall 

performance results indicate that the performance of 

network latency was found to be comparatively minimized 

by 43%, 48%, 25%, 35% and 12% using RADEF when 

compared to existing methods PCSRC [1] cooperative 

caching [2], Context-based caching mechanism [3], CCJRF-

ICN [4], IRABC-ICN [5]. The reason for the improvement 

was owing to the incorporation of a probit regression tree 

for validating the incoming data request in the cache using a 

simple matching coefficient. Here, the successful validation 

with respect to the patient healthcare data request, a 

particular router node is chosen to deliver the content with 

minimum latency.  
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TABLE 3  
AVERAGE REQUEST LENGTH 

Cache Size 

(KB) 

Average Request Length (%) 

PCSRC 
Cooperative 

caching 

Context-based 

caching 

mechanism 

CCJRF-ICN IRABC-ICN RADEF 

80 80 75 65 70 60 55 

160 75 72 62 68 56 52 

240 73 70 60 66 55 51 

320 69 66 58 64 53 50 

400 65 62 56 60 52 49 

480 62 58 54 56 51 48 

560 61 56 50 54 48 45 

640 60 54 49 52 46 43 

720 59 52 47 50 44 41 

800 58 50 46 48 43 39 

 

Fig 7. Performance comparison of average request length 

Table 3 and figure 7 given above illustrate the graphical 

representations of average request length using six methods, 

RADEF, PCSRC [1] cooperative caching [2], Context-based 

caching mechanism [3], CCJRF-ICN [4], IRABC-ICN [5]. 

With the horizontal axis denoting the cache size for 

simulation, the vertical axis represents the average request 

length. The number of the data request is taken from 20 to 

200. As illustrated in the above figure, increasing the 

number of data requests and the average request length is 

found to be minimized. Since the requested content is 

progressively cached in routers through the simple matching 

coefficient. The average request length of RADEF is about 

55% which is the best result in the other schemes due to its 

strategy of caching everywhere. The higher the hit ratio, the 

method reduces the average request length. The average of 

ten results indicates that the request length using RADEF 

was found to be minimized by 28% compared to [1] and 

23% compared to [2], 13% compared to [3], 19% compared 

to [4] and 7% compared to [5] respectively.  

Figure 8 given below illustrates the graphical illustration 

of the average response time with 800 sizes of caches as 

input. From the figure, it is inferred that the average 

response time is increasing with the increasing cache sizes 

and the user requests provided as input. Among the four 

methods, the performance of average response time is found 

to be minimized using RADEF when compared to existing 

PCSRC [1] cooperative caching [2], Context-based caching 

mechanism [3], CCJRF-ICN [4], IRABC-ICN [5]. Let us 

consider the cache size is 80 and the number of data requests 

is 20 in the first iteration for calculating the average 

response time. By applying RADEF, the average response 

time was found to be 14ms, 22%using PCSRC [1], 24% 
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using cooperative caching [2], 18% using Context-based 

caching mechanism [3], 20% using CCJRF-ICN [4] and 

16.6% using IRABC-ICN [5] respectively. Likewise, 

different performance results are observed for each method. 

The average of ten results indicates that the overall 

performance of average response time is considerably 

minimized by 25%, 30%, 13%, 19% and 7% using RADEF 

when compared to PCSRC [1] cooperative caching [2], 

Context-based caching mechanism [3], CCJRF-ICN [4], 

IRABC-ICN [5] respectively. This is because the RADEF 

effectively finds the user request content in the cache and 

delivers the content with minimum time.    
 

TABLE 4  

AVERAGE RESPONSE TIME 
 

Cache Size 

(KB) 

Average Response Time (ms) 

PCSRC 
Cooperative 

caching 

Context-based 

caching 

mechanism 

CCJRF-ICN IRABC-ICN RADEF 

80 22 24 18 20 16.6 14 

160 26 28 22 25 20 18 

240 32 34 28 30 26 24 

320 38 42.13 32 34 30 28 

400 43 47 38 40 35 33 

480 48 53 42 45 40 37.2 

560 54.5 58.03 46.2 48.5 44.6 42 

640 56.8 60 48.2 52.3 46 44.8 

720 60 63 52.7 55.7 50.2 47.7 

800 64 66 55.9 60.5 53.6 51 

 

Fig 8. Performance comparison of average response time
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TABLE 5 

SERVER TRAFFIC RATIO 

Cache Size 

(KB) 

Server Traffic Ratio (%) 

PCSRC 
Cooperative 

caching 

Context-based 

caching mechanism 
CCJRF-ICN IRABC-ICN RADEF 

80 6.4 6.8 5.4 5.8 5.2 4.8 

160 6.8 7.2 6 6.4 5.7 5.3 

240 9 10.3 7.9 8.2 7.2 6.8 

320 12.3 13.2 10.5 11.6 9.8 8.9 

400 13.5 15.5 11.8 12.3 10.2 9.2 

480 14.6 17.6 12.4 13.8 11.3 10.2 

560 18.2 20.2 15.6 16.8 13.4 12.3 

640 20.6 22.3 16.2 17.2 14.2 13.5 

720 21.3 23.4 17.7 19 15.6 14.5 

800 22.5 24.2 18.5 20.3 17.3 15.8 

 

Fig 9. Performance comparison of server traffic ratio 

The comparative examination of the server traffic ratio 

using four methods RADEF, PCSRC [1] cooperative 

caching [2], Context-based caching mechanism [3], CCJRF-

ICN [4], IRABC-ICN [5] is shown in Table 5 and Figure 9 

depending on the catch size.In figure 9, the catch size is 

depicted along the horizontal axis, while the server traffic 

ratio is shown along the vertical axis.If the server traffic 

ratio is high, the likelihood of requests being answered in 

the cache path is likewise lowered. According to the 

aforementioned data, the proposed RADEF has less server 

traffic ratio than the other existing methods. The effective 

reduction of server traffic ratio is achieved in the proposed 

RADEF by the implementation of Random probit regressive 

bucklin decision forest classifier. The patient healthcare 

requests are processed quickly due to the strong ensemble 

learning technique. That helps in reducing the traffic in a 

significant manner. Therefore, the average of 10 findings 

shows that employing RADEF reduces the overall 

performance of server traffic ratio by 29%, 36%, 16%, 22% 

and 8% when compared to PCSRC [1] cooperative caching 

[2], Context-based caching mechanism [3], CCJRF-ICN [4], 

IRABC-ICN [5] respectively. 
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TABLE 6 
HOP REDUCTION RATIO 

Cache Size 

(KB) 

Hop Reduction Ratio (%) 

PCSRC 
Cooperative 

caching 

Context-based 

caching mechanism 
CCJRF-ICN IRABC-ICN RADEF 

80 0.5 0.54 0.6 0.58 0.66 0.7 

160 0.61 0.6 0.7 0.7 0.8 0.9 

240 0.7 0.7 0.92 0.85 1.1 1.4 

320 1.5 1.6 2 1.8 2.4 2.6 

400 2 2.4 2.8 2.6 3 3.5 

480 2.8 3 3.8 3.6 4.2 4.7 

560 4.2 4.5 6 5.7 6.3 7.5 

640 5.3 5.8 7.2 6.5 7.8 8.2 

720 5.8 6.4 8.1 7.6 8.5 9.2 

800 6.1 6.8 8.6 8.2 9.1 9.8 

 

Fig 10. Performance comparison of hop reduction ratio 

In accordance with the catch size, Table 6 and Figure 10 

shows the hop reduction ratio using four distinct approaches 

RADEF, PCSRC [1], cooperative caching [2], Context-

based caching mechanism [3], CCJRF-ICN [4], IRABC-

ICN [5]. The higher hop reduction ratio suggests that data is 

transmitted more efficiently. The graphical representation 

shows that the proposed RADEF effectively improves the 

hop reduction ratio than the other three existing methods. 

Due to the application of Random probit regressive Bucklin 

decision forest classifier, the hop reduction ratio employing 

RADEF was shown to be improved by 66%, 52%, 23% 32% 

and 12% when compared to [1] [2], [3] [4],[5] 

correspondingly. 

VI. CONCLUSION 

The policy of in-network caching holds crucial 

importance in facilitating quick and efficient 

communications within IoT networking technologies in 

ICN. Content caching methods significantly impact its 

efficiency. This paper introduces ran efficient caching 

method, RADEF, designed to enhance IoT-based healthcare 

performance by reducing response time and content retrieval 

latency. In RADEF, the random probit regressive Bucklin 

decision forest classifier performs content caching 

operations and delivers the interesting data from the router 

with minimum time resulting in it reducing the latency. By 

using healthcare risk prediction dataset, the comparative 

analysis is conducted between the RADEF technique and 

existing methods in terms of six different metrics. The 

observed result facilitates that the proposed RADEF is more 

efficient for IoT aware content caching with healthcare data 

with maximum cache hit ratio, hop reduction ratio, and 

minimum network latency, average request length, average 

response time, and server traffic ratio than the existing 

methods. 
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