
 

  

Abstract—Blast-induced ground vibration is the key negative 

effect of blasting, so its prediction and control are of great 

engineering value. With this aim, this study uses support vector 

regression (SVR) and gaussian process regression (GPR) as 

prediction tools, and four optimization algorithms, namely, the 

chameleon swarm algorithm (CSA), marine predators 

algorithm (MPA), young’s double-slit experiment optimizer 

algorithm (YDSE), and exponential distribution optimizer 

algorithm (EDO) are used to optimize the hyperparameters, to 

establish eight prediction models for predicting blast-induced 

ground vibration. Moreover, the 𝒌-fold cross-validation method 

was applied to avoid overfitting and underfitting in the model 

training process.  This study used a variety of evaluation 

indicators to quantitatively evaluate the eight prediction models 

developed. The prediction results show that CSA-GPR, 

MPA-GPR, YDSE-GPR, and EDO-GPR have the same 

prediction results, and their relative errors are less than 5%. 

The evaluation results show that MPA and YDSE have better 

optimization finding ability than CSA and EDO, and GPR has a 

more significant advantage than SVR in predicting such kind 

ground vibration. 

 
Index Terms—Blast-induced ground vibration, Support 

vector machine, Gaussian process regression, Hyperparameters 

optimization, 𝑲-fold cross-validation 

 

I. INTRODUCTION 

LASTING is the most economical method of rock 

breaking [1]. However, the destruction of rocks by 

blasting is inevitably accompanied by many adverse effects, 

such as vibration, flying rocks, air shock waves, and dust [2]. 

Among them, the blasting seismic effect, as the most 

dominant harmful effect in the blasting process, has a great 

impact on the slope stability as well as the neighboring 

buildings (structures) [3]. Therefore, how to effectively 

control blasting-induced vibration is a key problem that 

needs to be treated, both from the technical point of view and 

from the economic aspect. The prediction of  such kind  

vibration can reduce the blasting seismic effect to a large 

extent [4]. In engineering practice, blasting-induced vibration 
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is usually expressed in terms of vibration intensity, frequency, 

and duration [5]. The vibration intensity is determined by 

measuring the peak particle velocity (𝑃𝑃𝑉), so the blasting 

vibration prediction is usually to predict the 𝑃𝑃𝑉  [4]. 

Numerous studies have shown that 𝑃𝑃𝑉  is impacted by 

factors like blast feature, explosive properties, and rock mass  

[6]–[10]. Due to the anisotropy of the rock mass, it is difficult 

to accurately estimate 𝑃𝑃𝑉 at a specific distance during the 

propagation of the blast seismic wave.  

In the past decades, researchers have proposed various 

empirical models based on a large number of field 

experiments for predicting 𝑃𝑃𝑉, and most of these empirical 

models mainly take into account the effects of the two main 

factors, namely, the maximum charge of each blast, and the 

distance in every monitoring point and blast center [11], [12]. 

Although the empirical models have the advantages of 

calculation simplicity and convenience, however, due to the 

simplification of the 𝑃𝑃𝑉 influencing factors, the prediction 

precision of the conventional models is limited, and they are 

only applicable to specific site conditions, which can no 

longer satisfy the increasing environmental and safety 

requirements. 

To overcome the problem of prediction accuracy of 

empirical models, many researchers have tried to use 

machine learning method to predict 𝑃𝑃𝑉, such as artificial 

neural network [13]–[18], extreme learning machine [8], [19], 

adaptive network[20]–[22], support vector regression (SVR) 

[3], [9], [23], [24], which have achieved better prediction 

effects. Although machine learning method was widely used 

in predicting 𝑃𝑃𝑉, there are some shortcomings, especially 

in the selection of model hyperparameters, where they may 

ignore superior hyperparameters, resulting in predictive 

models unable to provide convincing results. In addition, 

innovative methods for more accurate prediction are needed 

in the blasting engineering and scientific community. 

In this study, the SVR [25], [26] and GPR [27], [28], which 

have great advantages in solving small sample and nonlinear 

problems, are used as the main prediction tools to predict 

𝑃𝑃𝑉, and four optimization algorithms including chameleon 

swarm algorithm (CSA) [29], marine predators algorithm 

(MPA) [30], [31] YDSE [32] and exponential distribution 

optimizer method[33] to search for the optimal 

hyperparameters of SVM and GPR. After the models 

(CSA-SVR, MPA-SVR, YDSE-SVR, EDO-SVR, CSA- 

GPR, MPA- GPR, YDSE- GPR, EDO- GPR) are trained 

using the 𝑃𝑃𝑉  datasets collected in the actual blasting 

projects, the 𝑅2 , 𝑅𝑀𝑆𝐸 , 𝑀𝑅𝐸  and Taylor diagram were 

applied to assess the model prediction property and to select 

the best model. 
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II. METHOD 

A. Predictive algorithms used 

1) SVR 

In 1995, Vapnik proposed a support vector machine (SVM) 

method , which can be used to treat nonlinear regression 

(SVR) and classification (SVC) problems [25]. Assuming 

that the learning sample 𝐷  consists of input parameters 𝑥𝑖 

and output parameters 𝑦𝑖 , the main task of the SVR lies in 

constructing a robust mathematical relationship between the 

𝑥𝑖  and 𝑦𝑖 . For nonlinear regression problems, the 

mathematical relationship between 𝑥𝑖 and 𝑦𝑖  constructed by 

the SVR is [34]: 

𝑇(𝑥) = 〈𝛼, 𝜂(𝑥)〉 + 𝛽                                                                (1) 

where 𝛼, 𝛽, and 𝑇(𝑥) represent the weights, constant values, 

and high-dimensional feature space, respectively. 𝛼  and 𝛽 

can be obtained by the following (2): 

𝑅(𝐶) =
‖𝛼2‖

2
+

𝐶

𝑃
∑ 𝜌𝜖( 𝑦𝑖 , 𝑇(𝑥𝑖))

𝑁
𝑖=1                                            (2) 

where 
‖𝛼2‖

2
 is the regularization term; 𝐶 is the penalty factor, 

and a larger value of 𝐶 represents a larger penalty for samples 

with errors larger than the set standard. 

After the introduction of two forward relaxation variables 

𝜉𝑖 and 𝜉𝑖
∗ applied to express the distance of true results and 

the boundary values, the Largrange function was introduced 

to convert the computational equation to the dyadic form [25], 

[26]: 

max    𝐻(𝛼, 𝛼∗) = −
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝑥𝑖 , 𝑥𝑗)

𝑁
𝑖,𝑗=1 +

                                  ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)𝑁

𝑖=1 − 𝜀 ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)𝑁

𝑖=1 (3) 

The above (3) can be converted: 

𝑇(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖 , 𝑥) + 𝛽𝑁

𝑖=1                                    (4) 

where 𝐾(𝑥𝑖 , 𝑥) is the kernel function to transform the input 

variable. 

The typical SVR kernel functions include the linear, 

polynomial, Gaussian kernel function, and the third function 

has been widely used for its superior mapping performance 

[26]. Therefore, in this study, the gaussian kernel function 

was applied to construct a SVR model to address the PPV 

prediction problem. In this case, the penalty factor 𝐶 and the 

parameter 𝜎  in the gaussian kernel function are 

hyperparameters that determine the SVR model property. 

2) GPR 

The performance and model structure of the GPR [27] 

model are determined by the mathematical expectation 

function 𝑚(𝑥) and covariance function 𝑘(𝑥, 𝑥′), which can 

be expressed in terms of the mathematical relationship : 

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′))                                                    (5) 

where the two kinds function take the form: 

{
𝑚(𝑥) = 𝐸[𝑓(𝑥)]                                                       

𝑘(𝑥, 𝑥′) = 𝐸{[𝑓(𝑥) − 𝑚(𝑥)] [𝑓(𝑥′) − 𝑚(𝑥′)]}
                 (6) 

Assuming that 𝐷 represents the training data for a GPR 

model consisting of input parameters 𝑥𝑖  and output 

parameters 𝑦𝑖 , a standard linear regression equation can be 

constructed based on (7) [28]: 

𝑦 = 𝑓(𝑥) + 𝜀                                                                        (7) 

where 𝜀 is an independent random variable. 

This study chooses the square exponential kernel as the 

kernel function of the GPR, whose equation is given in (8) 

[27]. Thus, the hyperparameters of GPR are 𝜎𝑓
2 and 𝑙 in the 

squared exponential kernel and the random variables 𝜀. 

𝑘(𝑥, 𝑥′) = 𝜎𝑓
2𝑒

−
‖𝑥−𝑥′‖

2

2𝑙2                                                             (8) 

B. Hyperparameter optimization methods used 

Considering the impact of hyperparameters on the 

performance of SVR and GPR models, it is necessary to 

determine the optimal hyperparameters to obtain the best 

model performance. In this study, CSA [29], MPA [30], 

YDSE [32], and EDO [33] are used to search for the optimal 

hyperparameters for SVR and GPR. 

1) CSA 

CSA [29] is a meta-heuristic method  proposed by Malik 

Shehadeh Braik in 2021, which is basically inspired by the  

chameleons as they roam around trees, deserts, and swamps 

and search for food sources. The algorithm mathematically 

models and implements the chameleon's search for hunting 

food in three stages: searching for prey, eye rotation, 

capturing prey. 

During the prey search phase, the chameleon tracks and 

finds its prey by constantly changing its position and 

combining the guidance of its previous position and 

experience in a mathematical model shown in (9): 

𝑦𝑡+1
𝑖,𝑗

=

{
𝑦𝑡

𝑖,𝑗
+ 𝑝1𝑟2(𝑃𝑡

𝑖,𝑗
− 𝐺𝑡

𝑗
) + 𝑝2𝑟1(𝐺𝑡

𝑗
− 𝑦𝑡

𝑖,𝑗
)            𝑟𝑖 ≥ 𝑃𝑝

𝑦𝑡
𝑖,𝑗

+ 𝜇(𝑟3(𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏)𝑠𝑔𝑛(𝑟𝑎𝑛𝑑 − 0.5)    𝑟𝑖 < 𝑃𝑝

  (9) 

Where: 𝑦𝑡+1
𝑖,𝑗

 is the position of chameleon 𝑖  ; 𝑃𝑡
𝑖,𝑗

 is the 

optimal position of chameleon 𝑖  in 𝑗-dimension after  𝑡-th 

iteration; 𝐺𝑡
𝑗
 is the global best position  in d 𝑗-dimension after 

𝑡-th iteration; 𝑝1 and 𝑝2 are two positive numbers controlling 

the chameleon’s ability to explore; 𝑟1 , 𝑟2 , 𝑟3 , and 𝑟𝑖  are 

uniformly generated random numbers ; 𝑃𝑝  refer to the 

probability that the chameleon perceives its prey, and takes 

the value 0.1; 𝑠𝑔𝑛(𝑟𝑎𝑛𝑑 − 0.5)  can take either 1 or -1; 𝑙𝑏 

and 𝑢𝑏 are the  search region boundary; 𝜇 is related to the 

number of iterations. 

In the eye rotation prey discovery stage, the chameleon 

discovers the exact position of the prey by rotating its eyes 

through 360°, and this process can be described as follows: 

first, translating the original position; second, determining 

the rotation matrix; third, updating the position based on the  

rotation matrix; then, translating the chameleon to initial 

position. The mathematical model is shown in (10): 

𝑦𝑡+1
𝑖 = 𝑚 × (𝑦𝑡

𝑖 − �̅�𝑡
𝑖) + �̅�𝑡

𝑖                                                 (10) 

Where  �̅�𝑡
𝑖 is the pre-rotation position center, and 𝑚 refer to 

the rotation matrix of the chameleon rotation. 

In the prey capture phase, the closest chameleon to the prey 

is regarded as the most optimized chameleon that can capture 

the surrounding prey by extending its tongue to twice its 

length, i.e., the best result is obtained by performing a 

localized search. The mathematical model is shown in (11): 

𝑦𝑡+1
𝑖,𝑗

= 𝑦𝑡
𝑖,𝑗

+ ((𝑣𝑡
𝑖,𝑗

)
2
− (𝑣𝑡−1

𝑖,𝑗
)
2
)/(2𝑎)               (11) 

Where: 𝑎  is the acceleration rate, which continuously 

enhances until to 2590 𝑚/𝑠2 ; 𝑣𝑡−1
𝑖,𝑗

 is the velocity of the 

chameleon in dimension in the 𝑡 − 1st iteration; 𝑣𝑡
𝑖,𝑗

 is the 

velocity of the chameleon 𝑖  in the 𝑡-th iteration, which is 

given in (12): 

𝑣𝑡+1
𝑖,𝑗

= 𝜔𝑣𝑡
𝑖,𝑗

+ 𝑐1(𝐺𝑡
𝑗
− 𝑦𝑡

𝑖,𝑗
)𝑟1 + 𝑐2(𝑃𝑡

𝑖,𝑗
− 𝑦𝑡

𝑖,𝑗
)𝑟2      (12) 
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Where: 𝑃𝑡
𝑖,𝑗

 refer to the best position of 𝑖 in the 𝑗-dimension 

after 𝑡-th iteration; 𝐺𝑡
𝑗
 means the global best position in the 

𝑗-dimension after  𝑡-th iteration;  𝑟1 and 𝑟2 represent random 

numbers with value of [0,1]; 𝜔  is the inertia weight 

associated with the number of iterations. 

2) MPA 

MPA [30] is an optimization model proposed by Faramarzi 

et al. in 2020  based the following theory: the predator 

searches for prey according to the prey’s location information, 

in which the top predator (the optimal solution) has a higher 

foraging talent. The optimization process include three stage 

according to speed ratios: 1stage, the prey with higher speed 

compared to the predator; 2 stage, the two have almost same 

speed; 3 stage, the predator is faster. 

1 stage, the prey has much higher speed compared to the 

predator, which by default adopts a state of immobility, and 

the prey adopts a random movement pattern to search for its 

own food. This stage is the global search stage and the 

mathematical model is: 

{
𝑆𝑖 = 𝑁𝑐 ⊗ (𝐸𝑖 − 𝑁𝑐 ⊗ 𝑃𝑖), 𝑖 = 1,⋅⋅⋅, 𝑛

𝑃𝑖 = 𝑃𝑖−1𝑖 + 𝐷 • 𝑁 ⊗ 𝑆𝑖
                             (13) 

Where: 𝐸𝑖  is the predator population; 𝑃𝑖  is the prey 

population; the number of predators and prey are 𝑛; 𝑆𝑖 is the 

step size of the movement; 𝑁𝑐 is a vector of random numbers , 

refer to brownian motion; 𝑁𝑐 ⊗ 𝑃𝑖  is to simulate the 

movement ; 𝐷 represents a constant term, which is usually 

taken to be 𝐷 = 0.5; and 𝑁 is random numbers vector. 

In the middle one-third stage, the two have the same speed, 

the predator searches for prey through Brownian motion, and 

the prey updates its position through Lévy motion. Global 

search and local optimization go hand in hand. Therefore, in 

this stage, the population is divided into two equal parts: half 

of the individuals are used for local optimization; and the 

other half is used for global search. 

The mathematical model of prey local optimization search 

is: 

{
𝑆𝑖 = 𝑁𝐿 ⊗ (𝐸𝑖 − 𝑁𝐿 ⊗ 𝑃𝑖), 𝑖 = 1,⋅⋅⋅,

𝑛

2

𝑃𝑖 = 𝑃𝑖−1𝑖 + 𝐷 • 𝑁 ⊗ 𝑆𝑖

                             (14) 

Where 𝑁𝐿 refer to a vector of random numbers, denoting the 

lévy motion. 

The mathematical model of prey local optimization search 

is: 

{
𝑆𝑖 = 𝑁𝐶 ⊗ (𝑁𝐶 ⊗ 𝐸𝑖 − 𝑃𝑖), 𝑖 =

𝑛

2
,⋅⋅⋅, 𝑛

𝑃𝑖 = 𝐸𝑖 + 𝐷 • 𝐶𝐹 ⊗ 𝑆𝑖

                             (15) 

Where 𝐶𝐹 denotes the adaptive parameter of step size. 

In the second third stage, predator moves faster, and the 

predator searches for the prey by lévy motion. This stage is 

the local optimization search stage, and the mathematical 

model is: 

{
𝑆𝑖 = 𝑁𝐿 ⊗ (𝑁𝐿 ⊗ 𝐸𝑖 − 𝑃𝑖), 𝑖 = 1,⋅⋅⋅, 𝑛

𝑃𝑖 = 𝐸𝑖 + 𝐷 • 𝐶𝐹 ⊗ 𝑆𝑖
                             (16) 

In addition, at the end of each iteration, the MPA avoids 

falling into a local optimum by making the predator make 

longer jumps using the fish aggregation device effects 

(FADs). Its mathematical model is: 

If 𝑟 ≤ 𝐹𝐴𝐷𝑠: 

�⃗� 𝑖 = �⃗� 𝑖−1 + 𝐶𝐹[𝑋 𝑚𝑖𝑛 + �⃗� ⊗ (𝑋 𝑚𝑎𝑥 − 𝑋 𝑚𝑖𝑛)] ⊗ �⃗⃗�           (17) 

If 𝑟 > 𝐹𝐴𝐷𝑠: 

�⃗� 𝑖 = �⃗� 𝑖−1 + [𝐹𝐴𝐷𝑠(1 − 𝑟) + 𝑟](�⃗� 𝑟1 − �⃗� 𝑟2)                         (18) 

Where: 𝐹𝐴𝐷𝑠 is the probability of effect, usually taken as 0.2; 

�⃗⃗�  represent a binary vector containing arrays 0 and 1,  if the 

array below 0.2, the array changed to 0, or else it changed to 1; 

𝑟 is the number of random numbers in [0, 1]; 𝑟1 and 𝑟2 are the 

random indexes of the preys, respectively; 𝑋 𝑚𝑖𝑛  and 𝑋 𝑚𝑎𝑥  

are the minimum and ultimate values of the same dimension 

in the prey population, respectively. 

3) YDSE 

YDSE [32] was proposed by Mohamed et al. in 2023 as a 

metaheuristic method to solve the global and constrained 

issues based on the principles obtained from Young’s 

double-slit experiment. This method can effectively solve the 

optimization problems with various benchmarks. YDSE 

include 3 steps: first, initialization; second, updating of 

traveling waves and third, destructive and constructive 

interference. The math model of it is as follows. 

That experiment begins by projecting a monochromatic 

light wave source (𝑆) into a barrier with two nearby slits. 

Hence, the first step is to create an initial 𝑆 light consisting of 

𝑛 monochromatic light waves: 

𝑆𝑖 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑(0,1) × (𝑢𝑏 − 𝑙𝑏)                                     (19) 

Where: 𝑆𝑖 is the variable of the 𝑖-th monochromatic wave; 𝑙𝑏 

and 𝑢𝑏 are the boundaries of space. 

After the monochromatic wave passes through the slit 

barrier, according to Huygens’ principle, the monochromatic 

wave will propagate to various directions. Therefore, the 

wave source and wave center will be updated. Nevertheless, 

YDSE assumes that the number of points on the wavefronts 

flowing out of the two slits is equal to 𝑛. Then, 𝑛 points can 

be calculated for the wavefronts of the two slits by (20) and 

(21). 

𝐹𝑆𝑖 = 𝑆𝑖 + 𝐿 × 𝑟𝑎𝑛𝑑(−1,1) × (𝑆𝑚𝑒𝑎𝑛 − 𝑆𝑖)                   (20) 

𝑆𝑆𝑖 = 𝑆𝑖 − 𝐿 × 𝑟𝑎𝑛𝑑(−1,1) × (𝑆𝑚𝑒𝑎𝑛 − 𝑆𝑖)                (21) 

Where: 𝐹𝑆𝑖 represens the point 𝑖 produced from the first slit; 

𝑆𝑆𝑖  refer to the point 𝑖  generated from the second slit; 𝐿 

represen the distance in light source and the projection screen; 

𝑆𝑚𝑒𝑎𝑛 is the average value of the current population 𝑆. 

Waves traveling from two slits have different travel 

distance as waves traveling from one slit. In addition, the two 

waves will produce bright streaks (𝐶𝐼) and dark streaks (𝐷𝐼) 

on screen after mutual constructive and destructive 

interference. Hence, to simulate the interference behavior of 

𝐶𝐼and 𝐷𝐼  and their paths to reach the screen, the YDSE 

updates the position using (22). 

𝑋𝑖 =
𝐹𝑆𝑖+𝑆𝑆𝑖

2
+ 𝐿                                                                 (22) 

Where 𝐿 is the path difference between 𝐹𝑆𝑖 and 𝑆𝑆𝑖, which 

is calculated from the order of the fringes formed when the 

wave reaches the screen. For fringes of zero and even orders, 

constructive interference occurs. 𝐿 is calculated by (23): 

𝐿 = {

0                                𝑖𝑓 𝐶𝐼 𝑜𝑐𝑐𝑢𝑟𝑠 𝑎𝑡 𝑚 =  0

(2𝑚 + 1) ×
𝜆

2
    𝑖𝑓 𝐷𝐼 occurs when 𝑚 is odd

𝑚𝜆                        𝑖𝑓 𝐶𝐼 occurs when 𝑚 is even

       (23) 

Where 𝑚 is the order of the stripes and  𝜆 is the wavelength. 

Constructive interference correspond to the superposition 

of two waves and their mutual enhancement, producing a 

wave with higher amplitude compared to former interfering 
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wave. Moreover, the wave amplitude are updated in every 

iteration, the update formula is as follows: 

𝐴𝑡+1
𝑏 = 0.5 × (1 + √|1 − (𝑡 × cosh (𝜋/𝑡)/𝑇)2|)             (24) 

Where: 𝐴𝑡+1
𝑏  is the average wave amplitude at 𝐶𝐼 at 𝑡 + 1-th 

iteration; 𝑡 and 𝑇 are the current and maximum number of 

iterations, respectively. 

Destructive interference is a phenomenon that two waves 

are superimposed and cancel each other. Moreover, the wave 

amplitude is updated in every iteration, the update formula is 

as follows: 

𝐴𝑡+1
𝑑 = 𝛿 × 𝑡𝑎𝑛ℎ−1(−

𝑡

𝑇
+ 1)                                             (25) 

Where 𝐴𝑡+1
𝑑  is the average wave amplitude at 𝐷𝐼 at 𝑡 + 1-th 

iteration, and 𝛿 is a constant with a value of 0.38. 

Both 𝐶𝐼  and 𝐷𝐼  denote solutions, moreover, the central 

stripe correspond to the best solution. Under condition of the 

destructive interference appeared at an odd order, the fit 

value of the candidate solutions in the dark region will be 

lower than that of the candidate solutions in the light region, 

so searching promising positions in dark region first can 

enhance the optimization performance of YDSE optimizer. 

Hance, the position update equation for the destructive 

interference 𝐷𝐼 region is as follows: 

𝑋𝑡+1
𝑚−𝑜𝑑𝑑 = 𝑋𝑡

𝑚−𝑜𝑑𝑑 − (𝑟 × 𝐴𝑡+1
𝑑 × 𝐼𝑛𝑡𝑡+1

𝑚−𝑜𝑑𝑑 × 𝑋𝑡
𝑚−𝑜𝑑𝑑 −

𝑍 × 𝑋𝑡
𝑏𝑒𝑠𝑡)                                                                          (26) 

𝑍 =
𝑡2𝑟−1

𝐻
                                                                              (27) 

Where: 𝑋𝑡+1
𝑚−𝑜𝑑𝑑  is 𝐷𝐼  at 𝑡 + 1-th iteration; 𝑋𝑡

𝑚−𝑜𝑑𝑑  is 𝐷𝐼  at 

𝑡-th iteration; 𝑋𝑡
𝑏𝑒𝑠𝑡 is 𝐷𝐼 that is best at 𝑡-th iteration; 𝑟 is a 

random number  with value in [0, 1]; 𝐴𝑡+1
𝑑  is calculated by 

(25); 𝑍 is a test vector of dimension 𝑑; 𝐻 represent a random 

number in [-1, 1]; 𝐼𝑛𝑡𝑡+1
𝑚−𝑜𝑑𝑑 is the light intensity of 𝐷𝐼 at 𝑡 +

1-th iteration, calculated by (28). 

𝐼𝑛𝑡𝑡+1
𝑚−𝑜𝑑𝑑 = 𝐼𝑛𝑡𝑡+1

𝑚𝑎𝑥 × 𝑐𝑜𝑠2(
𝜋𝑑

𝜆𝐿
× 𝑙𝑡+1

𝑑 )                             (28) 

𝑙𝑡+1
𝑑 =

𝜆𝐿

𝑑
× (𝑚 + 0.5)                                                         (29) 

𝐼𝑛𝑡𝑡+1
𝑚𝑎𝑥 = 𝐶 × 𝑡/𝑇                                                              (30) 

Where 𝑙𝑡+1
𝑑  is is the distance in central stripe and 𝐷𝐼 , and 

𝐼𝑛𝑡𝑡+1
𝑚𝑎𝑥 is the maximum light intensity detected by the central 

stripe. 

When the order is even, YDSE finds promising candidate 

solutions in region 𝐶𝐼 , resulting in constructive interference. 

Therefore, YDSE will try to search all the promising regions 

in region 𝐶𝐼  in the local search phase with the following 

position update equation: 

𝑋𝑡+1
𝑚−𝑒𝑣𝑒𝑛 = 𝑋𝑡

𝑚−𝑒𝑣𝑒𝑛 − ((1 − 𝑟) × 𝐴𝑡+1
𝑏 × 𝐼𝑛𝑡𝑡+1

𝑚−𝑒𝑣𝑒𝑛 ×
𝑋𝑡

𝑚−𝑒𝑣𝑒𝑛 + 𝑟 × 𝑙                                                                  (31) 

Where: 𝑋𝑡+1
𝑚−𝑒𝑣𝑒𝑛 is 𝐶𝐼 at 𝑡 + 1-th iteration; 𝑋𝑡

𝑚−𝑒𝑣𝑒𝑛 is 𝐶𝐼 at 

𝑡 -th iteration; 𝑟  is a random number in [0, 1]; 𝐴𝑡+1
𝑏  is 

calculated by (24); 𝑙 is the difference in two selected stripes; 

𝐼𝑛𝑡𝑡+1
𝑚−𝑒𝑣𝑒𝑛  is the light intensity of 𝐶𝐼  at𝑡 + 1-th iteration, 

calculated by (32). 

𝐼𝑛𝑡𝑡+1
𝑚−𝑒𝑣𝑒𝑛 = 𝐼𝑛𝑡𝑡+1

𝑚𝑎𝑥 × 𝑐𝑜𝑠2(
𝜋𝑑

𝜆𝐿
× 𝑙𝑡+1

𝑏 )                              (32) 

Where 𝑙𝑡+1
𝑏  refer to the distance in central stripe and 𝐶𝐼. 

In addition, the position of the center stripe is updated with 

(33). 

𝑋𝑡+1
𝑚−𝑧 = 𝑋𝑡

𝑏𝑒𝑠𝑡 + (𝐴𝑡+1
𝑏 × 𝐼𝑛𝑡𝑡+1

𝑚𝑎𝑥 × 𝑋𝑡
𝑚−𝑧 − 𝑟 × 𝑍 × 𝑋𝑡

𝑟𝑏)                                                          

(33) 

Where: 𝑋𝑡+1
𝑚−𝑧 is the position of the central stripe at 𝑡 + 1-th 

iteration; 𝑋𝑡
𝑚−𝑧 refer to central stripe position at 𝑡-th iteration;  

𝑋𝑡
𝑟𝑏 is 𝑟𝑏 based on a randomly chosen 𝐶𝐼, and 𝑟𝑏 is even. 

4) EDO 

EDO [33] is a meta-heuristic method proposed by 

Mohamed Abdel-Basset et al. in 2023, which is based on the  

relevant distribution model and the memoryless property of 

the exponential distribution. It consists of both local and 

global search schemes. In the local search phase, EDO 

utilizes the memoryless property, the exponential variance 

between the guided solution and the random variable to 

update present solution. In the global search phase, EDO 

randomly selects two solutions from the original population 

to update present solution. 

In the local search phase, EDO follows the criterion that 

the region near optimized solution is expected to find a 

globally optimal solution, and introduces the concept of a 

guided solution, which can effectively prevent local optimum 

problem appeared, it is calculated by (34): 

𝑋𝑡
𝑔

=
𝑋𝑡

𝑏1+𝑋𝑡
𝑏2+𝑋𝑡

𝑏3

3
                                                              (34) 

Where: 𝑋𝑡
𝑔

 is the guided solution at 𝑡-th iteration;  𝑋𝑡
𝑏1,𝑋𝑡

𝑏2 

and 𝑋𝑡
𝑏3 are the first three optimal solutions at 𝑡-th iteration. 

EDO uses an optimization model obeying an exponential 

distribution to update the current new solution, which is 

calculated by (35): 

𝑉𝑡+1
𝑖 = {

𝑎 × (𝑚𝑙𝑡
𝑖 − 𝜎2) + 𝑏 × 𝑋𝑡

𝑔
           𝑖𝑓 𝑋𝑡

𝑖 = 𝑚𝑙𝑡
𝑖

𝑏 × (𝑚𝑙𝑡
𝑖 − 𝜎2) + log(𝜙) × 𝑋𝑡

𝑖     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (35) 

𝑎 = (2 × 𝑟𝑎𝑛𝑑(−1,1) − 1)10                                            (36) 

𝑏 = (2 × 𝑟𝑎𝑛𝑑(−1,1) − 1)5                                                  (37) 

𝜙 =  𝑟𝑎𝑛𝑑(0,1)                                                                        (38) 

Where: 𝑉𝑡+1
𝑖  is the solution at 𝑡 + 1-th iteration; 𝑚𝑙𝑡

𝑖  is the 

solution; 𝑋𝑡
𝑖  is the best set of solutions after 𝑡-th iteration, 

with the same number of solutions as initialized. 

In the global search phase, EDO identifies regions o that 

are prone to have globally optimal solutions and computes a 

new solution using two randomly selected solutions. It is 

calculated by (39): 

𝑉𝑡+1
𝑖 = 𝑋𝑡

𝑖 − 𝑀𝑡 + (𝑐 × 𝑍1 + (1 − 𝑐) × 𝑍2)                        (39) 

𝑐 =
1−𝑡

𝑇
× (2 × 𝑟𝑎𝑛𝑑(−1, 1) − 1)                                         (40) 

𝑍1 = 𝑀𝑡 + 𝑋𝑡
𝑟1 − 𝑋𝑡

𝑟2                                                                (41) 

𝑍2 = 𝑀𝑡 − 𝑋𝑡
𝑟1 + 𝑋𝑡

𝑟2                                                              (42) 

Where: 𝑀𝑡 refer to the mean value of 𝑋𝑡
𝑖; 𝑐  associated to the 

number of current iterations, which is calculated using (40); 

𝑇 is the maximum number of iteration; 

EDO decides to perform a local or global search by 

introducing the parameter 𝛼= 𝑟𝑎𝑛𝑑(0,1). 𝑖𝑓 𝛼 < 0.5, EDO 

performs a local search. 𝑖𝑓 𝛼 ≥ 0.5, EDO performs a global 

search. 

 

III. DATASET 

The data in presen research were collected from an actual 

blasting project in the petrochemical zone of the Daya Bay 

Development Zone in Huizhou, China, the detailed location 

of which is shown in Fig.1. The area is bounded by 

mountains to the north and east, the S30 Huishen coastal 

highway is 75m to the south, and there is an east-west 

national oil storage pipeline 75m away. Therefore, the 
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blasting-induced vibration needs to be strictly controlled to 

avoid damage to the pipeline. 

 

 
Fig.1 Blasting project location 

 

Many scholars  have found that the maximum charge (𝑄) 

of each blast, the distance (𝐷), and elevation difference (𝐻) 

between each monitoring point and the center of each blast 

are the main factors affecting the 𝑃𝑃𝑉  [6]–[10]. To 

effectively controlling the 𝑃𝑃𝑉 , the present research takes 

the 𝑄, 𝐷,  𝐻 as the input parameters, the 𝑃𝑃𝑉 as the output 

result to establish the mathematical model, and then 

optimizes 𝑄 based on this model. This study collects 72 sets 

of data, in which the first 54 sets were applied as the training 

set, and the remaining 18 sets of data are applied to test the 

performance of the model. TABLE I shows the data sets, and 

Fig.2 shows the scatter matrix plot of the training set. 

 
TABLE I 

DATA SETS  

No. 𝑄 

(m) 

𝐷 

(m) 

𝐻 

(m) 

𝑃𝑃𝑉 

(cm/s) 

 No. 𝑄 

(m) 

𝐷 

(m) 

𝐻 

(m) 

𝑃𝑃𝑉 

(cm/s) 

1 84 80 3.4 4.85  2 92 90 2.3 4.41 

3 80 95 2.9 3.89  4 88 94 1.8 4.03 

5 76 99 2.0 3.65  6 87 86 4.6 4.43 

7 88 99 1.3 3.71  8 80 79 5.1 4.83 

9 88 101 1.0 3.68  10 87 77 4.5 5.37 

11 80 99 1.5 3.82  12 84 102 3.1 3.30 

13 64 76 6.2 4.39  14 84 75 4.1 5.49 

15 80 71 4.6 6.22  16 92 95 4.7 4.14 

17 64 78 1.3 4.58  18 92 87 1.5 4.77 

19 56 79 2.3 4.14  20 84 84 2.1 4.70 

21 60 95 4.0 3.28  22 80 85 2.5 4.41 

23 64 88 4.2 3.77  24 76 94 4.4 3.59 

25 84 89 2.1 4.17  26 87 101 1.5 3.65 

27 60 78 4.6 4.51  28 68 73 3.2 5.37 

29 68 86 3.9 4.06  30 83 91 6.4 3.90 

31 83 83 1.5 5.17  32 84 74 1.0 5.89 

33 64 86 1.9 4.18  34 87 95 1.0 4.27 

35 88 77 3.2 5.43  36 80 81 1.9 4.90 

37 76 89 3.7 4.06  38 68 83 5.3 4.01 

39 76 83 3.1 4.69  40 64 78 1.3 4.70 

41 76 72 2.9 5.52  42 84 93 5.4 3.76 

43 83 96 4.8 3.73  44 80 97 2.8 3.63 

45 88 72 6.4 5.87  46 92 79 2.6 5.73 

47 87 87 2.8 4.76  48 56 96 4.0 3.03 

49 92 75 3.2 5.83  50 80 90 4.2 4.01 

51 88 72 2.1 6.10  52 88 81 1.7 5.44 

53 87 85 2.9 4.94  54 68 92 6.8 3.40 

55 76 102 4.3 3.29  56 84 79 4.5 5.09 

57 60 83 4.0 3.85  58 80 79 4.8 5.07 

59 87 86 4.5 4.65  60 88 98 5.6 3.73 

61 83 73 6.1 5.69  62 88 72 4.2 6.26 

63 68 88 6.7 3.67  64 83 76 2.5 5.54 

65 64 68 2.6 5.59  66 76 91 1.2 4.02 

67 64 81 3.5 4.28  68 92 88 3.0 4.62 

69 64 76 2.4 4.88  70 60 82 3.4 4.08 

71 80 88 1.8 4.32  72 68 93 5.6 3.31 

 

 
Fig.2 Scatter matrix plot of the training set 

 

IV. DEVELOPMENT MODELS 

A. Data pre‑processing 

Due to the different orders of magnitude of the training 

parameters, it will cause a loss of training accuracy during 

training. Most studies use the normalization method to 

preprocess the data, making it highly susceptible to the 

ultimate and minimum values and causing bias in the training 

data. In this study, the data are preprocessed using the 

standardization method, which is calculated as in (43). Fig.3 

shows the box plot . 

𝑋𝑖 =
𝑥𝑖−�̅�

√
1

𝑛−1
∑ (𝑥𝑗−�̅�)2𝑛

𝑗=1

                                                           (43) 

Where 𝑋 refer to the standardized value, 𝑥 represen detection 

value, �̅� refer to the mean value of 𝑥. 

 

 
Fig.3 Box plot of the training set 

 

B. Determination of optimal hyperparameters 

The hyperparameters can obviously impact the model 

prediction result. If the hyperparameters are not properly 

selected, it is very easy for the model to suffer from two 

problems: the performance of the training set is obviously 

better compared to the test set (overfitting phenomenon), or 

the test set performance is obviously superior than the 

training set (underfitting phenomenon). To avoid the 

overfitting and underfitting phenomenon of the model, this 

study uses the 𝑘-fold cross-validation algorithm to internally 

validate the predictive performance of model during the 
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optimization algorithm to determine the optimal 

hyperparameters of the model, thus effectively avoiding the 

interference of the data outliers on the model predictive 

property. Fig.4 shows the construction and evaluation 

process of the 𝑃𝑃𝑉 prediction model. In addition, for CSA, 

MPA, YDSE, and EDO, the initial population is 100 and the 

largest iterations is 100. Based on the research experience, 

the search range of hyperparameters of SVM and GPR are set 

to [0.1, 100]. TABLE II shows the hyperparameters of SVM 

and GPR obtained after optimization by CSA, MPA, YDSE, 

and EDO. 

 
TABLE II 

HYPERPARAMETERS FOR SVM AND GPR 

 CSA MPA YDSE EDO 

SVR 
𝐶 66.313 30.615 27.094 55.476 

𝜎 0.80428 0.33052 0.33676 0.80464 

GPR 

𝜎𝑓
2 13.856 16.525 34.804 23.591 

𝑙 19.391 15.631 12.216 24.895 

𝜀 14.221 34.097 10.876 28.852 

 

 
 Fig.4 𝑃𝑃𝑉 prediction models constructing and evaluating process 

 

V. RESULTS AND DISCUSSION 

The 𝑃𝑃𝑉 prediction model obtained by training is used to 

predict the test data in TABLE I and the prediction results can 

be seen from TABLE III. According to TABLE III, the two 

models CSA-SVR and EDO-SVR have the same prediction 

results, and the four models CSA-GPR, MPA-GPR, 

YDSE-GPR, and EDO-GPR have the same prediction 

results. 

 
TABLE III 

MODEL PREDICTION RESULTS 

No. 

CSA 

- 

SVR 

MPA 

- 

SVR 

YDSE 

- 

SVR 

EDO 

- 

SVR 

CSA 

- 

GPR 

MPA 

- 

GPR 

YDSE 

- 

GPR 

EDO 

- 

GPR 

55 3.81 3.42 3.43 3.81 3.14 3.14 3.14 3.14 

56 4.98 4.94 4.95 4.98 5.13 5.13 5.13 5.13 

57 4.15 4.04 4.04 4.15 3.99 3.99 3.99 3.99 

58 4.92 4.86 4.88 4.92 4.97 4.97 4.97 4.97 

59 4.50 4.55 4.55 4.50 4.57 4.57 4.57 4.57 

60 4.09 3.84 3.85 4.09 3.56 3.56 3.56 3.56 

61 5.80 5.83 5.83 5.80 5.57 5.57 5.57 5.57 

62 5.79 5.93 5.92 5.79 6.00 6.00 6.00 6.00 

63 3.60 3.53 3.54 3.60 3.67 3.67 3.67 3.67 

64 5.46 5.34 5.34 5.46 5.52 5.52 5.52 5.52 

65 4.88 5.05 5.04 4.88 5.52 5.52 5.52 5.52 

66 4.30 4.33 4.34 4.30 4.12 4.12 4.12 4.12 

67 4.51 4.56 4.56 4.51 4.32 4.32 4.32 4.32 

68 4.85 4.92 4.91 4.85 4.65 4.65 4.65 4.65 

69 4.80 4.86 4.85 4.80 4.82 4.82 4.82 4.82 

70 4.23 4.23 4.22 4.23 4.11 4.11 4.11 4.11 

71 4.31 4.34 4.35 4.31 4.40 4.40 4.40 4.40 

72 3.48 3.25 3.26 3.48 3.40 3.40 3.40 3.40 

 

In present research, the prediction property of eight models 

is quantitatively assessed based on the 𝑅2, 𝑅𝑀𝑆𝐸, 𝑀𝑅𝐸, and 

Taylor diagram as evaluation metrics, where the Taylor 

diagram is a evaluation metric of model via the 𝑅2, 𝑅𝑀𝑆𝐸, 

and 𝑆𝑇𝐷 of obtained results. Considering the same prediction 

results for CSA-SVR and EDO-SVR, only the prediction 

results of CSA-SVR are evaluated. Considering that the 

predictions of CSA-GPR, MPA-GPR, YDSE-GPR, and 

EDO-GPR are the same, only the predictions of CSA-GPR 

are evaluated. 

Fig.5 shows the relative error (𝑅𝐸) of the prediction results, 

and Fig.6 shows the frequency of 𝑅𝐸 in the prediction results. 

TABLE IV shows the 𝑅2, 𝑅𝑀𝑆𝐸, and 𝑀𝑅𝐸 of the prediction 

models. Fig.7 shows the Taylor diagram of prediction results. 

It was worth to note that the reference point in the Taylor 

diagram represent the best model with maximum 𝑅2 , 

minimum 𝑆𝑇𝐷, and minimum 𝑅𝑀𝑆𝐸. 

 

 
Fig.5 The 𝑅𝐸 of the prediction results 

 

 
Fig.6 The frequency of relative errors in prediction results 

 
TABLE IV 

PERFORMANCE COMPARISONS OF PREDICTION MODELS 

 CSA-SVR MPA-SVR YDSE-SVR CSA-GPR 

𝑅2 87.86  92.80  92.74  98.36  

𝑅𝑀𝑆𝐸 0.29  0.23  0.23  0.11  

𝑀𝑅𝐸 5.28  4.06  4.05  1.98  
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Fig.7 The Taylor diagram of the prediction results 

 

From Fig.5, the 𝑅𝐸  of the CSA-SVR and EDO-SVR 

models in predicting the results of No.55 and No.65 are 

greater than 10%, and the 𝑅𝐸 of the remaining other models 

in predicting the results are less than 10%. The RE of the 

CSA-GPR, MPA-GPR, YDSE-GPR, and EDO-GPR models 

in predicting the results are less than 5%, which indicates that 

the GPR has a more significant advantage over SVR in 

predicting 𝑃𝑃𝑉. From Fig. 6, the RE of prediction results of 

CSA-GPR, MPA-GPR, YDSE-GPR, and EDO-GPR models 

are between 0 to 2% in eight cases, and between 2% to 4% in 

five cases. The RE of prediction results of MPA-SVR and 

YDSE-SVR models are between 0 to 2% in only three cases, 

and between 2% to 4% in eight cases, the RE  of the 

remaining prediction results are all greater than 4%. The 

frequency of the RE of the CSA-SVR and EDO-SVR models 

shows a decreasing trend as the RE increases, and there are 

two predictions with RE greater than 12%. TABLE IV shows 

that among the four models CSA-SVR, MPA-SVR, 

YDSE-SVR, and EDO-SVR, the prediction performance of 

MPA-SVR and YDSE-SVR on 𝑃𝑃𝑉  is similar and better 

than CSA-SVR and EDO-SVR, indicating that the 

optimization-seeking ability of MPA and YDSE on the 

hyperparameters of SVR is better than that of CSA and EDO. 

The 𝑅2 , 𝑅𝑀𝑆𝐸 , and 𝑀𝑅𝐸  of CSA-GPR, MPA-GPR, 

YDSE-GPR, and EDO-GPR prediction results are 98.36, 

0.11, and 1.98, respectively, which are much better than those 

of the optimized SVR, indicating that the GPR is more 

competitive in 𝑃𝑃𝑉 prediction. It is obvious from the Taylor 

diagram that the optimized GPR has the best prediction 

performance for 𝑃𝑃𝑉, again proving the above conclusion. 

 

VI. CONCLUSION 

Blasting-induced environmental problems are becoming 

more and more prominent, among which the blasting seismic 

effect is the most important harmful problem in the blasting 

process, and a high-precision 𝑃𝑃𝑉  prediction model is a 

feasible solution to control the blasting seismic effect. To 

improve the PPV prediction accuracy, eight new intelligent 

prediction models with high accuracy (i.e., CSA-SVR, 

MPA-SVR, YDSE-SVR, EDO-SVR, CSA-GPR, MPA-GPR, 

YDSE-GPR, and EDO-GPR) are developed in this study. 

Firstly, two prediction tools (SVR and GPR) and four 

hyperparameter optimization algorithms (CSA, MPA, YDSE, 

and EDO) were illustrated detailly. Subsequently, the process 

of model development is given. Finally, the developed 

models are tested using test data, and the models property is 

evaluated using 𝑅2, 𝑅𝑀𝑆𝐸, 𝑀𝑅𝐸, and Taylor diagram. The 

main conclusions are given below: 

(1) Compared to CSA and EDO, MPA and YDSE are 

better at optimizing SVR hyperparameters. 

(2) Compared to the optimized SVR, the optimized GPR is 

more accurate in predicting the 𝑃𝑃𝑉.  
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