
Abstract—The Traveling Salesman Problem (TSP) seeks the
shortest closed tour that visits each city once and returns to the
starting city. This problem is NP-hard, so it is not easy to solve
using conventional methods. The grey wolf optimization (GWO)
algorithm has shown outstanding per- formance in many
practical applications. However, it is inclined towards
premature convergence. This paper proposes an im- proved
GWO (I-GWO) algorithm, which hybridizes GWO with genetic
algorithms (GA) for the TSP. The main feature of the I-GWO
algorithm is that it can make full use of the advantages of the
GWO algorithm and the GA algorithm to make up for their
respective shortcomings. Moreover, to make the GWO suitable
for solving the TSP, both the 2-opt operator strategy and
hamming distance h ave been designed to implement the
discrete GWO directly. Additionally, to increase the diversity of
solutions by expanding the search space, we present a new
population update strategy with crossover and mutation
operations in the next iteration. Meanwhile, the integration of
the Simulated Annealing (SA) algorithm into the Improved
Grey Wolf Optimizer (I-GWO) enhances its local search
capabilities. Experimental results show that the I-GWO
algorithm competes with established optimal methods for
solving the TSP, suggesting its potential for different TSP
variants and logistic transport domains.

Index Terms—Traveling salesman problem, 2-opt, Grey wolf
optimization, Crossover and mutation

I. INTRODUCTION

HE logistics transportation plays an indispensable role in
modern society and permeates various aspects of our

lives. It is worth noting that the logistics transportation
problem can actually be considered as one of the practical
applications of the traveling salesman problem. Logistics
transportation requires finding the shortest path connecting
different delivery points to minimize cost and time. Therefore,
logistics and transportation are closely related to the traveling
salesman problem, and algorithms and optimization methods
for the traveling salesman problem play a key role in logistics
planning, helping us to manage logistics networks more in-
telligently and thus improve our daily lives.

The traveling salesman problem (TSP) [1] is a classical
combinatorial optimization problem, and its aim is to find a
travel route that visits each city exactly once, returning to the
starting city to form a closed tour with the minimum cost.
However, with the number of cities increasing, the computa-
tional time required to solve the problem will grow exponent-

 Manuscript received November 11, 2023; revised April 19, 2024.
 Z. N. Xu is a Postgraduate in School of Computer Science and Software
Engineering, University of Science and Technology LiaoNing, Anshan,
114051, China. (e-mail: xuzhinan@ustl.edu.cn).

X. X. Zhang is a Professor of School of Computer Science and Software
Engineering, University of Science and Technology LiaoNing, Anshan,
114051, China. (Corresponding author, phone:86-0412-5929812, e-mail:
aszhangxx@163.com).

tially. It means that it is impossible to find the optimal
solution in polynomial time. Some classical TSP solutions
including integer linear programming [2], dynamic pro-
gramming [3], branch and cut [4] etc., have been widely used
in many fields such as logistics planning, circuit design,
bioinformatics and tourism planning. However, TSP belongs
to the np-hard problem, and these classical algorithms take a
lot of time to search for the optimal solution. Even when the
data are too large, they can fall into a local optimum or fail to
search for the optimal solution. For this reason, researchers
use heuristic and metaheuristic algorithms to solve the TSP.

Metaheuristic algorithm (MHA) is an advanced optimiza-
tion algorithm for solving complex combinatorial optimiza-
tion problems with a large search space and multiple local
optimal solutions. Metaheuristic algorithms have advantages
over traditional algorithms in terms of generalization, global
search capability, iterative improvement and adaptability to
find better solutions to problems. The algorithm's potent
global search capability can discover feasible solutions to
intricate problems, and the iterative improvement strategy
aids in enhancing the solutions' quality gradually.
Furthermore, metaheuristic algorithms are typically not reli-
ant on a specific problem, and they can be effortlessly used
with different problems without making significant modifi-
cations to the algorithmic structure. These aspects help to
extend algorithms' application areas and increase the flexibi-
lity and efficiency of solving problems. However, meta-
heuristic algorithms have some limitations. On np-hard
problems with a large search space, metaheuristic algorithms
can usually only obtain approximate solutions and are not
guaranteed to find a globally optimal solution. This means
that meta-heuristic algorithms may not be able to provide the
best solution to the problem. Therefore, researchers have
subsequently proposed many improved metaheuristic algori-
thms. For the large data level TSP problem, Skinderowicz [5]
proposed the use of ACO variant (FACO) for optimization.
Huang et al [6] proposed the use of discrete frog jumping
algorithm for solving the TSP problem. Gao [7] proposed a
new ACO optimization algorithm for the TSP problem.
Wang et al [8] proposed the use of ACO algorithm for TSP
problem's parameter optimization. Zhang [9] proposed a
genetic algorithm for TSP problem based on jumping genes
and heuristic operators (GA-JGHO). Kanna et al [10]
introduced the Deer Hunting Linked Earthworm Optimi-
zation Algorithm for solving large travelling salesman
problems.

The grey wolf optimization (GWO) algorithm [11] is a
heuristic algorithm for solving optimization problems based
on the behavior of grey wolf packs in nature proposed by
Mirjalili in 2014. The algorithm simulates the social structure
and behavioral characteristics of grey wolves, particularly the

An Improve Grey Wolf Optimizer Algorithm for
Traveling Salesman Problems

Zhinan Xu, Xiaoxia Zhang*

T

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 602-612

__

collaboration and competition between leaders and followers
in a grey wolf population. From the invention of GWO
algorithm untill now, it is widely used in various fields such
as optimization problems, machine learning, signal process-
ing, image processing, logistics and transportation and eco-
nomics and other related work. Zamfirache et al. [12] used
the GWO algorithm for the training of neural networks. The
GWO algorithm obtained better solutions than PD and PSO
algorithms. Ahmed et al. [13] proposed the usage of support
vector regression (SVR) and GWO for predicting the
compressive strength of GGBFS-based polymer concrete.
Additionally, Altan [14] proposed a hybrid WSF model that
ensures reliable and precise wind speed prediction for wind
power generation through the optimization of intrinsic mode
function (IMF) estimation output via GWO.

In addition, the researchers have proposed different
versions of GWO to solve the application problem in a varie-
ty of scenarios. Nadimi-Shahraki et al. [15-16] proposed a
GWO algorithm based on gaze cue learning to solve global
optimization and engineering design problems. This method
can reduce the problems of premature convergence, local
optimal trap and stagnation caused by high selection pressure
and low diversity of GWO algorithm. Ghalambaz [17]
proposed an improved grey wolf optimization algorithm
(GGWO), which is used to minimize the damage caused by
the Seattle weather to office buildings to maximize the
lifetime of the building. Bardhan et al [18] proposed AGWO
and EGWO to estimate the load carrying capacity of steel
pipe concrete columns by combining these two optimization
methods with artificial neural networks (ANN). Elsisi et al.
[19] proposed an MGWO algorithm applied to self-driving
cars and combined it with an AMPC controller. Experimental
results show that the MGWO-based AMPC controller has
higher effective performance compared to other controllers.
Ala et al. [20] proposed the use of multi-objective grey wolf
optimization (MOGWO) and lexicon weighted tchebycheff
(LWT) methods to solve sustainable energy problems. In
addition, GWO is combined with various heuristic algori-
thms, such as the cuckoo search (CS) algorithm, the flower
pollination optimization algorithm (FPA), the bat algorithm
(BA), etc. [21-23].

The GWO algorithm performs well on small-scale proble-
ms with continuous type optimization and is able to search
for optimal solutions quickly. However, there are still some
limitations when dealing with large-scale data and avoiding
local optimal solutions. In particular, there may be some
disadvantages when dealing with discrete problems. As a
classical combinatorial optimization problem, TSP is often
used by researchers to evaluate and test the performance of
various discrete algorithms. In recent years, many researchers
have been keen on using heuristic algorithms to solve TSP
problems, such as ACO, DSSA, SA, HHO, etc. [24-27].
Although many researchers have put a lot of effort into solv-
ing the TSP problem, there are very few GWO algorithms for
TSP.

Since the GWO algorithm was originally designed for
problems with continuous parameters, it cannot solve dis-
crete problems directly. Then, the grey wolf optimization
algorithm models the collaborative and competitive strateg-
ies of grey wolves, which may not be applicable to all dis-
crete problems and may lead to premature falling into local

optimal solutions. To address the above problems, Panwar
[28] discretized the solution space of the grey wolf optimi-
zation algorithm in 2021, specifically for dealing with discre-
te problems. The discrete grey wolf optimization algorithm
shows better performance when dealing with small to me-
dium sized problems and searching for globally optimal
solutions. However, there are still some limitations in some
cases. Since the search space for discrete problems is
typically more complex, the algorithmic search complexity
may increase at larger data sizes. This substantially raises the
search time and the risk of falling into a local optimum. These
challenges mean that discrete grey wolf optimization algori-
thms still require further enhancement and optimization in
solving complex discrete problems to meet the demands of
practical applications.

In this paper, an improved GWO (I-GWO) algorithm is
proposed to combine GWO and genetic algorithm (GA) for
TSP. I-GWO highlights the advantages of fully utilizing the
GWO and GA algorithms and compensates for their short-
comings. To adapt the TSP solution, two strategies, the 2-opt
operator and Hamming distance, are introduced to implement
the discrete GWO. The search space is expanded with a
newly updated population strategy to enhance the diversity of
solutions, and crossover and mutation operations are ex-
ecuted in the following iteration. Meanwhile, the I-GWO is
embedded with the simulated annealing (SA) algorithm to
better the local search performance.

The rest of the article is organized as follows: chapter 2
provides a description of the problem, chapter 3 details the
basic algorithms involved, chapter 4 describes the structure
of the I-GWO algorithm, chapter 5 presents the experimental
data of I-GWO and analyses it in comparison with other
algorithms, and, finally, chapter 6 concludes the paper.

II. PROBLEMS DESCRIPTION

The travelling salesman problem (TSP) can be mathema-
ticcally modelled as a complete undirected graph G = (N, C),
where N is the set of city locations, { (,) : , }C d i j i j N= ∈ is
the set of edges, and dij is the distance between two city
locations i and j. The objective of the TSP is to find the
shortest Hamiltonian loop that starts from a certain city and
traverses all the cities such that each city can be visited only
once by the traveler before returning to the starting city.

For ease of description, a mapping π:=i→j is used to
represent the one-to-one correspondence between the sequen-
tial numbering of the cities visited by the traveler and the
locations of the cities traversed. Let X= (π(1), π(2), ..., π(n))
be a mapping solution, where i =1, 2, …, n, represents the ith
sequentially visited city location number. For example, a
solution is X= {3, 5, 2, 4, 1}, which represents that the
traveler starts from city 3, visits cities 5, 2, 4, and 1 sequentia-
lly, and finally goes back to city 3. The mathematical model
of the TSP problem is demonstrated as follows:

1 , 1

n n

ij ij
i j i j

Z d x
= ≠ =

= ⋅∑ ∑ (1)

, 1
1,

n

ij
j i j

x i N
≠ =

= ∀ ∈∑ (2)

, 1
1,

n

ij
i j i

x j N
≠ =

= ∀ ∈∑ (3)

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 602-612

__

Eq. (1) defines the total distance of the traveler's path and
ensures that each city is visited only once , as specified by Eq.
(2) and (3). Here, xij represents the selection of the path from
city i to city j, where xij=1 if the path is selected and xij=0
otherwise.

III. GREY WOLF OPTIMIZATION AND GENETIC ALGORITHMS
Before introducing the I-GWO algorithm, this chapter will

first elaborate on the related basic algorithms. This will
provide the reader with an in-depth understanding. These
basic algorithms provide a solid foundation for the innovative
techniques in this paper. Our improvement work is carried
out within the framework of these algorithms to better meet
the needs of the research.

A. Grey Wolf Optimizer Algorithm
Inspired by the hunting strategy and leadership hierarchy

of grey wolves, the Grey Wolf Optimizer (GWO) is a
recently developed population-based algorithm. In this
algorithm, each potential solution in the solution space is
treated as a 'grey wolf' that competes and cooperates with
others based on its fitness value to find the optimal solution.
At the start of the algorithm, a group of individual grey
wolves is randomly generated, with each representing a
potential solution to the problem. Mathematically, the most
optimal solution is referred to as alpha (α), with beta (β) and
delta (δ) representing the second and third best solutions,
respectively. The remaining candidate solutions are classified
as omega (ω). The alpha grey wolf leads the evolution of the
whole group towards a better solution, while the beta and
delta grey wolves influence the movement of the other grey
wolves.

The mathematical model is displayed below.
12A a r a= ⋅ ⋅ −

 (4)

22C r= ⋅

 (5)

2 (1)
max

ta
iteration

= ⋅ −
−

 (6)

This formulation uses coefficient vectors A

 and C

, along
with random values r1 and r2 from the interval [0,1]. The
parameter a

 regulate the convergence of the GWO
algorithm. Its value linearly decreases from 2 to 0. t and
max-iteration represent the current and maximum number of
iterations, respectively.

| () () |p iD C X t X t= ⋅ −

 (7)

(1) | () |pX t X t A D+ = − ⋅

 (8)
Eq. (7) and (8) simulate wolves encircling their prey, with

D

 denoting the distance between wolf i and target p at round
t, and (1)X t +

 denoting the position of the wolf update in the
next round.

| () |

| () |

| () |

i

i

i

D C X X t

D C X X t

D C X X t

α α

β β

δ δ

= ⋅ −

= ⋅ −

= ⋅ −

 (9)

1

2

3

| |

| |

| |

X X A D

X X A D

X X A D

α α

β β

δ δ

= − ⋅

= − ⋅

= − ⋅

 (10)

1 2 3(1)
3i

X X X
X t

+ +
+ =

 (11)

Eq. (9)-(11) depict the scenario where three alpha wolves
lead the pack in the pursuit of prey. Eq. (9) is employed to
compute the distance between wolf i and the three alpha
wolves during the tth iteration, while Eq. (10) determines the
values of 1X

, 2X

and 3X

. These values are then integrated
into Eq. (11) to determine the position of wolf i during the t+1
rounds.

B. Genetic Algorithm
The Genetic Algorithm (GA) [29] is a heuristic search and

optimization algorithm that was proposed by Holland in 1992.
It is inspired by natural selection and genetic mechanisms in
biology. The basic idea of the genetic algorithm is to
continuously evolve and improve candidate solutions to find
the optimal or near-optimal solution to a problem. First, an
initial set of individuals is generated, each representing a
potential solution; second, the quality of the individuals is
evaluated by assessing their fitness using a function
dependent on the problem; third, the individuals with the
higher fitness are selected as parents and generated by
crossover and mutation; and finally, some or all of the parents
are replaced by the offspring to form a new generation of the
population. This iterative process is repeated until the
stopping condition is met.

The pseudo-code of the genetic algorithm is shown as
follows:

Algorithm 1 Genetic Algorithm

Input N: Population size
Output XBest: the best solution
Initialize P, P= {X1, X2, …, XN}: Population
while the termination condition is not met
 Two individuals X were randomly selected as

parents.
 Exchange some chromosomes among parents to

produce new individuals.
Mutational manipulation of the zygote chromosomes
to produce a new individual Xnew.
for Xi, i =1, 2, …, N

 According to the selection operation, well-adapted
individuals are retained as XBest.

end for
end while

IV. IMPROVE GREY WOLF OPTIMIZATION ALGORITHM
This chapter presents our adaptation of the GWO for

solving the TSP. The D-GWO algorithm has some im-
perfections in modifying the original algorithm, causing it to
easily fall into the local optimal solution and limiting its
performance on complex optimization problems. Therefore,
there is a significant need to innovate the D-GWO algorithm.
The traditional GWO algorithm is effective because it
establishes a relationship between the three head wolves by
means of which these head wolves work together to steer the
whole pack towards a more optimal direction. However, the
three head wolves in the D-GWO algorithm iterate
independently of each other, and there is a lack of logical
relationship between them, which may cause the algorithm to

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 602-612

__

fall into different local optimal solutions without being able
to search globally. Such incoherence makes the D-GWO
algorithm perform poorly in high-dimensional, complex
optimization problems and fails to realize its full potential.
By improving the D-GWO algorithm, we propose the I-GWO
algorithm. The I-GWO algorithm can introduce more
cooperative mechanisms, which makes the individual head
wolves work better together and ensures the ability of global
search. This improvement is expected to reduce the risk of
falling into local optimal solutions and improve the global
search ability of the algorithm, thus making it more suitable
for solving complex optimization problems. Therefore, we
introduce crossover and mutation operations of the genetic
algorithm to mix the genes of the main grey wolves. If the
mixed solution works well, it will replace the original main
grey wolf as the new main grey wolf; otherwise, it will be
eliminated. Furthermore, the 2-opt algorithm has been
integrated into the I-GWO algorithm using hybrid simulated
annealing. This extension of the search area helps to avoid the
problem of local optimal solutions.

A. 2-opt
The 2-opt algorithm is a local search algorithm for solving

the traveling salesman problem (TSP). The basic idea of the
2-opt algorithm is to continually improve the quality of the
current solution by continually exchanging two edges in the
path to reduce the total length of the path. As shown in the
figure, the path 1 , , , ,R A C E B D=< > is updated by the 2-opt
algorithm to get a shorter path 2 , , , ,R A B C D E=< > .

A B

C

DE

F

A B

C

DE
(a) original route (b) new route

Fig. 1. Simulate 2-opt algorithm example

B. Discrete Grey Wolf Optimization Algorithm
Since the classical GWO algorithm cannot be applied to

discrete problems, Karuna proposed a discrete GWO algori-
thm [12] to solve the TSP problem. In this discrete grey wolf
optimization algorithm, he uses the Hamming distance
instead of the difference vector D

 eq. (12).
, ,[1, (,)]j i N jD random hd X X α β δ∈ ∈=

 (12)

, ,2 (,)ij i N jX opt X D α β δ∈ ∈= − (13)
Then, Eq. (13) describes that a better solution is obtained

by iterating the 2-opt algorithm according to the value of the
distance parameter.

C. The improvement method
After solutions generated, we attempt to improve the

quality of the solutions by applying simulated annealing
strategies. Simulated annealing, originally proposed by
Kirkpatrick [30], is a global optimization algorithm mainly
used to solve complex combinatorial optimization problems.
The uniqueness of this algorithm lies in its ability to effect-

tively avoid falling into local optimal solutions and helps to
obtain better global solutions. Its principle is derived from the
physical phenomenon of the annealing process of solid
materials, in which the material gradually cools down at high
temperatures and reaches a stable state. Analogous to this
process, the simulated annealing algorithm avoids falling into
a local optimum by accepting a worse solution with a certain
probability. That is, starting from an initial solution X0 and an
initial temperature T, iterates by repeatedly generating a new
solution, calculating the objective function difference, and
accepting or discarding for the current solution.

Although the 2-opt algorithm exhibits strong search
capabilities when dealing with discrete problems, it is
difficult for the 2-opt algorithm to generate a better solution
when the algorithm falls into a local optimum. Therefore, to
solve the discrete problem, we choose to combine simulated
annealing with the 2-opt algorithm to overcome this
limitation. This combination can effectively balance global
and local search by avoiding falling into a local optimum
through the global search capability of simulated annealing
and rapidly improving the current solution through the
efficient local search of the 2-opt algorithm, which
accelerates the convergence of the algorithm, is applicable to
a wide range of discrete optimization problems, and improves
the chances of finding a more optimal solution.

In order to more effectively combine simulated annealing
and the 2-opt algorithm to solve the TSP problem, we have
made an improvement by relating the annealing rate to the
path distance. The improved annealing rate formula is shown
below:

(() ('))/ ()D x D x D x
Tprobability e

−

= (14)
Where D(x) is the distance of the shortest path, D(x') is the

distance of the new path and T is the current temperature.
If D(x') < D(x) then this solution is necessarily accepted,

otherwise the differential solution is accepted according to
some probability.

(() (')) / ()

1, (') ()

, (') ()
D x D x D x

T

D x D x
probability

e D x D x
−

<=
 ≥

 (15)

The update process for the hybrid simulated annealing
2-opt algorithm is as follows. First, we screen and rank all
possible solutions to select the top three best solutions, which
will be the main members of the wolf pack, denoted xα , xβ
and xδ , respectively. Next, we divide the set of solutions into
three parts, representing the top 5%, the 5%-40%, and the
remaining 60%, respectively. Each of these three parts
corresponds to the main member wolves, and then the
distance parameter D is calculated using Eq. (12), and the
SA-2-opt algorithm Eq. (16) is applied to update all the
solutions.

2 (,)

2 (,)

2 (,)

i i

j j

k k

x SA opt x D

x SA opt x D

x SA opt x D

α

β

δ

→

→

→

= − −

= − −

= − −

 (16)

The hybrid simulated annealing 2-opt algorithm pseudo-

code is shown below:

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 602-612

__

Algorithm 2 Hybrid SA and 2-opt Algorithm
Input T: initial temperature CR: cooling rate

 F: final temperature D

: Distance vector
Initialize The path of the ith wolf in the pack Ri=<A1,
A2, …, AN>
for i = 1, 2, …, D

 do
for j= 1, 2, …, N-1 do

 for k = j+1, j+2, …, N do
 Dis(Ri) = Total distance of path Ri

 Rnew = 2-opt exchange for path Ri

 Dis(Rnew) = Total distance of path Rnew
 if Dis(Ri) > Dis(Rnew) then
 Ri = Rnew
 else

 Accepting the worse solution according to
the probability of Eq. 15

 Ri = Rnew

 if T > F then
 T = T * CR

 end if
 end for

end for
end for

D. Crossover and Mutation Operations
In the improved grey wolf optimization (I-GWO) algori-

thm, crossover and mutation operations are used to enhance
search diversity and find better solutions. By selecting three
head wolves and crossover and mutate their genes, we aim to
increase the exploration range of the solution space in the
expectation of obtaining better solutions. The crossover
operation promotes the combination of the strengths of
different head wolves, while the mutation operation
introduces stochasticity to help the algorithm jump out of the
local optimal solution, thus improving the adaptability of
GWO and making it more competitive in a variety of
optimization problems. Fig. 2 illustrates the crossover and
mutation parts of the genetic algorithm.

1 2

1 2

1

2

: | |

: | |

r r

r r

R A H J F I G

R B

E B C D

I H GA J E DF C

→ → → → →→ → →

→ →

→

→ → → → → →→

(a) Generate randomized paths
1 2

1 2

1

2

* * * *

* * * *

: | |

: | |

r r

r r

R A I H G F J

R A E

switc

J B C D

h
→ → → → → → → → →

→ → → → → → → → →

(b) Two paths for intersection operations
1 2

1 2

1

2

: | |

: | |

r r

r r

R

F

A I H G F

R

E B CJ

A J IE B C

D

GD H

→ → → → → → → → →

→ → → → → → → → →

(c) Mapping process
1 2

2 1

: | | | |

: | | | |

r r

r r

new

R A H E B C D J F I G

R A H E F C D J B I G

→ → → → → → → → →

→ → → → → → → → →

(d) Randomly select two points to swap

Fig. 2. Genetic algorithm crossover and mutation operations

First two random paths are generated and two points r1 and
r2 are randomly generated in the interval [1.L] according to
the length of the paths L. Let r1=3, r2=6. The process is
shown as (a) in Fig. 2

Then the crossover operation is performed between the
two points, after the crossover operation is finished, there will
be duplicated points under the same path, the non-duplicated
points will be retained and the conflicting points will be
replaced with *. The exchanged path is shown as (b) in Fig. 2

Finally, the [r1, r2] intervals of the corresponding paths are
used for mapping, i.e., the intervals [1, r1) and (r2, L] of
Route1 are mapped with the intervals [r1, r2] of Route2.
Route2 ditto. The process is shown in (c) of Fig. 2.

The selection of initial random points in the mutation
operation is consistent with the selection of random points
operation in the crossover operation, where two points r1 and
r2 are randomly selected between the intervals [1, L], which
are then exchanged for position. Let r1=4, r2=8. The process
is shown in (d) in Fig. 2.

The crossover and mutation modifications to the head wolf
gene operate as follows. After updating all the solutions using
Eq. (16) in the previous section, we select the three best
solutions from them, denoted xα, xβ, and xδ. Next, we
recombine these three solutions through the crossover and
mutation operations of the genetic algorithm of Eq. (17) and
decide whether to keep the newly generated solutions or not
according to Eq. (18), retaining them only if the new
solutions are better and discarding them otherwise.

(,)
(,)
(,)

new

new

new

x GA x x
x GA x x
x GA x x

α α β

β α δ

δ β δ

=

=

=

 (17)

, () ()
, () ()

old new old
new

new new old

x Dis x Dis x
x

x Dis x Dis x
>

= ≤
 (18)

The pseudo-code of the crossover and mutation part of the
genetic algorithm is shown below:

Algorithm 1 The Crossover and Mutation Of GA

Input N: Population size
Output XBest: the best solution
Initialize P, P= {X1, X2, …, XN}: Population
while the termination condition is not met

for Xi, i = 1, 2, …, N
 Exchange some chromosomes among pairs of

individuals to produce new individuals.
Mutation operators act on the population to obtain
new individuals Xnew.

end for
for Xi, i =1, 2, …, N

 Well adapted individuals are retained according to
the Selection operation.

end for
end while

In each iteration, we introduce a competitive mechanism in
the wolf pack to ensure that the better wolves remain in the
pack, while the relatively weaker wolves have a higher
probability of elimination, which can be determined by Eq.
(19), where i represents the ranking of an individual in the
wolf population and N denotes the total population size.

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 602-612

__

rate i
N

= (19)

E. Procedure of I-GWO Algorithm
This section shows pseudocode to improve the grey wolf

optimization algorithm. It is divided into three main stages.
First, the wolves are initialized to generate the initial
population. In the second stage, the genes of the wolf
population are modified using the crossover and mutation
operations of the genetic algorithm to expand the search
space and increase the diversity of solutions. Finally, a hybrid
SA-2-opt algorithm is embedded in I-GWO to improve the
local search performance. The pseudocode for improving the
grey wolf optimization algorithm is as follows:

Algorithm 3 Improve Grey Wolf Optimization

Input N: population size M: max iteration
 R: randomized route of TSP
Initialize population of wolves xi (i = 1, 2, …, N) xi∈R
for i = 1, 2, …, N do

Di= Calculate the length of xi

D: The full distance of the wolf's path
end
Choose three optimal solutions

xα : the shortest path Dα of i ND ∈
xβ : second shortest path Dβ of i ND ∈

xδ : third shortest path Dδ of i ND ∈
for t = 1, 2, …, M do
 According to the ratio of the first 5%, the first 5% -

40%, and the last 60% will all be dissolved into three
zones a, b, c.

for i = 1, 2, …, a do
 update the path of wolf xi according to Eq. (12)

and Eq. (16)
 Elimination of poor solutions according to the

probability of Eq. (19)
end for
for j = a, a+1, …, b do
 update the path of wolf xj according to Eq. (12)

and Eq. (16)
 Elimination of poor solutions according to the

probability of Eq. (19)
end for
for k = b, b+1, …, N do
 update the path of wolf xk according to Eq. (12)

and Eq. (16)
 Elimination of poor solutions according to the

probability of Eq. (19)
end for

 update xα , xβ , xδ using Eq. (17) and (18)
end for
return the best route xα

V. EXPERIMENT
In this section, experiments will be conducted on the

research points presented in this paper, as well as
comparisons with other algorithms. This chapter is divided
into two main parts, in the first part, the comparison between
the proposed improved discrete grey wolf optimization

algorithm and the discrete grey wolf optimization algorithm
is described. Then in the second part, the experimental results
of the improved discrete grey wolf optimization algorithm
are shown and compared with other algorithms. A total of 26
TSP instances were used in the experimental comparisons,
and the TSP data used for the experiments were obtained
from http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95
/tsp/. As well as in this study all test behaviors were done on
an AMDRyzen7 5800h laptop with 3.20 GHz and 16 GB of
RAM. The programming language used is Python.

A. Experimental comparison between I-GWO and D-GWO
algorithms

In order to test that I-GWO performance, we conduct a
comparison test between I-GWO and D-GWO in this chapter.
To ensure that I-GWO can perform optimally, we conducted
several parameter tests, including the initial solution, the
SA-2-opt algorithm, the cross- mutation of the GA, and the
number of iterations. The final parameters are those that
perform best in the experiments. Table 1 summarizes the
relevant parameters used for I-GWO and D-GWO. To keep
the experiments fair, we conducted 20 independent experim-
ents for each instance, using the same number of runs to be
consistent with the D-GWO algorithm. We used 17 instances
of TSP in our experiments, and the experimental data for
D-GWO was taken from a recently published study [12].
Table 2 presents the results of the comparison between the
algorithms, focusing on the optimal solution, the average
solution, the average difference value, and the average
running time. When the algorithms are run, we set 1

N
IN =+ ∑

as the termination condition, i.e., the algorithm ends when the
optimal solution obtained by the algorithm in N generations is
not updated. Where N is the number of nodes in the TSP
instance. In the next sections, we will continue with
comparisons with other heuristic algorithms and apply the
above configurations to these comparisons.

In Table 2, we compare the performance of I-GWO and
D-GWO in terms of mean, best solution, mean difference and
running time. As shown in (a) in Fig. 3, I-GWO is
significantly better than D-GWO in obtaining the mean,
which means that the results of I-GWO are more stable and
less fluctuating when obtaining the best solution. Figure 3 in
(b) shows the running time spent by the two algorithms in
solving the TSP instances, which shows that I-GWO has
higher efficiency in solving the TSP problem, which helps to
cope with the increasing data volume and complexity. In
addition, I-GWO shows improved performance in terms of
the best solution, which is able to explore a wider search
space even under the same initial population condition.
Taken together, I-GWO clearly outperforms D-GWO,
showing superior performance.

Figure 4 illustrates the comparative results of the
convergence of the I-GWO and D-GWO algorithms. In our
experiments, we used four different TSP instances including
Pr76, KroB100, Pr152, and Pr266.First, we observe that the
I-GWO performs more extensively in terms of the solution
search range relative to the D-GWO algorithm. This is
manifested in the graphs, where the fold fluctuations of the
I-GWO algorithm are significantly more pronounced,
indicating its larger search range. This is an important
advantage for solving the TSP problem. Next, we focused on

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 602-612

__

the convergence speed. From Figures a, b and c we can
clearly observe that the I-GWO algorithm converges
significantly faster than the D-GWO algorithm on these three
instances. This means that I-GWO is able to find solutions
faster, especially when solving small TSP instances.
However, in Figure d we note that the I-GWO algorithm
converges relatively slowly. Nonetheless, it is able to jump
out of the local optimum and end up with a better solution by
combining it with the hybrid simulated annealing 2-opt

algorithm. This suggests that the I-GWO algorithm may have
a better global search capability when dealing with large TSP
instances, and can more easily overcome the limitation of
local optimal solutions and improve the quality of the
solution compared to the D-GWO algorithm. In summary,
the I-GWO algorithm has a larger search area, faster
convergence speed, and potential performance in jumping
out of the local optimum when solving TSP problems.

TABLE I
PARAMETERIZATION OF I-GWO, DGWO AND IBA

 I-GWO D-GWO
Parameter Value Parameter Value

 Population size 50 Population size 50
Iteration 20 Iteration 20
Update method SA-2-opt&GA Update method 2-opt
Temperature t=100*0.95iter,t∈[1,100]
Crossover function Ordered Crossover
Mutation function Insertion

TABLE II
RESULT OF PROPOSED I-GWO AND D-GWO FOR THE TSP INSTANCES.

 Instance I-GWO D-GWO
Name Optima Avg Best A.dif Time(s) Avg Best A.dif Time(s)

 Dantzig42 679 679.0 679 0 29.6 680 679 1 40.69
Att48 33,523 33,552.6 33,523 29.6 43.08 33,600 33,522 77 60.07
Pr76 108,159 108,719.4 108,159 560.4 161.82 108,900 108,159 741 264.23
Krob100 22,140 22,292.2 22,140 152.2 389.82 22,444.6 22,159 304.6 689.34
Kroc100 20,749 20,899.8 20,749 150.8 375.2 21,078 20,749 329 688.43
Kroe100 22,068 22,260.0 22,068 192 394.13 22,410 22,131 342 685.46
Lin105 14,379 14,510.2 14,379 131.2 520.32 14,520 14,382 141 685.33
Pr107 44,303 44,713.2 44,303 410.2 454.25 44,685.1 44,301 382.1 830.54
Pr124 59,030 59,092.8 59,030 62.8 767.5 59,390.9 59,030 360.9 888.3
Pr136 96,772 98,266.3 97,532 1494.3 1055 99,310.5 97,826 2538.5 1486.25
Pr144 58,537 58,637.8 58,537 100.8 1238.53 58,600.5 58,535 63.5 1866
Krob150 26,130 26,535.4 26,231 405.4 1473.81 26,756.2 26,320 626.2 2503.2
Pr152 73,682 74,022.6 73,687 340.6 1579.32 74,230 73,690 548 2856.22
U159 42,080 42,312.4 42,133 232.4 1603.85 42,563.3 42,142 483.3 3108.6
Pr226 80,369 80,830.5 80,551 461.4 5303.5 81,135.7 80,648 766.7 12,971.29
Pr439 107,217 111,705.0 109,925 4488 24,523.4 112,850.3 110,415 5633.3 56,225.8
Pr1002 259,047 267410.2 264,513 8363.2 73,685.34 267,713.2 264,922 8666.2 161,240.9

da
ntz

ig4
2

att
48 pr7

6

kro
b1

00

kro
c1

00

kro
e1

00
lin

10
5

pr1
07

pr1
24

pr1
36

pr1
44

kro
b1

50
pr1

52
u1

59
pr2

26
pr4

39
pr1

00
2

0

2000

4000

6000

8000

A
V

G
.d

if

TSP Instances

 I-GWO
 D-GWO

(a) Comparison of mean and optimal solution differences for I-GWO and

D-GWO

Dan
tzi

g4
2

Att4
8

Pr76

Krob
10

0

Kroc
10

0

Kroe
10

0

Lin1
05

Pr10
7

Pr12
4

Pr13
6

Pr14
4

Krob
15

0
Pr15

2
U15

9
Pr22

6
Pr43

9

Pr10
02

0

20000

40000

60000

80000

100000

120000

140000

160000

R
un

tim
e

TSP Instances

 I-GWO
 D-GWO

(b) Comparison of I-GWO and D-GWO runtimes

Fig. 3. I-GWO and D-GWO performance comparison chart

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 602-612

__

B. Comparison of I-GWO and other heuristic algorithms
In this chapter, we intend to conduct a comparative study

using 18 TSP instances with the aim of fully evaluating the
performance differences between the I-GWO algorithm and a
number of other heuristic algorithms.

As mentioned above, the TSP serves as a standard
benchmark for evaluating discrete optimization algorithms.
While I-GWO achieves commendable results for the TSP,
reaching the optimal solution in 13 out of 17 cases, it is
important to emphasize that the primary goal of this study is
not to find optimal solutions. Rather, both problems are used
as benchmarks to demonstrate the adaptability of GWO to
routing problems and to show the potential of I-GWO as an
effective approximation method for solving the TSP.

To achieve this, we aim to show that the I-GWO can
outperform well-known metaheuristics in the literature using
standard non-heuristic functions. For comparison, we've
chosen three historically successful techniques (GA, SA,
IDGA) and two recent ones (DFA, DICA, BA).

It's important to emphasize that we have tried to use
identical operators and parameters in all implemented
algorithms for consistency in our experiments. It's also worth
noting that all individuals are randomly generated.

These algorithms represent different problem solving str-
ategies, including GA, ESA, IDGA, DFA, DICA and BA.
Through these comprehensive comparative experiments, we
aim to gain insights into the performance of these algorithms
in solving real-world problems in terms of their robustness,
search capability, and potential for global optimal solution
discovery. This will help to provide deeper insights and better
performance evaluation for problem solving.

The parameterization for I-GWO corresponds to Table 1
from the previous section. The results for I-GWO, ESA, GA
and IDGA over 18 instances are presented in Table 3,
showing average and best results along with average
differences. Best average results are highlighted and optimal
solutions are noted. In particular, to avoid duplication, some
of the I-GWO results in Table 4 are the same as those in
Table 2.

The experimental data of these heuristic algorithms come
from the study published by Osaba in 2016 [31], which
provides us with a valuable reference. In the comparison
study, we paid special attention to several key performance
indicators, including the average value, the optimal solution,
and the average difference, in order to comprehensively
evaluate the performance of each algorithm. The detailed
comparison data is presented in Tables 3 and 4, and the
average performance difference between these algorithms is
visualized in Figure 5.

On the other hand, Table 4 compares the results obtained
by I-GWO in the 15 cases with those obtained by a BA, a
DFA and a DICA. As before, we have used similar parame-
ters and functions in these techniques in order to obtain fair
conclusions. I-GWO, BA, DFA and DICA all used the same
number of individuals and relied on the Hamming distance
function for their movements. Similar conclusions can be
drawn from this table: I-GWO performed best, achieving
better results in 83.3% of cases (15 out of 18), with only three
cases where it performed worse. Overall, I-GWO
outperformed DFA and DICA in all 18 TSP cases and BA in

15 TSP cases.
From the data in Tables 3 and 4, it is clear that the I-GWO

algorithm performs well in handling these TSP instances.
Although it is slightly inferior to the BA algorithm in several
instances, namely Eil101, Pr264 and Pr299, I-GWO is more
consistent in terms of average performance. This advantage
is not only reflected in the optimal solution, but also in the
key of metric mean difference. Looking at the mean
difference comparisons in Figure 5, it is clear that the I-GWO
algorithm exhibits greater stability when dealing with
multiple instances, which means that it is able to maintain a
consistent level of excellent performance across different
problems.

VI. DISCUSSION
A comparison of the Improved Grey Wolf Optimization

(I-GWO) algorithm with D-GWO and other heuristics
highlights the superior performance of I-GWO in solving the
Travelling Salesman Problem (TSP) and its potential to
address a wider range of optimization problems. Compared to
D-GWO, I-GWO exhibits greater stability in obtaining
average solutions and shorter run times, suggesting that it is
more efficient in solving TSP instances. In addition, I-GWO
is able to explore a larger search space and obtain better
solutions, especially for smaller TSP instances. Although
convergence is relatively slow in some cases, I-GWO's
ability to get rid of local optima through hybridization
highlights its potential in larger TSP instances. Across
multiple TSP instances, I-GWO consistently outperformed
established metaheuristics and demonstrated overall consist-
ency and stability, making it ideal for TSP optimization.
Future research could focus on further refining I-GWO
through algorithmic tuning and hybrid strategies to exploit its
advantages. In addition, exploring scalability and
parallelization techniques will help improve the applicability
of I-GWO to larger optimization problems, making it an
important tool for various practical applications. Overall,
I-GWO is a promising optimization technique that outper-
forms traditional and contemporary heuristic algorithms in
the field of TSP optimization. Its demonstrated superior
performance and future research prospects make it the
method of choice for a variety of complex optimization
challenges.

VII. CONCLUSION
In this study, an improve grey wolf optimization algorithm

I-GWO is proposed as a new approach to solve the TSP
problem. Since the discrete grey wolf optimization algorithm
has the defects of falling into local optimum and poor
performance release slow convergence speed when facing the
TSP problem. Therefore, the D-GWO algorithm is modified
by adding simulated annealing for updating iterations, as well
as adding genetic algorithm to control the genetic changes of
the population. To verify the performance of I-GWO, 26 TSP
instances are used to compare with other algorithms. From
the experiments, it can be concluded that the improvement of
I-GWO is beneficial, and the robustness of the algorithm, the
faster running efficiency and the convergence speed can be
improved by these changes. It has a larger search space in the
same running time.

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 602-612

__

0 20 40 60 80 100

108200

108400

108600

108800

109000

B
es

t L
en

gt
h

Iteration

 I-GWO
 D-GWO

(a) TSP instance Pr76

0 20 40 60 80 100

22200

22400

22600

22800

23000

23200

23400

23600

23800

B
es

t L
en

gt
h

Iteration

 I-GWO
 D-GWO

(b) TSP instance KroB100

0 20 40 60 80 100
73500

74000

74500

75000

75500

76000

76500

B
es

t L
en

gt
h

Iteration

 I-GWO
 D-GWO

(c) TSP instance Pr152

0 20 40 60 80 100
80500

81000

81500

82000

82500

83000

83500

B
es

t L
en

gt
h

Iteration

 I-GWO
 D-GWO

(d) TSP instance Pr226

Fig. 4. Convergence of I-GWO algorithm demonstrated

Kroa100 Krob100 Kroc100 Krod100 Kroe100 Pr107 Pr124
0

200

400

600

800

1000

1200

1400

m
ea

n
di

ff
er

en
ce

Instance

 I-GWO
 ESA
 GA
 IDGA
 BA
 DFA
 DICA

Pr136 Pr144 Pr152 Pr264 Pr299 Pr439 Pr1002
0

5000

10000

15000

20000

m
ea

n
di

ff
er

en
ce

Instance

 I-GWO
 ESA
 GA
 IDGA
 BA
 DFA
 DICA

Fig. 5. Comparison of algorithmic mean difference

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 602-612

__

TA

B
LE III

R
ESU

LT O
F P

R
O

PO
SED

 I-G
W

O
 A

N
D

 ESA
, G

A
 A

N
D

 ID
G

A
 F

O
R

 T
H

E TSP
 IN

STA
N

C
ES.

Instance

I-G

W
O

ESA

G

A

ID

G
A

N
am

e
O

ptim
a

A
vg

B
est

A
.dif

A
vg

B
est

A
.dif

A
vg

B
est

A
.dif

A
vg

B
est

A
.dif

Eil51

426

426.8
426

0.8

431.6
426

5.6

440.8
427

14.8

434.4
426

8.4

B
erlin52

7542
7542

7542
0

7542.0
7542

0
7542.0

7542
0

7542.0
7542

0
Eil76

538
541

538
3

553.7
546

15.7
565.4

545
27.4

557.7
545

19.7
K

roa100
21,282

21,308.2
21,282

26.2
21,481.7

21,282
199.7

21,812.4
21,350

530.4
21,731.8

21,345
449.8

K
rob100

22,140
22,292.2

22,140
152.2

22,602.2
22,202

462.2
22,687.4

22,176
547.4

22,712.6
22,208

572.6
K

roc100
20,749

20,899.8
20,749

150.8
21,170.4

20,749
421.4

21,510.4
20,861

761.4
21,298.7

20,830
549.7

K
rod100

21,294
21374.8

21,294
80.8

21,726.5
21,500

432.5
22,184.6

21,492
890.6

21,696.9
21,582

402.9
K

roe100
22,068

22,260
22,068

192
22,499.7

22,099
431.7

22,741.3
22,150

673.3
22,721.9

22,110
653.9

Eil101
629

646.2
635

17.2
658.4

650
29.4

673.8
655

44.8
660.7

650
31.7

Pr107
44,303

44,713.2
44,303

410.2
44,821.5

44,413
518.5

45,619.6
44,392

1316.6
44,902.5

44,428
599.5

Pr124
59,030

59,092.8
59,030

62.8
59,593.6

59,030
563.6

59,901.0
59,030

871
59,912.8

59,072
882.8

Pr136
96,772

98,266.3
97,532

1494.3
99,858.3

98,499
3086.3

100,472.4
98,432

3700.4
99,932.7

98,532
3160.7

Pr144
58,537

58,637.8
58,537

100.8
58,807.3

58,574
270.3

60,591.4
58,599

2054.4
58,893.0

58,581
356

Pr152
73,682

74,022.6
73,687

340.6
74,969.5

74,172
1287.5

75,658.3
74,520

1976.3
75,126.7

74,249
1444.7

Pr264
49,135

50,581.4
49,864

1446.4
52,198.5

51,603
3063.5

52,499.8
51,712

3364.8
52,290.0

51,653
3155

Pr299
48,191

48,501.2
48,323

310.2
50,532.3

49,242
2341.3

50,817.1
49,659

2626.1
50,513.3

49,572
2322.3

Pr439
107,217

111,705.0
109,925

4488
116,706.9

113,497
9490

116,943.4
113,576

9726.4
116,436.1

113,207
9219.1

Pr1002
259,047

267410.2
264,513

8363.2
279,419.7

273,496
20,372.7

279,384.7
273,001

20,337.7
278,951.4

272,893
19,904.4

TA

B
LE IV

R

ESU
LT O

F P
R

O
PO

SED
 I-G

W
O

 A
N

D
 B

A
, D

FA
 A

N
D

 D
IC

A
 F

O
R

 T
H

E TSP
 IN

STA
N

C
ES.

Instance

I-G

W
O

B
A

D
FA

D
IC

A

N

am
e

O
ptim

a
A

vg
B

est
A

.dif
A

vg
B

est
A

.dif
A

vg
B

est
A

.dif
A

vg
B

est
A

.dif

Eil51
426

426.8

426
0.8

428.1

426
2.1

430.8

426
4.8

432.3

426
6.3

B

erlin52
7542

7542
7542

0
7542.0

7542
0

7542.0
7542

0
7542.0

7542
0

Eil76
538

541
538

3
548.1

539
10.1

556.8
543

18.8
557.6

544
19.6

K
roa100

21,282
21,308.2

21,282
26.2

21,445.3
21,282

163.3
21,483.6

21,282
201.6

21,500.3
21,282

218.3
K

rob100
22,140

22,292.2
22,140

152.2
22,506.4

22,240
366.4

22,604.8
22,183

464.8
22,599.7

22,180
459.7

K
roc100

20,749
20,899.8

20,749
150.8

21,050.0
20,749

301
21096.3

20,756
347.3

21,103.9
20,756

354.9
K

rod100
21,294

21374.8
21,294

80.8
21,593.4

21,294
299.4

21,683,8
21,408

389.8
21,666.8

21,399
372.8

K
roe100

22,068
22,260

22,068
192

22,349.6
22,068

281.6
22413

22,079
345

22,453.3
22,083

385.3
Eil101

629
646.2

635
17.2

646.4
634

17.4
659.0

643
30

663.8
644

34.8
Pr107

44,303
44,713.2

44,303
410.2

44,793.8
44,303

490.8
44790.4

44,303
487.4

44,803.3
44,303

500.3
Pr124

59,030
59,092.8

59,030
62.8

59,412.1
59,030

382.1
59,404.3

59,030
374.3

59,436.9
59,030

406.9
Pr136

96,772
98,266.3

97,532
1494.3

99,351.2
97,547

2579.2
99,683.7

97,716
2911.7

99,583.7
92,736

2811.7
Pr144

58,537
58,637.8

58,537
100.8

58,876.2
58,537

339.2
58993.3

58,546
456.3

59,070.9
58,563

533.9
Pr152

73,682
74,022.6

73,687
340.6

74,676.9
73,921

994.9
74,934.3

74,033
1252.3

74,886.7
74,052

1204.7
Pr264

49,135
50,581.4

49,864
1446.4

50,908.3
49,756

1773.3
51.837.0

50,491
2702

51,943.6
50,553

2808.6
Pr299

48,191
48,501.2

48,323
310.2

49,674.1
48,310

1483.1
49,839.7

48,579
1648.7

49,880.3
48,600

1689.3
Pr439

107,217
111,705.0

109,925
4488

115,256.4
111,538

8039.4
115,558.2

111,967
8341.2

115,763.1
111,983

8546.1
Pr1002

259,047
267,410.2

264,513
8363.2

274,419.7
270,016

15,372.7
277,344.7

272,003
18,297.7

277,308.1
272,082

18,261.1

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 602-612

__

REFERENCES
[1] D. B. Shmoys, J. K. Lenstra, et al. "The traveling salesman problem,"

John Wiley & Sons, Incorporated, vol. 12, 1985.
[2] I. Kara, T. Bektas, "Integer linear programming formulations of

multiple salesman problems and its variations." European Journal of
Operational Reseasrch, vol. 174, no. 3, pp1449-1458, 2006.

[3] A. G. Chentsov, L. N. Korotayeva, "The dynamic programming
method in the generalized traveling salesman problem." Mathematical
and computer modelling vol. 25, no. 1, pp93-105, 1997.

[4] M. Padberg, G. Rinaldi, "A branch-and-cut algorithm for the resolution
of large-scale symmetric traveling salesman problems." SIAM review
vol. 33, no. 1, pp60-100, 1991.

[5] R. Skinderowicz, "Improving Ant Colony Optimization efficiency for
solving large TSP instances." Applied Soft Computing, 120, pp108653
2022.

[6] Y. Huang, X. N. Shen, and X. You, "A discrete shuffled frog-leaping
algorithm based on heuristic information for traveling salesman
problem." Applied Soft Computing vol. 102, pp107085, 2021.

[7] W. Gao, "Modified ant colony optimization with improved tour
construction and pheromone updating strategies for traveling salesman
problem." Soft Computing vol. 25, no. 4, pp3263-3289, 2021.

[8] Y. Wang, Z. Han, "Ant colony optimization for traveling salesman
problem based on parameters optimization." Applied Soft Computing
vol. 107, pp107439, 2021.

[9] P. Zhang, J. Wang, "A genetic algorithm with jumping gene and
heuristic operators for traveling salesman problem." Applied Soft
Computing vol. 127, pp109339, 2022.

[10] S. K. R. Kanna, K. Sivakumar, and N. Lingaraj, "Development of deer
hunting linked earthworm optimization algorithm for solving large
scale traveling salesman problem." Knowledge-Based Systems vol. 227,
pp107199, 2021.

[11] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey wolf optimizer."
Advances in engineering software vol. 69, pp46-61, 2014.

[12] I. A. Zamfirache, et al. "Policy iteration reinforcement learning-based
control using a grey wolf optimizer algorithm." Information Sciences
vol. 585, pp162-175, 2022.

[13] H. U. Ahmed, et al. "Support vector regression (SVR) and grey wolf
optimization (GWO) to predict the compressive strength of
GGBFS-based geopolymer concrete." Neural Computing and
Applications vol. 35, no. 3, pp2909-2926, 2023.

[14] A. Altan, S. Karasu, and E. Zio, "A new hybrid model for wind speed
forecasting combining long short-term memory neural network,
decomposition methods and grey wolf optimizer." Applied Soft
Computing vol. 100, pp106996, 2021.

[15] M. H. Nadimi-Shahraki, S. Taghian, and S. Mirjalili, "An improved
grey wolf optimizer for solving engineering problems." Expert Systems
with Applications vol. 166, pp113917, 2021.

[16] M. H. Nadimi-Shahraki, S. Taghian, and S. Mirjalili, "GGWO: Gaze
cues learning-based grey wolf optimizer and its applications for
solving engineering problems." Journal of Computational Science vol.
61, pp101636, 2022.

[17] M. Ghalambaz, R. J. Yengejeh, and A. H. Davami, "Building energy
optimization using grey wolf optimizer (GWO)." Case Studies in
Thermal Engineering vol. 27 pp101250, 2021.

[18] A. Bardhan, et al. "A novel integrated approach of augmented grey
wolf optimizer and ANN for estimating axial load carrying-capacity of
concrete-filled steel tube columns." Construction and Building
Materials, vol. 337, pp127454, 2022.

[19] M. Elsisi, "Improved grey wolf optimizer based on opposition and
quasi learning approaches for optimization: Case study autonomous
vehicle including vision system." Artificial intelligence review, vol. 55,
no. 7, pp5597-5620, 2022.

[20] A. Ala, et al. "A Novel Neutrosophic-Based Multi-Objective Grey
Wolf Optimizer for Ensuring the Security and Resilience of
Sustainable Energy: A Case Study of Belgium." Sustainable Cities and
Society, pp104709, 2023.

[21] V. Bathina, R. Devarapalli, and F. P. García Márquez, "Hybrid
approach with combining cuckoo-search and grey-wolf optimizer for
solving optimal power flow problems." Journal of Electrical
Engineering & Technology, vol. 18, no. 3, pp1637-1653, 2023.

[22] S. Hemalatha, G. Banu, and K. Indirajith, "Design and investigation of
PV string/central architecture for bayesian fusion technique using grey
wolf optimization and flower pollination optimized algorithm." Energy
Conversion and Management, vol. 286, pp117078, 2023.

[23] K. Balasubramanian, K. Ramya, and K. Gayathri Devi. "Optimized
adaptive neuro-fuzzy inference system based on hybrid grey wolf-bat
algorithm for schizophrenia recognition from EEG signals." Cognitive
Neurodynamics, vol. 17, no. 1, pp133-151, 2023.

[24] P. Stodola, P. Otřísal, and K. Hasilová, "Adaptive ant colony
optimization with node clustering applied to the travelling salesman
problem." Swarm and Evolutionary Computation, vol. 70, pp101056,
2022.

[25] Z. Zhang, and Y. Han, "Discrete sparrow search algorithm for
symmetric traveling salesman problem." Applied Soft Computing vol.
118, pp108469, 2022.

[26] İ. İlhan, and G. Gökmen, "A list-based simulated annealing algorithm
with crossover operator for the traveling salesman problem." Neural
Computing and Applications, pp1-26, 2022.

[27] F. S. Gharehchopogh, and B. Abdollahzadeh. "An efficient harris hawk
optimization algorithm for solving the travelling salesman problem."
Cluster Computing, vol. 25, no.3, pp1981-2005, 2022.

[28] K. Panwar, and K. Deep. "Discrete Grey Wolf Optimizer for
symmetric travelling salesman problem." Applied Soft Computing, vol.
105, pp107298, 2021.

[29] J. H. Holland, "Genetic algorithms." Scientific american vol. 267, no.1,
pp66-73, 1992.

[30] S. Kirkpatrick, "Optimization by simulated annealing: Quantitative
studies." Journal of statistical physics vol. 34, pp975-986, 1984.

[31] E. Osaba, et al. "An improved discrete bat algorithm for symmetric and
asymmetric traveling salesman problems." Engineering Applications
of Artificial Intelligence vol. 48, pp59-71, 2016.

Zhinan Xu is currently a Postgraduate in School of Computer Science and
Software Engineering at University of Science and Technology Liaoning,
Anshan, China. His major research is Intelligent optimization algorithms.

Xiaoxia Zhang is currently a Professor in School of Computer Science and
Software Engineering at University of Science and Technology Liaoning,
Anshann China. Her major research is Intelligent optimization algorithms.

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 602-612

__

	I. INTRODUCTION
	II. Problems Description
	III. Grey wolf optimization and genetic Algorithms
	A. Grey Wolf Optimizer Algorithm
	B. Genetic Algorithm

	IV. Improve Grey Wolf Optimization Algorithm
	A. 2-opt
	B. Discrete Grey Wolf Optimization Algorithm
	C. The improvement method
	D. Crossover and Mutation Operations
	E. Procedure of I-GWO Algorithm

	V. Experiment
	A. Experimental comparison between I-GWO and D-GWO algorithms
	B. Comparison of I-GWO and other heuristic algorithms

	VI. Discussion
	VII. Conclusion
	References

