
 

  

Abstract—In Currently, research in the field of infrared road 

object detection is primarily focused on enhancing model 

performance and robustness to address the challenges posed by 

complex real-world driving scenarios. In response to these 

challenges, this paper proposes an infrared road object 

detection algorithm based on an attention mechanism. By 

incorporating the CPCA module, which utilizes attention 

mechanisms, into the YOLOv8s model, the algorithm enhances 

the model's focus on unobstructed areas and highly illuminated 

sections, extracting crucial feature information to improve both 

accuracy and robustness. Additionally, the original model's 

downsampling layer is replaced with the Context Grided 

Network Block Downsampling (CGBD) module, which not only 

preserves feature edge information but also effectively handles 

local and contextual features, thereby enhancing the overall 

feature capturing capabilities of the model. To address the issue 

of equal aspect ratios in the model's original loss function, the 

proposed algorithm adopts the superior Weighted Intersection 

over Union (WIoU). This not only addresses the shortcomings of 

the original loss function (CIoU) but also demonstrates 

increased sensitivity in classification tasks. Experimental results 

show that the improved algorithm, compared to YOLOv8s, 

achieves a 1.4% increase in mean average precision (mAP), 

along with notable improvements in precision and recall. 

Furthermore, when compared to mainstream model algorithms, 

the enhanced model significantly outperforms in infrared road 

object detection tasks, providing validation of its effectiveness. 

 
Index Terms—Deep Learning, Infrared Images, Object 

Detection, YOLOv8 

 

I.   INTRODUCTION 

nfrared road object detection is a crucial application of 

infrared technology in the fields of traffic management and 

intelligent driving. In the face of increasingly complex urban 

traffic scenarios, infrared road object detection captures the 

thermal radiation properties of moving vehicles, pedestrians, 

obstacles, and other objects. This process facilitates vehicle 

identification and tracking to ensure safety during the journey. 

In comparison to traditional visible light camera technologies, 

infrared technology offers unique advantages, particularly in 

conditions such as nighttime, adverse weather, or low 
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lighting, providing viable technical means for enhancing the 

robustness and reliability of traffic monitoring systems. 

In the current research on infrared road target detection, 

various advanced image-processing techniques and 

machine-learning algorithms have been introduced. These 

include feature extraction, target detection, and object 

tracking based on infrared images. As an important branch of 

machine vision, visual object tracking integrates the related 

technologies of image detection and image processing, which 

has important research significance and great challenge [1]. 

The rise of deep learning technology in recent years has 

brought breakthroughs to infrared road target detection, with 

deep learning models demonstrating remarkable performance 

improvements in accuracy and real-time capabilities. 

The development of infrared road target detection not only 

contributes to elevating the level of traffic safety but also 

establishes a solid foundation for the further advancement of 

intelligent traffic systems and autonomous driving 

technologies [2]. By leveraging the unique advantages of 

infrared technology, research， and applications in this field 

are poised to provide innovative solutions for constructing 

safer and more efficient road traffic environments in the 

future. 

The target detection technology is mainly divided into 

single-stage algorithms and two-stage algorithms. Two-stage 

algorithms include R-CNN [3], Fast R-CNN [4], Faster 

R-CNN [5], etc. The characteristic of such algorithms is to 

divide the target detection task into stages. In the first stage, 

candidate boxes are generated, and these boxes attempt to 

include the target as much as possible in the input target 

image. Candidate boxes can be generated based on a Region 

Proposal Network (RPN), either through sliding windows or 

using deep learning models. The second stage of two-stage 

algorithms refines and adjusts the generated candidate boxes 

to determine the final target position and category. This stage 

typically utilizes convolutional neural networks or other deep 

learning frameworks to extract image features. It then 

performs classification regression on the generated candidate 

boxes to determine whether they contain the target, calibrate 

the position of the candidate boxes, and better fit the target. 

Two-stage algorithms perform well in various target 

detection tasks, making system optimization and adjustment 

easier, and demonstrating good performance. 

In addition, single-stage algorithms have also developed 

rapidly, including YOLO [6-9] series algorithms, SSD [10], 

RetinaNet [11], etc. Unlike two-stage algorithms, 

single-stage algorithms directly complete the object detection 

task with a single end-to-end model. They do not need to go 
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through the two-stage process of candidate box generation 

and classification regression, simplifying the process and 

improving the real-time performance of detection.  The 

single-stage algorithm transforms the object detection task 

into predicting the location and class of the object on the 

image. 

Instead of just generating some candidate boxes, they can 

simultaneously predict multiple locations in the image. The 

single-stage algorithm can also perform object detection 

through multiscale feature maps to capture objects of 

different sizes, which improves the detection performance of 

the algorithm for objects of various sizes. Single-stage 

algorithms are mainly applied in scenarios where real-time 

processing is required. Compared to two-stage algorithms, 

they are usually more concise, more computationally 

efficient, and more suitable for domains such as autonomous 

driving, surveillance recognition, and face detection, 

providing high detection performance while completing the 

task more quickly.  

YOLOv8 was chosen as the base model algorithm to better 

implement the deployment of an infrared road object 

detection system in real-world applications. YOLOv8 is the 

latest version of the YOLO series of algorithms. Compared to 

the previous YOLOv7 [12] model, it significantly reduces 

parameters and computational complexity, achieving faster 

detection speeds and better suitability for real-life 

deployment. The YOLOv8 algorithm introduces a new 

SOTA model, including target detection networks with 

resolutions of 640 and 1280, and the instance segmentation 

model YOLACT. Its backbone network and Neck section are 

designed based on the ELAN concept from YOLOv7. Unlike 

YOLOv5, YOLOv8 replaces the C3 structure with the C2f 

structure, providing a richer gradient flow for enhanced 

feature extraction. The Head section separates the 

classification and detection heads, adopting a decoupled head 

structure and incorporating data augmentation strategies from 

YOLOX [13] into the YOLOv8 model. In summary, 

compared to other target detection algorithms, YOLOv8 

performs excellently in terms of performance, accuracy, and 

computational efficiency. It can identify object classes and 

bounding boxes in an image with just one detection, making 

it suitable for various real-world applications. However, in 

the test task of infrared road target detection, the original 

YOLOv8 algorithm performs poorly. This is due to the lower 

recognition, higher complexity, and tendency to miss small 

targets in infrared images compared to visible light images. 

To address these issues, an improved algorithm based on the 

YOLOv8s model, named YOLOv8-ITA (Infrared Target 

Attention), is proposed for the first time. 
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Fig. 1. YOLOv8-ITA network architecture
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II.   IMPROVED MODEL 

In this paper, we introduce enhancements based on the 

YOLOv8s base model that involve the replacement of 

specific modules to improve detection accuracy, specifically 

targeting the requirements of infrared road target tasks for 

better detection results. To augment the perception of specific 

areas in infrared images, the CPCA [14] attention mechanism 

has been incorporated into the model's neck section. 

Additionally, the original convolutional layers have been 

substituted with ContextGuidedBlock [15] modules, capable 

of capturing spatial feature correlations from three levels. 

The CIoU [16] loss function has been replaced with a 

monotonic focus mechanism for cross-entropy, WIoU v2 

[17], to mitigate the contribution of simple tasks to the loss 

value, thereby enhancing the performance of the 

classification task. The overall model structure, depicted in 

the figure, is divided into three parts. The initial part 

constitutes the backbone network, responsible for the 

primary feature extraction of input images. Extracted features 

are then fed into the subsequent neck section for feature 

fusion before being transmitted to the head section for 

classification and detection, as illustrated in Fig. 1. 

A. CPCA attention mechanism 

In infrared road images, targets may exhibit different 

temperature characteristics or varying brightness and 

reflections in the infrared spectrum due to changes in lighting 

conditions. By employing an attention mechanism, the model 

can more selectively focus on regions with crucial 

temperature or brightness features. It also aids the model in 

concentrating on areas that are not obscured or disturbed, 

thereby enhancing the accuracy and robustness of target 

detection. The Channel Prior Convolutional Attention 

(CPCA) mechanism enables the dynamic distribution of 

attention weights across channels and spatial dimensions. 

Through the utilization of a multi-scale deep convolutional 

module, the model can effectively capture relationships at 

different spatial scales when processing input data. This 

module's design enables the network to simultaneously learn 

features with distinct abstraction levels, preserving channel 

priors for the input data. This contributes to improving the 

model's understanding of local and global structures in the 

input data, thereby enhancing its performance in handling 

complex tasks. The CPCA structure is illustrated in Fig. 2. 

The channel attention of CPCA inherits the approach of 

CBAM [18] attention mechanism, which utilizes max 

pooling and average pooling to extract spatial information, 

followed by feeding it into an MLP, and finally applying a 

sigmoid function. The calculation formula is as follows: 

 AP(F)=MLP(AvgPool(F))
 

(1)  

 MP(F)=MLP(MaxPool(F))  (2)  

 CA(F)= (AP(F)+MP(F))  (3)  

The spatial attention of CPCA is achieved by applying 

depthwise separable convolution, allowing us to effectively 

capture spatial relationships between features, and ensuring 

the preservation of correlations between channels while 

simultaneously reducing computational complexity. The 

introduction of a multi-scale structure design further 

enhances the convolution operation's ability to capture spatial 

relationships. Finally, by employing a 1×1 convolutional 

layer, a mixture of channel features is achieved, thereby 

further enhancing the network's performance in feature 

extraction and representation learning. The formula is as 

follows: 

 3

ii 0
DC(F)= Branch (DwConv(F))

=  
(4)  

 
1 1SA(F)=Conv (DC(F))

 (5)  

DWConv stands for depthwise convolution, and the 

branch represents the i-th branch in it. Therefore, the overall 

structure of the CPCA attention mechanism consists of 

calculating channel attention first, followed by obtaining 

spatial attention. The formulas are as follows: 

 
cF =CA(F) F  (6)  

 

c cF =SA(F ) F


  
(7)  

Furthermore, compared to other attention mechanisms 

such as SE [19], which focuses more on channel attention but 

lacks spatial dimension information capture, and CBAM, 

which captures both channel and spatial information but 

compresses channel calculations, resulting in a consistent 

spatial attention weight distribution for each channel during 

element-wise multiplication with input features. 
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This limitation restricts the adaptive capability of the 

attention mechanism because spatial attention weights cannot 

dynamically adjust based on the specific characteristics of 

each channel. The CPCA attention mechanism effectively 

addresses these issues and demonstrates significant 

improvements in infrared road target images. 

B. CGBD module  

In the YOLOv8-ITA model, the CGBD downsampling 

module is employed to replace the original convolutional 

module in the YOLOv8 network. Unlike a conventional 

downsampling module, the CGBD module excels in 

preserving edge information, and effectively handling local 

and contextual features. Additionally, the design of this 

network module allows global contextual features to 

permeate the entire network, spanning from low-level 

(spatial level) to high-level (semantic level), not confined to 

capturing contextual features solely after the encoding stage. 

Overall, in the task of infrared road target detection, this 

network module achieves a better balance between local and 

contextual features, enhances model performance by 

introducing global contextual information, and better 

preserves edge information by reducing the number of 

downsampling layers.  

This module consists of four parts: f_loc, which extracts 

local feature information constructed by regular convolution; 

f_sur, which extracts surrounding contextual feature 

information implemented through a dilated convolution 

module; f_joi, responsible for joint feature extraction used to 

concatenate the subsequent BN layer and the PReLU 

activation function; and finally, the global feature extractor 

f_glo, which introduces a global pooling layer followed by 

two fully connected layers for feature extraction. The outputs 

of these two fully connected layers form a weight vector, 

which is then utilized to guide the fusion of joint features. 

The CGBD module is illustrated in Fig. 3. 
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Fig. 3. Diagram of the CGBD module 

In the overall process, the input image undergoes 

processing through a 1×1 convolutional layer. Subsequently, 

the processed image is passed through two 3×3 convolutional 

layers: one is a standard convolutional layer (referred to as 

f_loc), and the other is a dilated convolutional layer (referred 

to as f_sur). These two convolutional layers are employed to 

extract local features and the surrounding features, 

respectively. After obtaining the local and surrounding 

features, these two features are fused through feature 

concatenation. The fused features then undergo 

normalization (BN) and processing through the PReLU 

activation function to obtain the final fused features. 

Subsequently, the fused features are subjected to 

channel-wise global feature processing (f_glo), contributing 

to a more global capture of feature information. The ultimate 

output represents the result obtained through the 

channel-wise global feature processing, signifying the 

comprehensive understanding of the input image by the 

CGBD module. 

C. WIoU loss function 

The original YOLOv8 model utilizes the CIoU loss 

function, which builds upon DIoU [16] by introducing a scale 

loss related to the detection box dimensions, thereby 

incorporating additional loss related to aspect ratio 

information. This design aims to stabilize the regression of 

the target box, preventing divergence issues during training, 

as observed in IoU and GIoU [20]. By considering 

comprehensive scale information of the target box, the CIoU 

loss contributes to the overall stability of the training of 

object detection models. 

However, in CIoU, if the aspect ratios of the predicted and 

ground truth boxes are the same, the aspect ratio penalty 

remains zero, which is logically unreasonable. The gradients 

of width (w) and height (h) relative to the overall loss (v) in 

CIoU are found to be opposite. This implies that w and h 

cannot increase or decrease simultaneously, which is also 

deemed illogical. 

In contrast, WIoU (Weighted Intersection over Union) 

introduces a weighted consideration of the area between the 

predicted and ground truth boxes, providing a solution to 

potential biases in traditional IoU evaluation. By 

incorporating weights, WIoU more comprehensively 

considers the overlapping region of the target box, thereby 

enhancing evaluation accuracy. WIoU v2 adopts a consistent 

monotonic focus mechanism with CIoU and SIoU v2 [21]. 

This customized cross-entropy monotonic focus mechanism 

significantly reduces the impact of simple examples on loss 

values. This allows the model to focus more on challenging 

examples, considering the complexity of the infrared road 

target scenarios, thereby improving the model's classification 

performance and, consequently, detection accuracy. 

WIoU first calculates the Intersection over Union (IoU) 

between the predicted and ground truth boxes, which 

measures the degree of overlap in object detection tasks. The 

formula for the anchor frame and target box is as follows: 

 

 B [x, , , ]y w h
→

=  
 (8)

 

 

 gt gt gt gt gtB [x , , , ]y w h
→

=  
  

(9)
 

The degree of overlap between the predicted box and the 
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ground truth box is illustrated in Fig. 4. The formula for 

calculating their union is as follows: 

(Xgt,Ygt)

(X,Y)

Wi

Hi

Wg

Hg

 
Fig. 4. The area of the union  

 
u gt gt i iS =wh+w h -W H  (10)  
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(11)  

WI U
R

o
 significantly amplifies the anchor box 

IoU
L , and 

the formulation is constructed as follows: 

 
gt gt

WIoU

g g

2 2

2 2

(x x ) (y y )
R =exp( )

(W H ) *

− + −

+
 

 

(12)  

The "*" in the formula is used to detach 
g

W  and 
g

H from 

the computation graph when 
WI U

R
o

 hinders the convergence 

of gradients. In the end,  
WIoU v1 

L is obtained through
WI U

R
o

: 

 
WIoU v1 WIoU IoU

L =R L   (13)  

What we obtain here is WIoU v1 with two layers of 

attention mechanisms. To obtain the monotonic focusing 

mechanism for WIoU v2, we still need the monotonic 

focusing coefficient 
IoU

*
L


 for 

WIoU v1 
L , then introduce the 

mean of 
IoU

L  for normalization, and finally obtain the: 

 
IoU

WIoU v2 WIoU v1

IoU

*
L

L =( ) L
L


 

(14)  

In WIoU, the weight value for each bounding box is 

determined based on its overlap with the ground truth 

annotation box. When the overlap between the bounding box 

and the ground truth box is high, the weight value is 

correspondingly high; conversely, when the overlap is low, 

the weight value is low. Through this mechanism, in the 

infrared road target detection task, WIoU can more 

effectively assess the detection results, providing more 

accurate evaluations even in the presence of size-imbalanced 

objects. 

III.   EXPERIMENTAL RESULTS AND DISCUSSION 

A. Datasets 

In Revised sentence: For this experiment, we intentionally 

selected the FLIR_ADAS_v2 infrared dataset recently 

released by FLIR Systems [22]. This updated version not 

only expanded the number of labels to 15 categories but also 

introduced video data, resulting in a total of 26,442 annotated 

frames - a 1% increase from the original version. All images 

included in this dataset are labeled with these 15 categories. 

We chose to use 10,467 infrared images for our dataset 

processing and partitioned them into training (7,326), testing 

(2,094), and validation sets (1,047) at a ratio of 7:3:1. To 

ensure sufficient training and testing for our chosen 

categories - person, bike, car, bus, light and sign - we 

carefully selected these six categories while maintaining 

balance within the dataset. Our selection strategy aims to 

improve model generalization ability and better adapt it to 

real-world scenarios in infrared object detection tasks. 

B. Experimental Environment 

The model was developed using the Python programming 

language and implemented with the PyTorch deep learning 

framework, specifically using PyTorch version 1.8.1. The 

training process was conducted on hardware based on the 

GeForce GTX 1080ti with a VRAM size of 11,178MB. For 

model training, the input image size was set to 640 x 640 

pixels. The optimizer used was the Stochastic Gradient 

Boosting (SGB) function. The training process consisted of 

300 epochs with a batch size of 8. The momentum and decay 

parameters were set to 0.937 and 0.0005, respectively. The 

initial learning rate was set to 0.01, and a cosine annealing 

algorithm was applied. Additionally, the mosaic 

augmentation technique was employed in the last 10 epochs 

of training to enhance model performance. 

C. Experimental Evaluation Metrics 

In this study, three model evaluation metrics were 

employed, including precision, recall, and mean Average 

Precision (mAP) at a threshold of 0.5. Precision: Precision is 

a key metric in classification tasks, indicating the proportion 

of true positive predictions among all samples predicted as 

positive. The precision is calculated using the following 

formula: 

 TP
Precision=

TP+FP
 

 

(15)  

Where TP represents the number of samples correctly 

classified as positive, and FP represents the number of 

samples incorrectly classified as positive. The precision 

reflects the model's ability to accurately identify targets in 

infrared images. A higher precision indicates that the model 

can precisely identify targets, helping to reduce false 

positives and false negatives, thus enhancing the reliability 

and safety of the driving assistance system. 

Recall, another crucial evaluation metric, represents the 

proportion of correctly predicted samples among all true 

positive instances. The calculation formula is as follows: 

 TP
Recall=

TP FN+
 

 

(16)  

Where TP represents the number of true positives, and FN 

represents the number of samples incorrectly classified as 

negatives. The recall rate reflects whether the model can 

effectively identify all true positive targets. A high recall rate 

indicates that the model can accurately identify as many 

positive targets as possible, reducing false negatives and 

enhancing the reliability and safety of the system. 

mAP@0.5 (Mean Average Precision at IoU=0.5) is a 

commonly used performance evaluation metric in object 

detection tasks. It calculates the average precision for each 

class and then takes the mean. In object detection, if the 
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overlap ratio between a detection box and the corresponding 

ground truth box is greater than 0.5 (i.e., IOU greater than 

0.5), the detection box is considered a true positive (TP). 

mAP@0.5 represents the average precision across all classes 

under the condition of IOU=0.5, and the calculation formula 

is as follows: 

 1n

i 1 0

1
mAP Precision(Recall)d(Recall)

n =

=   
 

(17)  

Here, n represents the number of classes, AP represents the 

average precision for each class. The calculation of mAP 

considers the average of the average precision for each class, 

providing a comprehensive evaluation of the model's overall 

performance across multiple classes. 

D. Blation Experiment 

To investigate the impact of different enhancement 

strategies on the final performance of the model, ablation 

experiments are conducted. The enhancements include 

adding the CPCA attention mechanism to the model, 

replacing the original downsampling with the CGBD 

downsampling module, and substituting the original CIoU 

with WIoU. The evaluation metrics for the model's final 

performance include precision, recall, and mAP. Each 

module is individually validated in the experiments using a 

controlled variable approach to isolate the specific impact of 

each module on the model. The results are summarized in 

Table I. 

The table indicates that each module exhibits certain 

improvements compared to the original model. Particularly, 

the CPCA attention mechanism module shows an increase of 

0.7% in mAP, along with growth in precision and recall. This 

demonstrates the effectiveness of the CPCA attention 

mechanism module in infrared target detection tasks, 

showcasing its ability to address challenges such as low 

resolution, complex environments, and significant 

interference in infrared road target detection. The CGBD and 

WIoU modules show notable improvements in recall and 

precision, aligning with the enhanced perception capability 

of the CGBD module for feature information and the 

pronounced target classification ability of the WIoU module. 

While there may be slight shortcomings in other aspects, 

there is still a substantial improvement in the mAP metric. 
TABLE I 

RESULTS OF ABLATION EXPERIMENTS 

CPCA CGBD WIoU P(%) R(%) mAP@0.5(%) 

   84.0 68.2 76.8 

   84.1 68.7 77.5 

   83.6 69.4 77.3 

   84.6 68.9 77.3 

   83.9 69.5 77.6 

   84.0 69.1 77.6 

   84.2 70.2 78.2 

To better visualize the comparative effectiveness between 

the final model and the original model, the actual images 

output by the two models are contrasted. The up image 

depicts the detection results of the YOLOv8s model, while 

the down image showcases the results of the improved model, 

as illustrated in Fig. 5. 

The figures depict an improvement in object detection by 

the ITA model compared to the original model, 

demonstrating the practical performance of the ITA model. 

Compare the PR curves of the two models tested, as shown in 

Fig. 6. Compared to the original model, the improved model 

has shown overall growth, with improvements in most 

detection categories. However, accompanying challenges 

persist; despite an increase in accuracy, the model's 

performance on small objects is not optimal, indicating a 

potential area for further research. In summary, the overall 

model exhibits a 1.4% improvement compared to the original 

model, with each module contributing to small advancements 

when deployed independently. 

 
Fig. 5. YOLOv8s (up) and YOLOv8-ITA (down) 
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(a) YOLOv8s 

 
(b) YOLOv8-ITA 

Fig. 6. PR curve comparison 

E.  Comparative experiments 

To provide a more intuitive comparison of the advantages 

of the improved model, a comprehensive evaluation was 

conducted by contrasting it with mainstream models, 

including YOLOv5m, YOLOv6n, YOLOv7-tiny, and 

YOLOv8s. The dataset, parameters, and evaluation metrics 

used in this process remained consistent with those employed 

for the improved model. Additionally, the parameter count 

and computational complexity were selected to be close to 

the architecture of the improved model. The final results are 

presented in Table II. 
TABLE II 

COMPARATIVE EXPERIMENT RESULTS OF DIFFERENT MAINSTREAM 

MODELS 

Approaches P(%) R(%) mAP@0.5(%) 

YOLOv5m 86.3 68.4 77.4 

YOLOv6n 73.1 69.5 71.2 

YOLOv7-tiny 78.5 62.9 70.6 

YOLOv8s 84.0 68.2 76.8 

YOLOv8-ITA 84.2 70.2 78.2 

A comparative analysis between the YOLOv8-ITA model 

and the YOLOv5m model reveals a substantial improvement 

in recall rate, with a corresponding increase of 0.8% in the 

comprehensive metric mAP. When compared with YOLOv6 

and YOLOv7-tiny models, the improved model exhibits a 

more significant enhancement in mAP. Therefore, the overall 

performance of the enhanced model surpasses these 

mainstream models, making it more robust and well-suited 

for applications in infrared target detection tasks. 

IV.    CONCLUSION 

Addressing challenges in infrared road target tasks, such as 

complex environments, low visibility in the infrared 

spectrum, and issues related to recognition rates and small 

target detection, we propose an improved network model, 

YOLOv8-ITA, based on the attention mechanism. This 

model enhances precision by introducing the CPCA attention 

module, which extracts target features from two dimensions, 

focusing on local features to improve model accuracy. The 

addition of the CGBD downsampling module extracts edge 

features, balancing local and contextual features, while also 

incorporating global contextual information to enhance 

overall model performance. Replacing the original CIoU 

with the WIoU loss function evaluates target box coverage 

more accurately through weighting, improving evaluation 

precision. Experimental results demonstrate that the 

enhanced model exhibits improvements over the baseline. 

Applied in real-world scenarios, the improved model is better 

suited for infrared road target detection applications, 

including areas such as assisted driving and road monitoring 

platforms. 
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