
Abstract—Underwater target detection is an important 

method for detecting marine organisms. However, due to the 

image occlusion of underwater targets, blurred water quality, 

poor lighting conditions, small targets, and complex 

backgrounds, the detection of underwater biological targets has 

posed significant challenges. In the intricate underwater 

environment, the conventional feature extraction method has a 

few drawbacks, including imprecise feature extraction, sluggish 

detection speed, and inadequate robustness. Consequently, an 

underwater target detection method based on the enhanced You 

Only Look Once 7 (YOLOv7) is proposed in this study. The 

network architecture is reconstructed, and the Deformable 

Convolutional Network (DCN) modules replace some 3×3 

convolutional blocks in the ELAN structure to offset sampling 

points and reduce background interference. Skip connections 

and 1◊ 1 convolutional architecture are added to the DCN 

module to improve the model's perception of image details. In 

addition, Contextual Transformer 3 (COT3) is also 

incorporated to improve visual performance. Finally, to improve 

the detection efficiency of small objects, the CIoU loss function is 

finally replaced by the Normalized Wasserstein Distance (NWD) 

algorithm. The mAP of DCCN-YOLOv7 on the URPC dataset is 

80.4%, according to the experimental results, 2.8% higher than 

the YOLOv7 network model that is used as a baseline. 

Furthermore, in contrast to the original YOLOv7 algorithm, the 

detection speed and accuracy are higher, making it more 

appropriate for target recognition underwater. 

Index Terms—COT3, DCN, Loss function, Underwater 

target detection, YOLOv7 

I. INTRODUCTION

NDERWATER biological monitoring is a crucial topic

within the field of underwater target detection. Its 

primary objective is to locate and identify targets in 

underwater scenes, thereby offering valuable insights into the 

abundance of marine organisms and their response to 

environmental changes [1]. This field of study has garnered 

considerable interest owing to its broad range of applications 
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in oceanography, underwater navigation and aquaculture [2]. 

For example, it enables autonomous and intelligent 

identification and analysis of seafood, such as sea cucumbers, 

scallops and other marine organisms, which has traditionally 

been done manually. Autonomous detection and accurate 

identification of seafood can help farmers manage growth and 

habitat changes. It can also free humans from labour-intensive 

and dangerous tasks. However, underwater target detection 

poses many challenges due to the complex environment and 

lighting conditions. While deep learning-based target 

detection systems have shown promising results in various 

applications, there are still significant technical hurdles within 

the specific domain of underwater target detection. Firstly, 

physical phenomena like light scattering and absorption in the 

underwater environment lead to distorted underwater images 

and incomplete extraction of submerged objects. This in turn 

reduces the accuracy of target detection [3]. Secondly, 

accurately extracting small objects from complex underwater 

environments poses a challenge, as underwater targets 

predominantly consist of small objects that frequently blend 

into intricate backgrounds. 

Traditional target detection methods typically involve three 

main stages: region selection, feature extraction, and feature 

classification. Since the target can appear at any position in 

the image, with uncertain size and aspect ratio, traditional 

target detection methods face two main challenges: (1) the 

sliding window selection strategy lacks focus, resulting in 

high time complexity and redundant windows; and (2) the 

hand-designed features lack robustness. 

The field of computer vision has been transformed by the 

emergence of deep learning, leading to significant progress in 

target detection. In particular, algorithms such as Faster 

RCNN [4] and SSD [5] have been widely applied. Among 

these methods, target detection using the YOLO (You Only 

Look Once) algorithm [6] is representative because of its 

efficiency and accuracy. It transforms target detection from a 

classification problem into a regression problem, thus 

enabling end-to-end detection. Efficient and accurate target 

detection capabilities are crucial for underwater robots to be 

commercially viable. Researchers have made significant 

contributions in this area. To tackle the issue of inconsistent 

scale features in multi-scale detection using the YOLOv3 

algorithm, Li Chong [7] proposed an adaptive spatial feature 

fusion method. This method addresses the problem of 

inconsistent feature scaling in the YOLOv3 algorithm. This 

method spatially filters incoming information to suppress 

inconsistencies. Furthermore, the IOU loss function used is 
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the transgressive regression loss, which improves the 

localization accuracy of the YOLOv3 prediction frames. Li et 

al. [8] employed the densely connected YOLOv3 model to 

detect zooplankton in their natural environment. The aim was 

to minimize feature loss during network transmission and to 

address the issue of species distribution imbalance by using 

samples generated by CycleGAN. Chen et al. [9] presented 

SWIPENet, a network designed to detect underwater targets 

with small sample sizes. The proposed network incorporated 

an Inverted Multi-Class Adaboost (IMA) sample weighting 

algorithm, resulting in improved detection accuracy. Shi et al. 

[10] used the YOLOv4 algorithm to recognize sea cucumbers, 

sea urchins, scallops, and starfish. Their research 

demonstrated the effectiveness of the convolutional attention 

mechanism and data augmentation in improving detection 

accuracy. Cao et al. [11] proposed a detector that can detect 

live crabs underwater in real-time and in a robust manner. To 

achieve this, the detector utilized a single-shot multi-box 

detector (SSD) that had MobileNetV2 as its backbone. To 

improve performance, the traditional convolution operation 

was substituted with depth-separable convolution. 

Although the previously mentioned detection algorithms 

improve detection accuracy, they are still not sufficiently high 

for small-scale targets. Underwater biological detection is 

challenging due to significant interference during image 

acquisition. In addition, mobile acquisition can lead to image 

distortion and reduced visibility. Therefore, improving the 

accuracy of underwater target detection is necessary to 

enhance portability. To tackle these challenges, we propose 

an experimentally validated model, DCCN-YOLOv7. When 

faced with complex stimuli, the human visual system quickly 

focuses on a target or region of interest. Inspired by this, we 

introduce the COT3 [12] module into the feature fusion model. 

This module includes a static context that receives a 3◊3 

convolution and a dynamic context based on situational 

self-attention. This promotes the learning of visual 

representations, thereby increasing the efficiency of the 

attention mechanism in deep learning tasks. Furthermore, the 

deformation convolution has been enhanced to shift the 

sampling points towards the foreground target. This 

adjustment minimizes background interference, enhancing 

feature extraction accuracy. To tackle the issue of detecting 

small targets, the Normalized Wasserstein Distance (NWD) 

regression loss [13] is used instead of the CIoU loss function 

[14] to more accurately measure the similarity between two 

bounding boxes (BBoxes), resulting in an algorithm that is 

more robust [15] and stable. The third and fourth sections 

discuss the algorithm structure and present the experimental 

results. 

 

II.   RELATED WORK 

A.   YOLOv7 Model 

YOLOv7 [16] represents a significant development within 

the YOLO family of algorithms. This algorithm is designed to 

detect targets in a single stage. Its main contribution is the 

compilation of several existing techniques, including the 

re-parameterisation of the modules and the strategies for the 

dynamic allocation of labels. Ultimately, this compilation 

outperforms all other known target detectors in both speed 

and accuracy. It achieves performance ranging from 5 to 160 

Frames Per Second (FPS). During testing on the GPU V100, 

the model achieved an accuracy of 56.8% AP and a detection 

rate of over 30 FPS (batch=1). This is evidence that even 

today is high accuracy detectors are capable of over 30 FPS. 

Compared to other network models within the YOLO series, 

YOLOv7's detection approach is similar to that of YOLOv5 

[17]. Both models use a deep convolutional neural network 

(CNN) for feature extraction. They share similarities in terms 

of multi-scale prediction and high efficiency. 

B.   Deformable Convolution  

A fixed convolutional kernel is typically used in the 

convolutional operation that extracts features from the input 

data. However, when dealing with tasks involving deformed 

objects, the use of a fixed kernel becomes challenging 

because it cannot adapt well to things with varying degrees of 

deformation. This limitation leads to suboptimal feature 

extraction. While this approach effectively captures local 

feature correlations, it also results in equal weighting of 

foreground and background features. This limitation hinders 

the effectiveness of convolution in scenarios with complex 

objects. 

Compared to traditional convolution, a two-dimensional 

offset is added to the original convolution kernel and sampled. 

This offset is applied in both the X and Y directions. This 

allows the sampling point to be moved to any position within 

the neighborhood. This effectively overcomes the limitations 

of insufficient sampling of a fixed rectangular structure. The 

feature map's receptive field is increased, improving the 

detection of complex objects. 

C.   Loss Function 

In target detection networks, target localization heavily 

relies on a module that performs bounding box regression. 

The intersection over IoU loss function is commonly 

employed to assess the similarity between predicted and 

actual bounding boxes. It performs well when the bounding 

boxes have an overlapping area [18]. However, IoU has 

limitations, especially when one bounding box contains 

another. To address this issue, Generalized IoU [19] 

introduces the concept of the minimum bounding box, which 

includes both the predicted and actual boxes. This approach is 

employed to ascertain the weights within the bounding box. 

Nonetheless, GIoU degrades to IoU when one bounding box 

completely encloses another. Additional metrics such as 

DIoU [20] and CIoU [21] have been suggested to address the 

shortcomings of bounding box regression and improve its 

accuracy. DIoU and CIoU consider three geometric 

properties: overlap area, centroid distance, and aspect ratio. 

They aim to provide a more comprehensive evaluation of the 

bounding boxes. However, the CIoU loss function may not 

give satisfactory results for small targets. This is because the 

proximity of small targets often results in a short distance, 

which leads to a significant CIoU value, even with small 

differences in centroid and area ratios. This makes it difficult 

to effectively discriminate between them. This paper presents 

a more detailed representation of the loss function to address 

this issue. It allows for smoother convergence and improves 
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Fig. 2.  Block COT3 

 

the localization accuracy of target images. By effectively 

taking into account the characteristics of small target objects, 

the proposed approach aims to improve their detection. 

 

III. EXPERIMENTAL METHODS 

This section details the improved design of the YOLOv7 

model for detecting biological targets underwater. It 

introduces the DCN-ELAN structure, the COT3 module, and 

the NWD loss function. These improvements aim to enhance 

mutual occlusion feature extraction of organisms and small 

targets. 

A.   Deformable Convolution Improvement Module 

In natural underwater environments, blurred background 

features can pose a challenge to accurate foreground detection. 

Standard convolutional operations may not effectively 

address this problem. In contrast, deformable convolution 

introduces a two-dimensional offset to the original 

convolution kernel, allowing adaptive sampling. These 

offsets are optimized by backpropagation. This approach 

improves the extraction of underwater biometric features 

while reducing the influence of unclear background features. 

In underwater target detection, the shape and posture of 

underwater organisms can be affected by water flow, 

swimming and other factors, and the use of deformable 

convolution can better capture these dynamic changes. 

However, due to the limitations of a single DCN with fixed 

receptive field, when the boundary details and small local 

features of the target require more accurate positioning, a 

single DCN may not provide sufficient accuracy, and its 

learning ability is limited, which is unable to cope with 

complex target deformation and attitude changes. To solve 

this problem, we have made improvements to the DCN 

module structure, which is illustrated in Fig. 1. By integrating 

the residual structure into the DCN, adding skip connections 

and 1×1 convolutional branches, this design facilitate the 

network not only to process signals through the deformable 

convolutional layer, the batch normalization layer and the 

activation function layer, but also to add the final output to the 

original input. This mechanism enables the network to learn 

residual information between the input and output, thereby 

enhancing the transfer and extraction of features and 

improving the network’s capability to model spatial structure. 

B.   CoT3 Model 

Convolutional neural networks are powerful models 

capable of learning discriminative visual representations. 

They have demonstrated remarkable performance across a 

spectrum of tasks, including image recognition, object 

detection, and mental state analysis. However, existing 

attention mechanisms often rely solely on independent query 

keys to compute the attention matrix, ignoring the valuable 

contextual information between neighboring keys. In contrast, 

the CoT block introduces a novel approach to enhance the 

capability of visual representation. The CoT block first uses a 

3×3 convolutional operation to capture the static contextual 

information between keys. This mining process helps 

incorporate relevant information from neighboring keys. 

Then, based on the query and contextualized keys, two 

successive 1×1 convolutional operations are applied to 

compute self-attention and generate dynamic contexts. These 

dynamic contexts can adaptively capture critical relationships 

and generate informative representations. Finally, the static 

and dynamic contexts are combined to produce the output, 

improving the model's overall performance. An advantage of 

the CoT block is its compatibility with existing ResNet [22] 

architectures. 

By adding a CoT3 block in the feature fusion stage, 

performance can be improved while keeping the parameter 

budget within a reasonable range. Fig. 2 provides a visual 

representation of the fusion process and illustrates how the 

CoT block improves the visual representation. 

Although traditional self-attentive mechanisms can 

facilitate feature interactions across different spatial locations, 

they predominantly rely on single queries and key pairs for 

learning. This approach overlooks the rich contextual 

relationships between queries and other keys, resulting in a 

limited understanding of visual representations on 2D feature 

maps. In contrast, our context converter block [23] adopts a 

unified learning approach that encompasses contextual 

relationships between keys and self-attention on the feature 

graph, all while staying within a limited parameter budget. By 

incorporating contextual relationships into the learning 

process, our model can capture the dependencies and 

interactions among different variables, resulting in improved 

performance in the learning task. The context converter block 

enables the model to learn more comprehensive and 

informative visual representations [24]. The specific structure 

of the context converter block is illustrated in Fig. 3. 

 

 
Fig. 3.  Context Converter (CoT) block 
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Fig. 1.  Improved DCN module structure diagram 

 

C.   Loss Function 

The loss function in the YOLOv7 network model is shown 

in Equation (1): 

 , , , ,obgect Loss loc Loss conf Loss class LossL L L L= + +  (1) 

,loc LossL indicates location loss. ,conf LossL  indicates 

confidence loss. ,class LossL  indicates classification loss. 

Both confidence loss and classification loss were 

calculated using the BCEWithLogits Loss function. The 

coordinate loss was calculated using CIoU with the following 

formula: 
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b denotes the prediction frame.  gtb  means the true frame; 

c indicates the diagonal distance of the smallest closure region 

that can encompass both the predicted frame and the true 

frame; α is a balancing parameter; and ν is used to quantify the 

consistency of the aspect ratio. From equation (3), it can be 

seen that ν equals 0 when the aspect ratio of the predicted 

frame and the actual frame are equal. At this point, the penalty 

term for the aspect ratio has no effect, and the CIoU loss 

function lacks a stable expression. 

Therefore, NWD replaces CIoU in the original network. 

The NWD index calculates the Wasserstein distance between 

two bounding boxes to measure their similarity. The NWD 

measure is shown in Equation (5): 

 

2
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 (5) 

2

2 ( , )a bW N N  is a distance variable, and C is a constant 

closely related to the dataset and robust within a certain range. 

The NWD measurement is designed as a loss function, as 

shown in Equation (6): 

 1 ( , )L NWD N Np gNWD = −  (6) 

Where 
pN  is the Gaussian distribution model of 

prediction box P, and gN  is the Gaussian distribution model 

of gt  box G. Even in both cases, the NWD-based losses can 

provide gradient |P∩G|=0 and |P∩G|=P/G. 

The regression loss based on NWD ensures smoother 

detection of small underwater objects, benefiting from the 

scale invariance property, and the capability to evaluate the 

similarity among disjoint or mutually encompassing bounding 

boxes. This allows the robustness and stability of the 

algorithm to be assessed. 

D.   The Proposed DCCN-YOLOv7 Model 

In the proposed DCCN-YOLOv7 model, the original 

ELAN network of YOLOv7 is improved through the design 

of the DCN structure. The 3×3 DCN convolutional block is 

replaced by the original 3×3 convolutional block, and jump 

joins and 1×1 convolution are added to DCN to improve the 

model's perception of image details. In addition, by 

introducing the CoT3 module in the feature fusion, the model 

can encode and model the context information before the 

detection result is formed, providing a more accurate and 

effective feature representation for target localisation and 

classification. By replacing the CIoU loss function with the 

NWD loss function, the detection capability of small 

underwater biological targets is effectively improved. The 

improved model diagram is shown in Fig. 4. 

 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A.   Dataset Source and Processing 

The experiments performed in this paper use an underwater 

dataset from the Underwater Robot Target Grab Competition 

(URPC), which consists mainly of five categories of 

underwater objects: starfish, sea urchins, scallops, sea 

cucumbers and seagrass. First, the images are pre-processed 

by removing a subset of the seagrass data and their associated 

labels, while preserving the remaining relevant target 

information. Next, the images are normalized and the 

corresponding target labels are stored in XML format. Finally, 

consistent with the scope of this study, an adaptive brightness 

data augmentation method is employed to mitigate the impact 

of light changes and other factors on the algorithm 

performance, and the total number of samples is expanded 

from 2326 to 4642. In this paper, the data were divided into 

three sets based on the ratio of 6:2:2 for training, testing, and 
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Fig. 4.  Structure diagram of the DCCN-YOLOv7 model 

 

 
Fig. 5.  Variation curves of CIoU loss values 

 

 
Fig. 6.  Variation curves of NWD loss values 

 

validation respectively. This means that 2785 samples in the 

training set, 928 samples in the testing set, and 928 samples in 

the validation set. 

B.   Experimental Environment and Evaluation Index 

The performance strengths and weaknesses of the 

underwater target detection model are evaluated based on 

both detection accuracy and image processing speed, and the 

model performance is evaluated qualitatively by comparing 

whether there are false positives and false negatives. In the 

experiment, the Precision-Recall (P-R) curve, Average 

Precision (AP) and Mean Average Precision (mAP) are 

primarily chosen as the evaluation metrics to calculate the 

detection precision. They are calculated as follows: 

 
TP

R
TP FP

=
+

 (7) 
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In the formula, TP, FP and FN are the number of objects 

accurately detected, incorrectly detected and not detected 

respectively. P denotes the accuracy rate; R denotes the recall 

rate. The area between the P-R curve and the axes is known as 

the Average Precision (AP) value. The mean average 

precision (mAP) evaluates detection performance across all 

categories in the target detection network model by 

calculating the average AP values. As the model should take 

into account not only the accuracy but also the frequency of 

detection (FPS) of the model, the FPS is also an important 

evaluation index.  

C.   Experimental Results 

a) Convergence Comparison of Loss Function 

The convergence of the YOLOv7 loss function was 

verified in an identical experimental environment using the 

same network model. The loss curves for the two different 

loss functions, CIoU and NWD, are shown in Fig. 5 and Fig. 6 

respectively. These curves depict the progress of the edge loss 

over the iterations. 

By observing Fig. 5 and Fig. 6, it becomes evident that the 

CIoU and NWD tend to converge with an increase in the 

number of iterations. the NWD loss value is comparatively 

smaller and more stable than the CIoU loss value. Therefore, 

using NWD as the bounding box loss function in this paper's 

dataset is more effective in enhancing the network model's 

performance. 

This observation suggests that by using NWD as the 

bounding box loss function, we can more accurately measure 

the similarity between small objects, particularly those of 

varying scales. The NWD loss function is not affected by 

object overlap and is particularly suitable for evaluating the 

similarity of small objects. During testing, we found that using 

NWD as the loss function can significantly enhance the 

accuracy of underwater object detection, which is of practical 

value in real-world applications. 

b) DCN position analysis 

A series of comparative experiments were designed to add 

DCN modules at different locations in the network in order to 

investigate the optimal placement of DCN modules. One of 

the modules is placed in a backbone network that preserves 

the original information and is used to extract features from 

the input images and reduce dimensionality, where the feature 

maps generated by each convolutional layer represent an 

abstract representation of the original information. The other  

position is placed in the feature fusion (Neck), which can 

enhance the comprehensive perception and reasoning ability 

of the model through feature fusion. In the YOLO model, 

multiple convolutional layers with different step sizes to 

gradually acquire the feature maps of the sensory field at 

different scales. As depicted in Table I, the DCN module 

placed in the backbone network outperforms feature fusion, 

which is better than that of the original model. Because the 

DCN module is placed in the feature fusion, the DCN module 

requires additional parameters to control the shape and size of 

the deformable convolution kernel, which may increase the 

model parameters and decrease the model efficiency, thus 

affecting the detection performance. 

c) Ablation Experiment 

In this paper, ablation experiments were carried out to 

assess the detection performance of underwater organisms.  

The effectiveness of each optimization module was verified 

through these experiments, with the YOLOv7 model being 

chosen as the original architecture to establish a performance 

baseline.  The model's overall performance was assessed and 

presented in Table II. 

Based on the experimental findings presented in Table I, 

when performing ablation experiments on the YOLOv7 

model and applying different enhancement methods, each 

individual enhancement significantly improves the model 

performance. Incorporating the DCN-ELAN module into the 

model improved the mean average precision (mAP) by 0.7%. 

In addition, the experiments validated the impact on 

performance of introducing the CoT3 module and replacing 

the CIOU loss function with NWD, which increased mAP by 

1.5% and 1.1% respectively. Taken together, the overall mAP 

increased by 2.8% and the model improved its detection 

performance at almost the same FPS. Therefore, it can be 

concluded that the DCCN-YOLOv7 model is an effective 

method of enhancement. 

 
TABLE I 

 PERFORMANCE COMPARISON OF DIFFERENT DCN LOCATIONS 

Method YOLOv7  In Backbone In Neck 

mAP/% 77.6 78.3 77.9 

Recall/% 74.5 75.2 74.9 

TABLE II 

 COMPARISON OF ABLATION EXPERIMENTS 

Model DCN-ELAN COT3 NWD mAP@0.5/% Precision/% Recall/% FPS 

YOLOv7 - - - 77.6 79.3 74.5 64 

YOLOv7 √   78.3 82.7 75.2 66 

YOLOv7  √  79.1 79.8 76.5 67 

YOLOv7   √ 78.7 80.1 77.5 65 

YOLOv7 √ √ √ 80.4 82.7 76.7 67 
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Fig. 7.  Detection results of YOLOv7 (left) and DCCN-YOLOv7 (right) in underwater scenes 

 

TABLE III 

COMPARISON EXPERIMENT 

Network 

model 

mAP

/% 

scallop  

AP/% 

echinus  

AP /% 

starfish  

AP /% 

holothurian  

AP /% 

SSD 63.5 44.6 76.4 69.1 63.9 

YOLOv4 64.5 42.9 84.1 78.0 52.8 

YOLOv5-m 73.4 51.3 89.7 84.3 68.1 

RetinaNet 75.5 53.6 90.5 86.2 71.7 

YOLOv7 77.6 58.8 91.8 88.1 71.8 

YOLOv8 79.1 62.8 92.1 88.7 72.8 

DCCN- 

YOLOv7 
80.4 65.3 93.0 89.6 73.7 

 

d) Comparison Between DCCN-YOLOv7 Network Model and 

other Network Models 

To assess the effectiveness of the algorithm proposed in 

this paper compared to other algorithms, a comparative 

evaluation was conducted, six different algorithms, namely 

SSD, YOLOv4, YOLOv5-m, RetinaNet, YOLOv7 and 

YOLOv8, were selected for comparison. The comparison was 

made using the same experimental equipment and data set. 

The outcomes are depicted in Table III. It was observed that 

the DCCN-YOLOv7 network model outperformed other 

classical network models in terms of mAP values when using  

 

images of the same input size. This suggests that the 

DCCN-YOLOv7 model is more suitable for the detection of 

underwater organisms. 

The test results diagram in Fig. 7 shows a significant 

enhancement in the detection performance of underwater 

organisms using the proposed DCCN-YOLOv7 model. 
 

V.   CONCLUSION 

A new detection model called DCCN-YOLOv7 is 

proposed in this paper, which incorporates jump connection 

and 1 ◊ 1 convolutional structure in the deformable 

convolutional module to facilitate the transfer of information, 

which can retain the features of the previous layer and 

enhance the feature representation ability. Consequently, it 

leads to improved computational efficiency during network 

training and inference. In addition, CoT3 is integrated into the 

backbone network to improve the model's visual 

representation of underwater targets. On this basis, the model 

loss function is optimized by introducing the NWD regression 

loss function, which can measure the similarity of distribution 

without considering any overlap between small targets. This 

is particularly useful for accurately measuring similarity 

among small targets since NWD is independent of targets of 

different scales. Experimental evaluations using the URPC 

dataset were conducted to compare the proposed 

DCCN-YOLOv7 model with other popular target detection 

algorithms in complex underwater environments. The results 
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demonstrate that the proposed model exhibits superior 

accuracy in terms of robustness compared to other models, 

making it highly valuable for applications. The next step 

would be to collect a large number of different samples as 

targets and use image enhancement techniques to improve the 

underwater dataset to enhance the detection performance of 

the model in practical applications. 
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