
Abstract—The Traveling Salesman Problem (TSP) seeks the 
shortest closed tour that visits each city once and returns to the 
starting city. This problem is NP-hard, so it is not easy to solve 
using conventional methods. The grey wolf optimization (GWO) 
algorithm has shown outstanding per- formance in many 
practical applications. However, it is inclined towards 
premature convergence. This paper proposes an im- proved 
GWO (I-GWO) algorithm, which hybridizes GWO with genetic 
algorithms (GA) for the TSP.  The main feature of the I-GWO 
algorithm is that it can make full use of the advantages of the 
GWO algorithm and the GA algorithm to make up for their 
respective shortcomings. Moreover, to make the GWO suitable 
for solving the TSP, both the 2-opt operator strategy and 
hamming distance h ave been designed to implement the 
discrete GWO directly. Additionally, to increase the diversity of 
solutions by expanding the search space, we present a new 
population update strategy with crossover and mutation 
operations in the next iteration. Meanwhile, the integration of 
the Simulated Annealing (SA) algorithm into the Improved 
Grey Wolf Optimizer (I-GWO) enhances its local search 
capabilities. Experimental results show that the I-GWO 
algorithm competes with established optimal methods for 
solving the TSP, suggesting its potential for different TSP 
variants and logistic transport domains. 

Index Terms—Traveling salesman problem, 2-opt, Grey wolf 
optimization, Crossover and mutation 

I. INTRODUCTION

HE logistics transportation plays an indispensable role in 
modern society and permeates various aspects of our 

lives. It is worth noting that the logistics transportation 
problem can actually be considered as one of the practical 
applications of the traveling salesman problem. Logistics 
transportation requires finding the shortest path connecting 
different delivery points to minimize cost and time. Therefore, 
logistics and transportation are closely related to the traveling 
salesman problem, and algorithms and optimization methods 
for the traveling salesman problem play a key role in logistics 
planning, helping us to manage logistics networks more in- 
telligently and thus improve our daily lives. 

The traveling salesman problem (TSP) [1] is a classical 
combinatorial optimization problem, and its aim is to find a 
travel route that visits each city exactly once, returning to the 
starting city to form a closed tour with the minimum cost. 
However, with the number of cities increasing, the computa- 
tional time required to solve the problem will grow exponent- 
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tially. It means that it is impossible to find the optimal 
solution in polynomial time. Some classical TSP solutions 
including integer linear programming [2], dynamic pro- 
gramming [3], branch and cut [4] etc., have been widely used 
in many fields such as logistics planning, circuit design, 
bioinformatics and tourism planning. However, TSP belongs 
to the np-hard problem, and these classical algorithms take a 
lot of time to search for the optimal solution. Even when the 
data are too large, they can fall into a local optimum or fail to 
search for the optimal solution. For this reason, researchers 
use heuristic and metaheuristic algorithms to solve the TSP. 

Metaheuristic algorithm (MHA) is an advanced optimiza- 
tion algorithm for solving complex combinatorial optimiza- 
tion problems with a large search space and multiple local 
optimal solutions. Metaheuristic algorithms have advantages 
over traditional algorithms in terms of generalization, global 
search capability, iterative improvement and adaptability to 
find better solutions to problems. The algorithm's potent 
global search capability can discover feasible solutions to 
intricate problems, and the iterative improvement strategy 
aids in enhancing the solutions' quality gradually. 
Furthermore, metaheuristic algorithms are typically not reli- 
ant on a specific problem, and they can be effortlessly used 
with different problems without making significant modifi- 
cations to the algorithmic structure. These aspects help to 
extend algorithms' application areas and increase the flexibi- 
lity and efficiency of solving problems. However, meta- 
heuristic algorithms have some limitations. On np-hard 
problems with a large search space, metaheuristic algorithms 
can usually only obtain approximate solutions and are not 
guaranteed to find a globally optimal solution. This means 
that meta-heuristic algorithms may not be able to provide the 
best solution to the problem. Therefore, researchers have 
subsequently proposed many improved metaheuristic algori- 
thms. For the large data level TSP problem, Skinderowicz [5] 
proposed the use of ACO variant (FACO) for optimization. 
Huang et al [6] proposed the use of discrete frog jumping 
algorithm for solving the TSP problem. Gao [7] proposed a 
new ACO optimization algorithm for the TSP problem. 
Wang et al [8] proposed the use of ACO algorithm for TSP 
problem's parameter optimization. Zhang [9] proposed a 
genetic algorithm for TSP problem based on jumping genes 
and heuristic operators (GA-JGHO). Kanna et al [10] 
introduced the Deer Hunting Linked Earthworm Optimi- 
zation Algorithm for solving large travelling salesman 
problems. 

The grey wolf optimization (GWO) algorithm [11] is a 
heuristic algorithm for solving optimization problems based 
on the behavior of grey wolf packs in nature proposed by 
Mirjalili in 2014. The algorithm simulates the social structure 
and behavioral characteristics of grey wolves, particularly the 
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collaboration and competition between leaders and followers 
in a grey wolf population. From the invention of GWO 
algorithm untill now, it is widely used in various fields such 
as optimization problems, machine learning, signal process- 
ing, image processing, logistics and transportation and eco- 
nomics and other related work. Zamfirache et al. [12] used 
the GWO algorithm for the training of neural networks. The 
GWO algorithm obtained better solutions than PD and PSO 
algorithms. Ahmed et al. [13] proposed the usage of support 
vector regression (SVR) and GWO for predicting the 
compressive strength of GGBFS-based polymer concrete. 
Additionally, Altan [14] proposed a hybrid WSF model that 
ensures reliable and precise wind speed prediction for wind 
power generation through the optimization of intrinsic mode 
function (IMF) estimation output via GWO.  

In addition, the researchers have proposed different 
versions of GWO to solve the application problem in a varie- 
ty of scenarios. Nadimi-Shahraki et al. [15-16] proposed a 
GWO algorithm based on gaze cue learning to solve global 
optimization and engineering design problems. This method 
can reduce the problems of premature convergence, local 
optimal trap and stagnation caused by high selection pressure 
and low diversity of GWO algorithm. Ghalambaz [17] 
proposed an improved grey wolf optimization algorithm 
(GGWO), which is used to minimize the damage caused by 
the Seattle weather to office buildings to maximize the 
lifetime of the building. Bardhan et al [18] proposed AGWO 
and EGWO to estimate the load carrying capacity of steel 
pipe concrete columns by combining these two optimization 
methods with artificial neural networks (ANN). Elsisi et al. 
[19] proposed an MGWO algorithm applied to self-driving
cars and combined it with an AMPC controller. Experimental
results show that the MGWO-based AMPC controller has
higher effective performance compared to other controllers.
Ala et al. [20] proposed the use of multi-objective grey wolf
optimization (MOGWO) and lexicon weighted tchebycheff
(LWT) methods to solve sustainable energy problems. In
addition, GWO is combined with various heuristic algori- 
thms, such as the cuckoo search (CS) algorithm, the flower
pollination optimization algorithm (FPA), the bat algorithm
(BA), etc. [21-23].

The GWO algorithm performs well on small-scale proble- 
ms with continuous type optimization and is able to search 
for optimal solutions quickly. However, there are still some 
limitations when dealing with large-scale data and avoiding 
local optimal solutions. In particular, there may be some 
disadvantages when dealing with discrete problems. As a 
classical combinatorial optimization problem, TSP is often 
used by researchers to evaluate and test the performance of 
various discrete algorithms. In recent years, many researchers 
have been keen on using heuristic algorithms to solve TSP 
problems, such as ACO, DSSA, SA, HHO, etc. [24-27]. 
Although many researchers have put a lot of effort into solv- 
ing the TSP problem, there are very few GWO algorithms for 
TSP. 

Since the GWO algorithm was originally designed for 
problems with continuous parameters, it cannot solve dis- 
crete problems directly. Then, the grey wolf optimization 
algorithm models the collaborative and competitive strateg- 
ies of grey wolves, which may not be applicable to all dis- 
crete problems and may lead to premature falling into local 

optimal solutions. To address the above problems, Panwar 
[28] discretized the solution space of the grey wolf optimi- 
zation algorithm in 2021, specifically for dealing with discre- 
te problems. The discrete grey wolf optimization algorithm
shows better performance when dealing with small to me- 
dium sized problems and searching for globally optimal
solutions. However, there are still some limitations in some
cases. Since the search space for discrete problems is
typically more complex, the algorithmic search complexity
may increase at larger data sizes. This substantially raises the
search time and the risk of falling into a local optimum. These
challenges mean that discrete grey wolf optimization algori- 
thms still require further enhancement and optimization in
solving complex discrete problems to meet the demands of
practical applications.

In this paper, an improved GWO (I-GWO) algorithm is 
proposed to combine GWO and genetic algorithm (GA) for 
TSP. I-GWO highlights the advantages of fully utilizing the 
GWO and GA algorithms and compensates for their short- 
comings. To adapt the TSP solution, two strategies, the 2-opt 
operator and Hamming distance, are introduced to implement 
the discrete GWO. The search space is expanded with a 
newly updated population strategy to enhance the diversity of 
solutions, and crossover and mutation operations are ex- 
ecuted in the following iteration. Meanwhile, the I-GWO is 
embedded with the simulated annealing (SA) algorithm to 
better the local search performance. 

The rest of the article is organized as follows: chapter 2 
provides a description of the problem, chapter 3 details the 
basic algorithms involved, chapter 4 describes the structure 
of the I-GWO algorithm, chapter 5 presents the experimental 
data of I-GWO and analyses it in comparison with other 
algorithms, and, finally, chapter 6 concludes the paper. 

II.  PROBLEMS DESCRIPTION

The travelling salesman problem (TSP) can be mathema- 
ticcally modelled as a complete undirected graph G = (N, C), 
where N is the set of city locations, { ( , ) : , }C d i j i j N= ∈  is 
the set of edges, and dij is the distance between two city 
locations i and j. The objective of the TSP is to find the 
shortest Hamiltonian loop that starts from a certain city and 
traverses all the cities such that each city can be visited only 
once by the traveler before returning to the starting city. 

For ease of description, a mapping π:=i→j is used to 
represent the one-to-one correspondence between the sequen- 
tial numbering of the cities visited by the traveler and the 
locations of the cities traversed. Let X= (π(1), π(2), ..., π(n)) 
be a mapping solution, where i =1, 2, …, n, represents the ith 
sequentially visited city location number. For example, a 
solution is X= {3, 5, 2, 4, 1}, which represents that the 
traveler starts from city 3, visits cities 5, 2, 4, and 1 sequentia- 
lly, and finally goes back to city 3. The mathematical model 
of the TSP problem is demonstrated as follows: 

1 , 1

n n

ij ij
i j i j

Z d x
= ≠ =
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Eq. (1) defines the total distance of the traveler's path and 
ensures that each city is visited only once , as specified by Eq. 
(2) and (3). Here, xij represents the selection of the path from 
city i to city j, where xij=1 if the path is selected and xij=0 
otherwise.  

III. GREY WOLF OPTIMIZATION AND GENETIC ALGORITHMS 
Before introducing the I-GWO algorithm, this chapter will 

first elaborate on the related basic algorithms. This will 
provide the reader with an in-depth understanding. These 
basic algorithms provide a solid foundation for the innovative 
techniques in this paper. Our improvement work is carried 
out within the framework of these algorithms to better meet 
the needs of the research. 

A. Grey Wolf Optimizer Algorithm  
Inspired by the hunting strategy and leadership hierarchy 

of grey wolves, the Grey Wolf Optimizer (GWO) is a 
recently developed population-based algorithm. In this 
algorithm, each potential solution in the solution space is 
treated as a 'grey wolf' that competes and cooperates with 
others based on its fitness value to find the optimal solution. 
At the start of the algorithm, a group of individual grey 
wolves is randomly generated, with each representing a 
potential solution to the problem.  Mathematically, the most 
optimal solution is referred to as alpha (α), with beta (β) and 
delta (δ) representing the second and third best solutions, 
respectively. The remaining candidate solutions are classified 
as omega (ω). The alpha grey wolf leads the evolution of the 
whole group towards a better solution, while the beta and 
delta grey wolves influence the movement of the other grey 
wolves.  

The mathematical model is displayed below. 
12A a r a= ⋅ ⋅ −

   

                                 (4) 

22C r= ⋅
 

                                      (5) 

2 (1 )
max

ta
iteration

= ⋅ −
−

                        (6) 

This formulation uses coefficient vectors A


 and C


, along 
with random values r1 and r2 from the interval [0,1]. The 
parameter a



 regulate the convergence of the GWO 
algorithm. Its value linearly decreases from 2 to 0. t and 
max-iteration represent the current and maximum number of  
iterations, respectively. 

| ( ) ( ) |p iD C X t X t= ⋅ −
   

                           (7) 

( 1) | ( ) |pX t X t A D+ = − ⋅
   

                         (8) 
Eq. (7) and (8) simulate wolves encircling their prey, with 

D


 denoting the distance between wolf i and target p at round 
t, and ( 1)X t +



 denoting the position of the wolf update in the 
next round.  
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Eq. (9)-(11) depict the scenario where three alpha wolves 
lead the pack in the pursuit of prey. Eq. (9) is employed to 
compute the distance between wolf i and the three alpha 
wolves during the tth iteration, while Eq. (10) determines the 
values of 1X



, 2X


and 3X


. These values are then integrated 
into Eq. (11) to determine the position of wolf i during the t+1 
rounds. 

B. Genetic Algorithm 
The Genetic Algorithm (GA) [29] is a heuristic search and 

optimization algorithm that was proposed by Holland in 1992. 
It is inspired by natural selection and genetic mechanisms in 
biology. The basic idea of the genetic algorithm is to 
continuously evolve and improve candidate solutions to find 
the optimal or near-optimal solution to a problem. First, an 
initial set of individuals is generated, each representing a 
potential solution; second, the quality of the individuals is 
evaluated by assessing their fitness using a function 
dependent on the problem; third, the individuals with the 
higher fitness are selected as parents and generated by 
crossover and mutation; and finally, some or all of the parents 
are replaced by the offspring to form a new generation of the 
population. This iterative process is repeated until the 
stopping condition is met. 

The pseudo-code of the genetic algorithm is shown as 
follows: 

 
Algorithm 1 Genetic Algorithm 

Input N: Population size 
Output XBest: the best solution 
Initialize P, P= {X1, X2, …, XN}: Population 
while the termination condition is not met 
    Two individuals X were randomly selected as 

parents. 
    Exchange some chromosomes among parents to 

produce new individuals. 
Mutational manipulation of the zygote chromosomes 
to produce a new individual Xnew.  
for Xi, i =1, 2, …, N 

        According to the selection operation, well-adapted 
individuals are retained as XBest. 

end for 
end while 

IV. IMPROVE GREY WOLF OPTIMIZATION ALGORITHM 
This chapter presents our adaptation of the GWO for 

solving the TSP. The D-GWO algorithm has some im- 
perfections in modifying the original algorithm, causing it to 
easily fall into the local optimal solution and limiting its 
performance on complex optimization problems.  Therefore, 
there is a significant need to innovate the D-GWO algorithm. 
The traditional GWO algorithm is effective because it 
establishes a relationship between the three head wolves by 
means of which these head wolves work together to steer the 
whole pack towards a more optimal direction. However, the 
three head wolves in the D-GWO algorithm iterate 
independently of each other, and there is a lack of logical 
relationship between them, which may cause the algorithm to 
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fall into different local optimal solutions without being able 
to search globally. Such incoherence makes the D-GWO 
algorithm perform poorly in high-dimensional, complex 
optimization problems and fails to realize its full potential. 
By improving the D-GWO algorithm, we propose the I-GWO 
algorithm. The I-GWO algorithm can introduce more 
cooperative mechanisms, which makes the individual head 
wolves work better together and ensures the ability of global 
search. This improvement is expected to reduce the risk of 
falling into local optimal solutions and improve the global 
search ability of the algorithm, thus making it more suitable 
for solving complex optimization problems. Therefore, we 
introduce crossover and mutation operations of the genetic 
algorithm to mix the genes of the main grey wolves. If the 
mixed solution works well, it will replace the original main 
grey wolf as the new main grey wolf; otherwise, it will be 
eliminated. Furthermore, the 2-opt algorithm has been 
integrated into the I-GWO algorithm using hybrid simulated 
annealing. This extension of the search area helps to avoid the 
problem of local optimal solutions. 

A. 2-opt 
The 2-opt algorithm is a local search algorithm for solving 

the traveling salesman problem (TSP). The basic idea of the 
2-opt algorithm is to continually improve the quality of the 
current solution by continually exchanging two edges in the 
path to reduce the total length of the path. As shown in the 
figure, the path 1 , , , ,R A C E B D=< >  is updated by the 2-opt 
algorithm to get a shorter path 2 , , , ,R A B C D E=< > . 

A B

C

DE

F

 

A B

C

DE  
(a) original route (b) new route 

 
Fig. 1.  Simulate 2-opt algorithm example 

 

B. Discrete Grey Wolf Optimization Algorithm 
Since the classical GWO algorithm cannot be applied to 

discrete problems, Karuna proposed a discrete GWO algori- 
thm [12] to solve the TSP problem. In this discrete grey wolf 
optimization algorithm, he uses the Hamming distance 
instead of the difference vector D



 eq. (12). 
, ,[1, ( , )]j i N jD random hd X X α β δ∈ ∈=



                    (12) 

, ,2 ( , )ij i N jX opt X D α β δ∈ ∈= −                         (13) 
Then, Eq. (13) describes that a better solution is obtained 

by iterating the 2-opt algorithm according to the value of the 
distance parameter.  

C. The improvement method 
After solutions generated, we attempt to improve the 

quality of the solutions by applying simulated annealing 
strategies. Simulated annealing, originally proposed by 
Kirkpatrick [30], is a global optimization algorithm mainly 
used to solve complex combinatorial optimization problems. 
The uniqueness of this algorithm lies in its ability to effect- 

tively avoid falling into local optimal solutions and helps to 
obtain better global solutions. Its principle is derived from the 
physical phenomenon of the annealing process of solid 
materials, in which the material gradually cools down at high 
temperatures and reaches a stable state. Analogous to this 
process, the simulated annealing algorithm avoids falling into 
a local optimum by accepting a worse solution with a certain 
probability. That is, starting from an initial solution X0 and an 
initial temperature T, iterates by repeatedly generating a new 
solution, calculating the objective function difference, and 
accepting or discarding for the current solution.  

Although the 2-opt algorithm exhibits strong search 
capabilities when dealing with discrete problems, it is 
difficult for the 2-opt algorithm to generate a better solution 
when the algorithm falls into a local optimum. Therefore, to 
solve the discrete problem, we choose to combine simulated 
annealing with the 2-opt algorithm to overcome this 
limitation. This combination can effectively balance global 
and local search by avoiding falling into a local optimum 
through the global search capability of simulated annealing 
and rapidly improving the current solution through the 
efficient local search of the 2-opt algorithm, which 
accelerates the convergence of the algorithm, is applicable to 
a wide range of discrete optimization problems, and improves 
the chances of finding a more optimal solution. 

In order to more effectively combine simulated annealing 
and the 2-opt algorithm to solve the TSP problem, we have 
made an improvement by relating the annealing rate to the 
path distance. The improved annealing rate formula is shown 
below: 

( ( ) ( '))/ ( )D x D x D x
Tprobability e

−

=                     (14) 
Where D(x) is the distance of the shortest path, D(x') is the 

distance of the new path and T is the current temperature. 
If D(x') < D(x) then this solution is necessarily accepted, 

otherwise the differential solution is accepted according to 
some probability. 

( ( ) ( ')) / ( )

1,                      ( ') ( )

,  ( ') ( )
D x D x D x

T

D x D x
probability

e D x D x
−

<= 
 ≥

    (15) 

The update process for the hybrid simulated annealing 
2-opt algorithm is as follows. First, we screen and rank all 
possible solutions to select the top three best solutions, which 
will be the main members of the wolf pack, denoted xα , xβ  
and xδ , respectively. Next, we divide the set of solutions into 
three parts, representing the top 5%, the 5%-40%, and the 
remaining 60%, respectively. Each of these three parts 
corresponds to the main member wolves, and then the 
distance parameter D is calculated using Eq. (12), and the 
SA-2-opt algorithm Eq. (16) is applied to update all the 
solutions. 

2 ( , )

2 ( , )

2 ( , )

i i

j j

k k

x SA opt x D

x SA opt x D

x SA opt x D

α

β

δ

→

→

→

= − −

= − −

= − −

                     (16) 

 
The hybrid simulated annealing 2-opt algorithm pseudo- 

code is shown below: 
 

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 602-612

 
______________________________________________________________________________________ 



 

Algorithm 2 Hybrid SA and 2-opt Algorithm 
Input T: initial temperature CR: cooling rate 

               F: final temperature  D


: Distance vector 
Initialize The path of the ith wolf in the pack Ri=<A1, 
A2, …, AN> 
for i = 1, 2, …, D



 do 
for j= 1, 2, …, N-1 do 

        for k = j+1, j+2, …, N do 
            Dis(Ri) = Total distance of path Ri 

            Rnew = 2-opt exchange for path Ri 

            Dis(Rnew) = Total distance of path Rnew 
            if Dis(Ri) > Dis(Rnew) then 
                Ri = Rnew 
            else 

                    Accepting the worse solution according to 
the probability of Eq. 15 

            Ri = Rnew 

        if T > F then 
            T = T * CR 

            end if 
        end for 

end for 
end for 

D. Crossover and Mutation Operations 
In the improved grey wolf optimization (I-GWO) algori- 

thm, crossover and mutation operations are used to enhance 
search diversity and find better solutions. By selecting three 
head wolves and crossover and mutate their genes, we aim to 
increase the exploration range of the solution space in the 
expectation of obtaining better solutions. The crossover 
operation promotes the combination of the strengths of 
different head wolves, while the mutation operation 
introduces stochasticity to help the algorithm jump out of the 
local optimal solution, thus improving the adaptability of 
GWO and making it more competitive in a variety of 
optimization problems. Fig. 2 illustrates the crossover and 
mutation parts of the genetic algorithm. 

1 2

1 2

1

2

: | |

: | |

r r

r r

R A H J F I G

R B

E B C D
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→ → → → →→ → →

→ →
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→ → → → → →→
 

(a) Generate randomized paths 
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(b) Two paths for intersection operations 
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(c) Mapping process 
1 2

2 1

: | | | |

: | | | |

r r
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R A H E B C D J F I G

R A H E F C D J B I G

→ → → → → → → → →

→ → → → → → → → →
 

(d) Randomly select two points to swap 
 

Fig. 2.  Genetic algorithm crossover and mutation operations 
 

 

First two random paths are generated and two points r1 and 
r2 are randomly generated in the interval [1.L] according to 
the length of the paths L. Let r1=3, r2=6. The process is 
shown as (a) in Fig. 2 

Then the crossover operation is performed between the 
two points, after the crossover operation is finished, there will 
be duplicated points under the same path, the non-duplicated 
points will be retained and the conflicting points will be 
replaced with *. The exchanged path is shown as (b) in Fig. 2 

Finally, the [r1, r2] intervals of the corresponding paths are 
used for mapping, i.e., the intervals [1, r1) and (r2, L] of 
Route1 are mapped with the intervals [r1, r2] of Route2. 
Route2 ditto. The process is shown in (c) of Fig. 2. 

The selection of initial random points in the mutation 
operation is consistent with the selection of random points 
operation in the crossover operation, where two points r1 and 
r2 are randomly selected between the intervals [1, L], which 
are then exchanged for position. Let r1=4, r2=8. The process 
is shown in (d) in Fig. 2. 

The crossover and mutation modifications to the head wolf 
gene operate as follows. After updating all the solutions using 
Eq. (16) in the previous section, we select the three best 
solutions from them, denoted xα, xβ, and xδ. Next, we 
recombine these three solutions through the crossover and 
mutation operations of the genetic algorithm of Eq. (17) and 
decide whether to keep the newly generated solutions or not 
according to Eq. (18), retaining them only if the new 
solutions are better and discarding them otherwise. 

( , )
( , )
( , )

new

new

new

x GA x x
x GA x x
x GA x x

α α β

β α δ

δ β δ

=

=

=

                          (17) 

,  ( ) ( )
,  ( ) ( )

old new old
new

new new old

x Dis x Dis x
x

x Dis x Dis x
>

=  ≤
                (18) 

The pseudo-code of the crossover and mutation part of the 
genetic algorithm is shown below: 

 
Algorithm 1 The Crossover and Mutation Of GA 

Input N: Population size 
Output XBest: the best solution 
Initialize P, P= {X1, X2, …, XN}: Population 
while the termination condition is not met 

for Xi, i = 1, 2, …, N 
            Exchange some chromosomes among pairs of 

individuals to produce new individuals. 
Mutation operators act on the population to obtain 
new individuals Xnew. 

end for 
for Xi, i =1, 2, …, N 

        Well adapted individuals are retained according to 
the Selection operation. 

end for 
end while 

In each iteration, we introduce a competitive mechanism in 
the wolf pack to ensure that the better wolves remain in the 
pack, while the relatively weaker wolves have a higher 
probability of elimination, which can be determined by Eq. 
(19), where i represents the ranking of an individual in the 
wolf population and N denotes the total population size. 
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rate i
N

=                                    (19) 

E. Procedure of I-GWO Algorithm 
This section shows pseudocode to improve the grey wolf 

optimization algorithm. It is divided into three main stages. 
First, the wolves are initialized to generate the initial 
population. In the second stage, the genes of the wolf 
population are modified using the crossover and mutation 
operations of the genetic algorithm to expand the search 
space and increase the diversity of solutions. Finally, a hybrid 
SA-2-opt algorithm is embedded in I-GWO to improve the 
local search performance. The pseudocode for improving the 
grey wolf optimization algorithm is as follows: 

 
Algorithm 3 Improve Grey Wolf Optimization  

Input N: population size M: max iteration 
           R: randomized route of TSP 
Initialize population of wolves xi (i = 1, 2, …, N) xi∈R 
for i = 1, 2, …, N do 

Di= Calculate the length of xi  

D: The full distance of the wolf's path 
end 
Choose three optimal solutions 

xα : the shortest path Dα  of i ND ∈  
xβ : second shortest path Dβ  of i ND ∈  

xδ : third shortest path Dδ  of i ND ∈  
for t = 1, 2, …, M do 
    According to the ratio of the first 5%, the first 5% - 

40%, and the last 60% will all be dissolved into three 
zones a, b, c. 

for i = 1, 2, …, a do 
    update the path of wolf xi according to Eq. (12) 

and Eq. (16) 
    Elimination of poor solutions according to the 

probability of Eq. (19) 
end for 
for j = a, a+1, …, b do 
    update the path of wolf xj according to Eq. (12) 

and Eq. (16) 
    Elimination of poor solutions according to the 

probability of Eq. (19) 
end for 
for k = b, b+1, …, N do 
    update the path of wolf xk according to Eq. (12) 

and Eq. (16) 
    Elimination of poor solutions according to the 

probability of Eq. (19) 
end for 

    update xα , xβ , xδ using Eq. (17) and (18) 
end for 
return the best route xα  

V. EXPERIMENT 
In this section, experiments will be conducted on the 

research points presented in this paper, as well as 
comparisons with other algorithms. This chapter is divided 
into two main parts, in the first part, the comparison between 
the proposed improved discrete grey wolf optimization 

algorithm and the discrete grey wolf optimization algorithm 
is described. Then in the second part, the experimental results 
of the improved discrete grey wolf optimization algorithm 
are shown and compared with other algorithms. A total of 26 
TSP instances were used in the experimental comparisons, 
and the TSP data used for the experiments were obtained 
from http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95 
/tsp/. As well as in this study all test behaviors were done on 
an AMDRyzen7 5800h laptop with 3.20 GHz and 16 GB of 
RAM. The programming language used is Python. 

A. Experimental comparison between I-GWO and D-GWO 
algorithms 

In order to test that I-GWO performance, we conduct a 
comparison test between I-GWO and D-GWO in this chapter. 
To ensure that I-GWO can perform optimally, we conducted 
several parameter tests, including the initial solution, the 
SA-2-opt algorithm, the cross- mutation of the GA, and the 
number of iterations. The final parameters are those that 
perform best in the experiments. Table 1 summarizes the 
relevant parameters used for I-GWO and D-GWO. To keep 
the experiments fair, we conducted 20 independent experim- 
ents for each instance, using the same number of runs to be 
consistent with the D-GWO algorithm. We used 17 instances 
of TSP in our experiments, and the experimental data for 
D-GWO was taken from a recently published study [12]. 
Table 2 presents the results of the comparison between the 
algorithms, focusing on the optimal solution, the average 
solution, the average difference value, and the average 
running time. When the algorithms are run, we set 1

N
IN =+ ∑  

as the termination condition, i.e., the algorithm ends when the 
optimal solution obtained by the algorithm in N generations is 
not updated. Where N is the number of nodes in the TSP 
instance. In the next sections, we will continue with 
comparisons with other heuristic algorithms and apply the 
above configurations to these comparisons. 

In Table 2, we compare the performance of I-GWO and 
D-GWO in terms of mean, best solution, mean difference and 
running time. As shown in (a) in Fig. 3, I-GWO is 
significantly better than D-GWO in obtaining the mean, 
which means that the results of I-GWO are more stable and 
less fluctuating when obtaining the best solution. Figure 3 in 
(b) shows the running time spent by the two algorithms in 
solving the TSP instances, which shows that I-GWO has 
higher efficiency in solving the TSP problem, which helps to 
cope with the increasing data volume and complexity. In 
addition, I-GWO shows improved performance in terms of 
the best solution, which is able to explore a wider search 
space even under the same initial population condition. 
Taken together, I-GWO clearly outperforms D-GWO, 
showing superior performance. 

Figure 4 illustrates the comparative results of the 
convergence of the I-GWO and D-GWO algorithms. In our 
experiments, we used four different TSP instances including 
Pr76, KroB100, Pr152, and Pr266.First, we observe that the 
I-GWO performs more extensively in terms of the solution 
search range relative to the D-GWO algorithm. This is 
manifested in the graphs, where the fold fluctuations of the 
I-GWO algorithm are significantly more pronounced, 
indicating its larger search range. This is an important 
advantage for solving the TSP problem. Next, we focused on 
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the convergence speed. From Figures a, b and c we can 
clearly observe that the I-GWO algorithm converges 
significantly faster than the D-GWO algorithm on these three 
instances. This means that I-GWO is able to find solutions 
faster, especially when solving small TSP instances. 
However, in Figure d we note that the I-GWO algorithm 
converges relatively slowly. Nonetheless, it is able to jump 
out of the local optimum and end up with a better solution by 
combining it with the hybrid simulated annealing 2-opt 

algorithm. This suggests that the I-GWO algorithm may have 
a better global search capability when dealing with large TSP 
instances, and can more easily overcome the limitation of 
local optimal solutions and improve the quality of the 
solution compared to the D-GWO algorithm. In summary, 
the I-GWO algorithm has a larger search area, faster 
convergence speed, and potential performance in jumping 
out of the local optimum when solving TSP problems. 

TABLE I 
PARAMETERIZATION OF I-GWO, DGWO AND IBA 

 I-GWO  D-GWO  
Parameter Value Parameter Value 

 Population size 50  Population size 50  
Iteration 20 Iteration 20 
Update method SA-2-opt&GA Update method 2-opt 
Temperature t=100*0.95iter,t∈[1,100]   
Crossover function Ordered Crossover   
Mutation function Insertion   

TABLE II 
RESULT OF PROPOSED I-GWO AND D-GWO FOR THE TSP INSTANCES. 

 Instance  I-GWO  D-GWO  
Name Optima Avg Best A.dif Time(s) Avg Best A.dif Time(s) 

 Dantzig42 679  679.0 679 0 29.6  680 679 1 40.69  
Att48 33,523 33,552.6 33,523 29.6 43.08 33,600 33,522 77 60.07 
Pr76 108,159 108,719.4 108,159 560.4 161.82 108,900 108,159 741 264.23 
Krob100 22,140 22,292.2 22,140 152.2 389.82 22,444.6 22,159 304.6 689.34 
Kroc100 20,749 20,899.8 20,749 150.8 375.2 21,078 20,749 329 688.43 
Kroe100 22,068 22,260.0 22,068 192 394.13 22,410 22,131 342 685.46 
Lin105 14,379 14,510.2 14,379 131.2 520.32 14,520 14,382 141 685.33 
Pr107 44,303 44,713.2 44,303 410.2 454.25 44,685.1 44,301 382.1 830.54 
Pr124 59,030 59,092.8 59,030 62.8 767.5 59,390.9 59,030 360.9 888.3 
Pr136 96,772 98,266.3 97,532 1494.3 1055 99,310.5 97,826 2538.5 1486.25 
Pr144 58,537 58,637.8 58,537 100.8 1238.53 58,600.5 58,535 63.5 1866 
Krob150 26,130 26,535.4 26,231 405.4 1473.81 26,756.2 26,320 626.2 2503.2 
Pr152 73,682 74,022.6 73,687 340.6 1579.32 74,230 73,690 548 2856.22 
U159 42,080 42,312.4 42,133 232.4 1603.85 42,563.3 42,142 483.3 3108.6 
Pr226 80,369 80,830.5 80,551 461.4 5303.5 81,135.7 80,648 766.7 12,971.29 
Pr439 107,217 111,705.0 109,925 4488 24,523.4 112,850.3 110,415 5633.3 56,225.8 
Pr1002 259,047 267410.2 264,513 8363.2 73,685.34 267,713.2 264,922 8666.2 161,240.9 
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B. Comparison of I-GWO and other heuristic algorithms 
In this chapter, we intend to conduct a comparative study 

using 18 TSP instances with the aim of fully evaluating the 
performance differences between the I-GWO algorithm and a 
number of other heuristic algorithms. 

As mentioned above, the TSP serves as a standard 
benchmark for evaluating discrete optimization algorithms. 
While I-GWO achieves commendable results for the TSP, 
reaching the optimal solution in 13 out of 17 cases, it is 
important to emphasize that the primary goal of this study is 
not to find optimal solutions. Rather, both problems are used 
as benchmarks to demonstrate the adaptability of GWO to 
routing problems and to show the potential of I-GWO as an 
effective approximation method for solving the TSP. 

To achieve this, we aim to show that the I-GWO can 
outperform well-known metaheuristics in the literature using 
standard non-heuristic functions. For comparison, we've 
chosen three historically successful techniques (GA, SA, 
IDGA) and two recent ones (DFA, DICA, BA). 

It's important to emphasize that we have tried to use 
identical operators and parameters in all implemented 
algorithms for consistency in our experiments. It's also worth 
noting that all individuals are randomly generated. 

These algorithms represent different problem solving str- 
ategies, including GA, ESA, IDGA, DFA, DICA and BA. 
Through these comprehensive comparative experiments, we 
aim to gain insights into the performance of these algorithms 
in solving real-world problems in terms of their robustness, 
search capability, and potential for global optimal solution 
discovery. This will help to provide deeper insights and better 
performance evaluation for problem solving. 

The parameterization for I-GWO corresponds to Table 1 
from the previous section. The results for I-GWO, ESA, GA 
and IDGA over 18 instances are presented in Table 3, 
showing average and best results along with average 
differences. Best average results are highlighted and optimal 
solutions are noted. In particular, to avoid duplication, some 
of the I-GWO results in Table 4 are the same as those in 
Table 2. 

The experimental data of these heuristic algorithms come 
from the study published by Osaba in 2016 [31], which 
provides us with a valuable reference. In the comparison 
study, we paid special attention to several key performance 
indicators, including the average value, the optimal solution, 
and the average difference, in order to comprehensively 
evaluate the performance of each algorithm. The detailed 
comparison data is presented in Tables 3 and 4, and the 
average performance difference between these algorithms is 
visualized in Figure 5. 

On the other hand, Table 4 compares the results obtained 
by I-GWO in the 15 cases with those obtained by a BA, a 
DFA and a DICA. As before, we have used similar parame- 
ters and functions in these techniques in order to obtain fair 
conclusions. I-GWO, BA, DFA and DICA all used the same 
number of individuals and relied on the Hamming distance 
function for their movements. Similar conclusions can be 
drawn from this table: I-GWO performed best, achieving 
better results in 83.3% of cases (15 out of 18), with only three 
cases where it performed worse. Overall, I-GWO 
outperformed DFA and DICA in all 18 TSP cases and BA in 

15 TSP cases. 
From the data in Tables 3 and 4, it is clear that the I-GWO 

algorithm performs well in handling these TSP instances. 
Although it is slightly inferior to the BA algorithm in several 
instances, namely Eil101, Pr264 and Pr299, I-GWO is more 
consistent in terms of average performance.  This advantage 
is not only reflected in the optimal solution, but also in the 
key of metric mean difference. Looking at the mean 
difference comparisons in Figure 5, it is clear that the I-GWO 
algorithm exhibits greater stability when dealing with 
multiple instances, which means that it is able to maintain a 
consistent level of excellent performance across different 
problems. 

VI. DISCUSSION 
A comparison of the Improved Grey Wolf Optimization 

(I-GWO) algorithm with D-GWO and other heuristics 
highlights the superior performance of I-GWO in solving the 
Travelling Salesman Problem (TSP) and its potential to 
address a wider range of optimization problems. Compared to 
D-GWO, I-GWO exhibits greater stability in obtaining 
average solutions and shorter run times, suggesting that it is 
more efficient in solving TSP instances. In addition, I-GWO 
is able to explore a larger search space and obtain better 
solutions, especially for smaller TSP instances. Although 
convergence is relatively slow in some cases, I-GWO's 
ability to get rid of local optima through hybridization 
highlights its potential in larger TSP instances. Across 
multiple TSP instances, I-GWO consistently outperformed 
established metaheuristics and demonstrated overall consist- 
ency and stability, making it ideal for TSP optimization. 
Future research could focus on further refining I-GWO 
through algorithmic tuning and hybrid strategies to exploit its 
advantages. In addition, exploring scalability and 
parallelization techniques will help improve the applicability 
of I-GWO to larger optimization problems, making it an 
important tool for various practical applications. Overall, 
I-GWO is a promising optimization technique that outper- 
forms traditional and contemporary heuristic algorithms in 
the field of TSP optimization. Its demonstrated superior 
performance and future research prospects make it the 
method of choice for a variety of complex optimization 
challenges. 

VII. CONCLUSION 
In this study, an improve grey wolf optimization algorithm 

I-GWO is proposed as a new approach to solve the TSP 
problem. Since the discrete grey wolf optimization algorithm 
has the defects of falling into local optimum and poor 
performance release slow convergence speed when facing the 
TSP problem. Therefore, the D-GWO algorithm is modified 
by adding simulated annealing for updating iterations, as well 
as adding genetic algorithm to control the genetic changes of 
the population. To verify the performance of I-GWO, 26 TSP 
instances are used to compare with other algorithms. From 
the experiments, it can be concluded that the improvement of 
I-GWO is beneficial, and the robustness of the algorithm, the 
faster running efficiency and the convergence speed can be 
improved by these changes. It has a larger search space in the 
same running time. 
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(a) TSP instance Pr76 
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(b) TSP instance KroB100 
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(c) TSP instance Pr152 
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(d) TSP instance Pr226 

Fig. 4.  Convergence of I-GWO algorithm demonstrated 
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74,676.9 
73,921 

994.9 
74,934.3 

74,033 
1252.3 

74,886.7 
74,052 

1204.7 
Pr264 

49,135 
50,581.4 

49,864 
1446.4 

50,908.3 
49,756 

1773.3 
51.837.0 

50,491 
2702 

51,943.6 
50,553 

2808.6 
Pr299 

48,191 
48,501.2 

48,323 
310.2 

49,674.1 
48,310 

1483.1 
49,839.7 

48,579 
1648.7 

49,880.3 
48,600 

1689.3 
Pr439 

107,217 
111,705.0 

109,925 
4488 

115,256.4 
111,538 

8039.4 
115,558.2 

111,967 
8341.2 

115,763.1 
111,983 

8546.1 
Pr1002 

259,047 
267,410.2 

264,513 
8363.2 

274,419.7 
270,016 

15,372.7 
277,344.7 

272,003 
18,297.7 

277,308.1 
272,082 

18,261.1 
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