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Abstract—Electrical Impedance Tomography (EIT) recon-
structs the electrical properties of cellular tissues by taking
measurements at their boundaries. Its non-invasive nature,
safety, and potential for an extensive variety of therapeutic
uses have sparked significant interest. The generation of EIT
images involves solving an inverse problem through iterative
optimization techniques. As a result, the effectiveness of various
optimization strategies for EIT may vary. This study evaluates
the efficacy of the Adam optimizer in addressing the EIT inverse
problem. Our simulations reveal that Adam demonstrates
superior convergence rates, faster reconstruction times, and
higher-quality images compared to traditional gradient descent-
based optimizers. Specifically, the Adam optimizer produces
images of superior quality with improved anomaly localization,
all while achieving faster reconstruction speeds and higher
convergence rates. Additionally, we provide insights into the
optimal parameter configurations for Adam in the context of
EIT, offering valuable guidance for future research endeavors
in this domain.All things considered, our findings unequivocally
demonstrate that the Adam optimizer is a valuable tactic for
resolving the EIT inverse problem.

Index Terms—Electrical impedance tomography, inverse
problem, adam optimizer, image reconstruction.

I. INTRODUCTION

D IFFERENT methods for diagnosing diseases have been
developed as a result of recent advances in medical

technology. Among these, tomography and medical imag-
ing have gained popularity. Tomography involves creating
images by examining the internal structures of living or-
ganisms. Different tomography methods, such as CT scans
and MRI, are available, but they have drawbacks like high
cost and potential radiation exposure. To address these limi-
tations, there’s a growing demand for non-invasive, painless,
quick, and cost-effective imaging techniques [18]. Electrical
Impedance Tomography (EIT) is one such method that has
attracted attention. It’s a non-invasive imaging approach that
introduces small electrical currents into biological tissue and
measures resulting voltage potentials on the tissue surface.
EIT has potential applications in medical imaging, including
brain activity evaluation, breast tumor identification, and
lung function monitoring [2], [3], [4], [19]. An inverse
problem is resolved with Electrical Impedance Tomography
(EIT) by analyzing observed voltage data with mathematical
approaches to recreate the distribution of electrical conduc-
tivity, or impedance, within tissue. However, the inverse
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problem in EIT is complicated, being both ill-posed and
nonlinear, posing considerable hurdles to achieving accurate
and reliable reconstructions. To solve this, gradient-based
techniques are often used, and several optimization strategies
have been proposed to increase convergence and efficacy.
[5]. In Electrical Impedance Tomography (EIT), commonly
employed methods consist of the Levenberg-Marquardt algo-
rithm, gradient descent with regularization, and the Gauss-
Newton method. Recently, adaptive optimization algorithms
have gained traction to tackle convergence challenges linked
with conventional optimization techniques. These adaptive
approaches, exemplified by the Adam method, dynami-
cally adapt the learning rate throughout the optimization
process[25].

The Adam optimizer is an adaptive moment optimizer
that integrates the AdaGrad and RMSprop algorithms. It
was first presented by Kingma and Ba [21]. Adam keeps a
moving average of gradients, only uses first-order gradients
to add momentum, and modifies learning rates according
to square gradients. Because of this feature, Adam is a
good fit for real-time image capture parameter modifications
that aim to lower phase estimation mistakes. Better spatial
resolution and sharper, more accurate images are the end
result. Adam is well renowned for its memory efficiency,
great computational capability, and ease of use. Electrical
Impedance Tomography (EIT) is one application for it.Please
see the following sources [7], [8], [9] for additional details on
the specifics of using the Adam optimizer. Implementation of
Adam’s optimizer requires the use of a suitable loss function
that evaluates the disparity between measured and observed
potential values. The aim of this optimizer is to accelerate
convergence of the loss function to the lowest value by
combining gradient descent with adaptive momentum and
learning rates. The learning rate depends on the moments of
the first and second gradients. It is particularly effective for
solving inverse optimization problems.[10], [11].This work
aims to highlight the Adam technique’s potential to enhance
the efficiency and precision of Electrical Impedance Tomog-
raphy (EIT) by conducting a comprehensive investigation
into its application [24]. The contents of this document are
as follows: In Section 2, the mathematical concepts on which
TIS is based are outlined. The inverse problem is examined
in detail in Section 3, where the approach used to reconstruct
the conductivity distribution is explained. Our numerical
simulations are presented in Section 4, while an in-depth
analysis and explanation of the results is given in Section 5.

II. THE EIT FORWARD PROBLEM

In Electrical Impedance Tomography (EIT), the forward
challenge is to compute voltage measurements along a
domain’s boundary. This calculation considers the applied
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currents as well as the distribution of electrical conductivity
throughout the domain. In order to do this, the Laplace
equation for the domain’s electric potential needs to be
solved with appropriate boundary conditions that mimic the
voltage measurement and current injection carried out by
electrodes on the border. The potential distribution that has
been determined is then used to use Ohm’s law to get the
boundary voltages. [17], [20]. The specific reason for this
circumstance is crucial for solving the inverse problem in
EIT; the forward problem is significant. Reconstructing the
conductivity distribution from the measured voltages is the
goal of the inverse problem. The forward problem facili-
tates estimating expected voltage readings given a particular
conductivity distribution and applied currents by providing
a theoretical framework. Mastery of the forward problem is
essential to advance EIT techniques and accurately recreate
internal conductivity distributions in various areas, such as
industrial processes and medical imaging.Let Ω ⊆ Rn, n=2,3
be our domain of interest and ∂Ω the boundary of Ω

−∇ · (σ∇V ) = 0 on Ω (1)

with the homogeneous Dirichlet and Neumann boundary
conditions

σ
∂V

∂n
=

{
Ii at ith node
0 at the others

(2)

where V is the electric potential distribution, σ is the con-

ductivity distribution,
∂

∂η
is the outward normal derivative,

I is the injected current through the boundary. The EIT
forward model, characterized by the Laplace equation (1)
and boundary conditions (2), does not possess a readily
available analytical solution, especially for complex geome-
tries. Therefore, a common approach is to tackle the partial
differential equation (PDE) numerically. This is typically
achieved using the finite element method (FEM), a well-
documented technique in the scientific literature.[12], [13],
[14].

III. THE EIT INVERSE PROBLEM

The internal conductivity distribution inside an item is
ascertained using surface measurements in the EIT inverse
problem. In terms of mathematics, this means resolving the
inverse problem related to the elliptic equation (1) with the
goal of deriving the internal conductivity distribution in the
domain Ω from the measured boundary voltage positions.
[15], [25].

f(σ) = Vs (3)

Where Vs measured from the object domain bondaries ∂Ω,
f(σ) is implicity defined as the forward model based on
equation (1)

A. Linearization and Regularization Techniques for Solving
EIT Inverse Problem

The EIT inverse problem is challenging due to its ill-posed
nature[16], [18], [25], which makes the solution non-unique
and sensitive to measurement noise and errors. Linearization
and regularization techniques are commonly used to obtain a

stable and unique solution.The objective is to minimize the
cost function J by determining the optimum approach σ:

J(σ) =
1

2
‖f(σ)− Vs‖2 (4)

The EIT problem may be expressed as a problem of opti-
mization:

σ∗ = argmin(σ) (5)

In order to add a regularization component to the cost
function and aid achieve a stable solution, total variation
regularization is utilized.

J(σ) =
1

2
‖f(σ)− Vs‖2 + λR(σ) (6)

Where the term R(σ) = ‖σ − σ0‖2of the objective function
represents the regularization related to the prior knowledge of
σ. Here, λ is the regularization parameter and σ0 is the initial
guess. The forward modelf(σ) in EIT is approximated using
a linearization method, where the linearization is performed
around an initial estimate σ0 by taking the first order of
Taylor series expression of the forward problem function[22],
[16]. This can be approximed as follows:

f(σ) = f(σ0) + f
′
(σ0)(σ − σ0) + r (7)

f
′

is the Fréchet derivative of the forward model f and the
symbol r is used to represent the residual term obtained
from the Taylor series expansion around σ0.The gradient of
objective functional can be written as follows :

∇J(σ) = f(σ0) ∗ f
′
(σ − Vs) + λR

′
(σ) (8)

The Fréchet derivative of the regularization operator with
respect to the parameter σ is denoted as R

′
(σ).

B. Iterative Inverse Problem Solution

This paragraph discusses the convergence of an iterative
optimization algorithm denoted by I for solving the inverse
problem in electrical impedance tomography. The algorithm
aims to iteratively get closer to the solution until it reaches
the desired accuracy.{

σ = σ0
σn+1 = L(σn; J)

(9)

Convergence of the algorithm is proven to be achieved when
the limit of L(σ; J) as n approaches infinity is equal to the
true solution σ.

limn→+∞L(σn; J) = σ∗ (10)

Determining the rate of convergence is a major challenge,
especially for complex problems such as electrical impedance
tomography, which require many multidimensional parame-
ters. Various elements, such as the algorithm selected and
the problem configuration, have an influence on the speed
of convergence in optimization. The convergence properties
of different algorithms have an effect on the convergence
rate. In addition, the starting point or initial guess is also a
determining factor in convergence speed..
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TABLE I: Meaning of Parameters and Hyperparameters

Parameters and hyperparameters Description

α Learning rate
σ0 Initial guess

β1 , β2 Exponential decay rates
ε Tiny value used in ADAM
λ Regularization parameter

For example, gradient descent serves as a prevalent op-
timization algorithm known for its rapid convergence in
convex problems with smooth objectives. Conversely, evolu-
tionary algorithms may converge at a slower pace but excel in
handling complex and non-convex optimization challenges.
In the realm of electrical impedance tomography, gradient
descent-based optimization algorithms are commonly em-
ployed, with the learning rate hyperparameter significantly
influencing convergence speed. Various factors related to the
structure of the problem, such as the number of electrodes,
water properties, etc., influence the value of J(σ), as de-
scribed above. The value of J(σ) also depends on the choice
of regularization and the initial guess. Table 1 provides an
illustration of the parameters and hyperparameters that can be
used to solve the practical optimization problem, including
the hyperparameters of the iterative algorithm.

Algorithm 1 ADAM Optimizer

Input: α
Input: b1, b2 ∈ [0, 1)
Input: J(σ)
Input: σ0
m0 ← 0
v0 ← 0
k ← 0
while J not converged do
k ← k + 1
gk ← ∇J(σk−1)
mk ← b1 ·mk−1 + (1− b1) · gk
vk ← b2 · vk−1 + (1− b2) · g2k
m̂← mk

1−bk1
v̂ ← vk

1−bk2
σk ← σk−1 − α · m̂√

v̂+ε
end while
Output: return σk

The code above presents Adam’s optimization algorithm,
common for stochastic gradient descent, in pseudo-code
form. The approach uses hyper-parameters such as the
learning rate α, the decay rates of the exponential moving
averages of the gradients b1 and b2,as well as a little
constant for numerical stability, ε. The aim of the approach
is to update the model parameters σ step by step until the
loss function J is convergent.[6]. The method evaluates the
gradient of the loss function as a function of the current
parameters σk−1 for each iteration. Then, using the decay
coefficients b1 and b2, we update the exponential moving
averages of the gradient mk and the squared gradient vk. Bias
is also taken into account in the procedure. subsequently, the
average movement and the learning rate α are used to update
the model parameters σk. Additionally, a little constant ε

is included to provide numerical stability.Our results show
that non-convergent or delayed minimization occurs when
the learning rate is selected outside of the interval [0.001,
0.1]. Following the literature [24], we sampled the learning
rate for this simulation equally from the range [0.001, 0.1].
We also kept the momentum β1 = 0.9 and β2 = 0.999 at
the recommended hyperparameter values.

IV. NUMERICAL SIMULATIONS

We used the Python module Pyeit, an open-source tool
for resolving the direct and inverse EIT problems, to create
simulated data. We used a unit circular domain for our
simulations, as well as separate meshes for the direct and
inverse problems. First, we used a circular mesh with 1486
nodes and 2840 elements. Next, we used a redesigned mesh
with 4084 nodes and 7890 elements. Equivalent intervals of
32 electrodes were placed on the domain boundary. With
a background value of 2, the position, size, and quantity
of anomalies in the electrical conductivity σ were selected
10−2, 10−4, 10−6 and 10−8 regularization parameters λ were
used. We employed the pseudocode-explained Algorithm 1
to resolve the minimization issue. For the moment estimates
β1 and β2, as well as the learning rate α, we employed
the exponential decay rates. 10−8 was selected as ε, the
stabilizing parameter. We used the exponential decay rates for
moment estimates β1 and β2, and the learning rate α. 10−8

was chosen as the stabilizing parameter ε. To ensure accurate
parameter control in our simulations, we first focused on min-
imizing the error of the initial reconstruction guess σ0. We
observed that smaller values of the regularization parameterλ
led to better results in our simulations. Specifically, for values
of λ = 10−6 and λ = 10−8, the reconstructed conductivity
images exhibited fewer artifacts and better resolution of the
anomalies. These results suggest that a smaller value of the
regularization parameter is better suited for reconstructing
electrical conductivity anomalies in our setup. Overall, our
simulations highlight the importance of carefully selecting
the regularization parameter and other parameters in the
inverse problem to obtain accurate and reliable results. A
correctly selected learning rate α is also crucial for obtaining
accurate and reliable results in the minimization problem.

According to our simulations, a learning rate of 0.01 might
result in accurate reconstruction of the electrical conductivity
distribution and constant convergence. However, oscillations
and instability in the reconstructed images were brought on
by higher learning rates, such as 0.1. Thus, for reconstruction
to be successful, care must be taken in selecting the learning
rate and other optimization factors.

Furthermore, the accuracy of the reconstruction is greatly
influenced by the choice of mesh, both for the direct and
inverse problem. In our experiments, we noticed that the
coarser mesh with 1486 nodes and 2840 elements generated
less accurate and less detailed images compared to a finer
mesh with 4083 nodes and 7954 elements. However, using
a finer connection can lead to over-fitting and increased
computational expense. So, when selecting the mesh, it’s
vital to strike a balance between computational efficiency
and accuracy. It is possible to use a coarser mesh for larger,
simpler anomalies, but in general, it is preferable to use a
finer mesh to reconstruct smaller or more complex anomalies.
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Fig. 1: The image reconstruction of the conductivity
distribution was performed using 1486 nodes and 2840
elements, with a step size of 0.001 and regularization
parameter set to 10−2.

Fig. 2: The image reconstruction of the conductivity
distribution was performed using 1486 nodes and 2840
elements, with a step size of 0.001 and regularization
parameter set to 10−4.

Fig. 3: The image reconstruction of the conductivity
distribution was performed using 1486 nodes and 2840
elements, with a step size of 0.001 and regularization
parameter set to 10−6.

Fig. 4: The image reconstruction of the conductivity
distribution was performed using 1486 nodes and 2840
elements, with a step size of 0.001 and regularization
parameter set to 10−8.

Fig. 5: The image reconstruction of the conductivity
distribution was conducted using a denser mesh comprising
4083 nodes and 7954 elements, with a step size of 0.001
and regularization parameter set to 10−2.

Fig. 6: The image reconstruction of the conductivity
distribution was conducted using a denser mesh comprising
4083 nodes and 7954 elements, with a step size of 0.001
and regularization parameter set to 10−4.
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Fig. 7: The image reconstruction of the conductivity
distribution was conducted using a denser mesh comprising
4083 nodes and 7954 elements, with a step size of 0.001
and regularization parameter set to 10−6.

Fig. 8: The image reconstruction of the conductivity
distribution was conducted using a denser mesh comprising
4083 nodes and 7954 elements, with a step size of 0.001
and regularization parameter set to 10−8.

V. CONCLUSION AND FUTURE WORK

In this study, we propose an innovative method for re-
constructing electrical impedance tomography (EIT) images
using the adaptive moment estimation (Adam) method. In
light of this research, Adam has the potential to improve the
efficiency of EIT image reconstruction by highlighting the
importance of adjusting hyperparameters, such as learning
rate, beta1, beta2 and delta.

Compared to traditional gradient descent algorithms,
Adam’s approach offers a number of major advantages,
including faster convergence and better optimization perfor-
mance due to his ability to dynamically modify the learning
rate based on the gradient. Furthermore, Adam is especially
useful for EIT image reconstruction, where the conductivity
distribution is frequently unknown and an optimization pro-
cess must be started with an approximation because to its
strong performance and insensitivity to parameter initializa-
tion.

The application of Adam holds promise for improving
both the accuracy and speed of EIT image reconstruction,

with potential clinical implications for disease diagnosis
and monitoring. Future research avenues may involve a
comparative analysis between Adam and its variant, the
Nesterov-accelerated Adaptive Moment Estimation (Nadam)
algorithm, focusing on convergence speed, reconstruction
accuracy, and sensitivity to different hyperparameters. Fur-
thermore, investigations could explore their performance
under diverse EIT imaging scenarios, including variations
in electrode configurations, noise levels, and measurement
setups.

Further studies may examine how well these algorithms
work in more intricate EIT imaging contexts as dynamic
imaging, real-time monitoring, or three-dimensional recon-
struction. Lastly, evaluating the practical significance of
enhanced precision and speed in EIT image reconstruction
through Adam and Nadam in diverse medical contexts, like
lung function tracking or stroke detection, will offer insight-
ful information about their possible influence in healthcare.

REFERENCES

[1] A. Adler and D. Holder, Electrical Impedance Tomography: Methods,
History and Applications, CRC Press, 2021.

[2] X. Ke et al., ”Advances in Electrical Impedance Tomography-Based
Brain Imaging,” Military Medical Research, vol. 9, no. 1, pp. 1-22,
2022.

[3] I. Frerichs et al., ”Chest Electrical Impedance Tomography Examina-
tion, Data Analysis, Terminology, Clinical Use and Recommendations:
Consensus Statement of the Translational EIT Development Study
Group,” Thorax, vol. 72, no. 1, pp. 83-93, 2017.

[4] Y. Zou and Z. Guo, ”A Review of Electrical Impedance Techniques
for Breast Cancer Detection,” Medical Engineering and Physics, vol.
25, no. 2, pp. 79-90, 2003.

[5] C. Tan et al., ”Determining the Boundary of Inclusions with Known
Conductivities Using a Levenberg–Marquardt Algorithm by Electrical
Resistance Tomography,” Measurement Science and Technology, vol.
22, no. 10, p.104005, 2011.

[6] D. Kingma and J. Ba, ”Adam: A Method for Stochastic Optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[7] Z. Zong, Y. Wang, and Z. Wei, ”A Review of Algorithms and Hard-
ware Implementations in Electrical Impedance Tomography,” Progress
in Electromagnetics Research, vol. 169, pp. 59-71, 2020.

[8] C. Putensen et al., ”Electrical Impedance Tomography for Cardio-
Pulmonary Monitoring,” Journal of Clinical Medicine, vol. 8, no. 8,
p. 1176, 2019.

[9] S. Leonhardt and B. Lachmann, ”Electrical Impedance Tomography:
The Holy Grail of Ventilation and Perfusion Monitoring?,” Intensive
Care Medicine, vol. 38, pp. 1917-1929, 2012.

[10] S. Ruder, ”An Overview of Gradient Descent Optimization Algo-
rithms,” arXiv preprint arXiv:1609.04747, 2016.

[11] S. Reddi, S. Kale, and S. Kumar, ”On the Convergence of Adam and
Beyond,” arXiv preprint arXiv:1904.09237, 2019.

[12] A. Adler, T. Dai, and W. RB Lionheart, ”Temporal Image Recon-
struction in Electrical Impedance Tomography,” Physiological Mea-
surement, vol. 28, no. 7, p. S1, 2007.

[13] G. Boverman et al., ”The Complete Electrode Model for Imaging
and Electrode Contact Compensation in Electrical Impedance Tomog-
raphy,” in 2007 29th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pp. 3462-3465, 2007.

[14] R. Bayford et al., ”Solving the Forward Problem in Electrical
Impedance Tomography for the Human Head Using IDEAS (Integrated
Design Engineering Analysis Software), a Finite Element Modelling
Tool,” Physiological Measurement, vol. 22, no. 1, p. 55, 2001.

[15] T. De Castro Martins et al., ”A Review of Electrical Impedance To-
mography in Lung Applications: Theory and Algorithms for Absolute
Images,” Annual Reviews in Control, vol. 48, pp. 442-471, 2019.

[16] Y. Luo et al., ”Non-Invasive Electrical Impedance Tomography for
Multi-Scale Detection of Liver Fat Content,” Theranostics, vol. 8, no.
6, pp. 1636, 2018.

[17] M. Hadinia and R. Jafari, ”An Element-Free Galerkin Forward Solver
for the Complete-Electrode Model in Electrical Impedance Tomog-
raphy,” Flow Measurement and Instrumentation, vol. 45, pp. 68-74,
2015.

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 688-693

 
______________________________________________________________________________________ 



[18] A. Goncharsky, S. Romanov, and S. Seryozhnikov, ”Inverse Problems
of 3D Ultrasonic Tomography with Complete and Incomplete Range
Data,” Wave Motion, vol. 51, no. 3, pp. 389-404, 2014.

[19] E. Murphy, A. Mahara, and R. J. Halter, ”Absolute Reconstructions
Using Rotational Electrical Impedance Tomography for Breast Cancer
Imaging,” IEEE Transactions on Medical Imaging, vol. 36, no. 4, pp.
892-903, 2016.

[20] M. G. Crabb, ”Convergence Study of 2D Forward Problem of Electri-
cal Impedance Tomography with High-Order Finite Elements,” Inverse
Problems in Science and Engineering, vol. 25, no. 10, pp. 1397-1422,
2017.

[21] B. Liu et al., ”pyEIT: A Python Based Framework for Electrical
Impedance Tomography,” SoftwareX, vol. 7, pp. 304-308, 2018.

[22] M. P. Ramirez T et al., ”On the General Solution for the Two-
Dimensional Electrical Impedance Equation in Terms of Taylor Series
in Formal Powers,” IAENG International Journal of Applied Mathe-
matics, vol. 39, no. 4,pp. 300-305, 2009.

[23] C. M. A. Robles Gonzalez et al., ”On the Numerical Solutions of
Boundary Value Problems in the Plane for the Electrical Impedance
Equation: A Pseudoanalytic Approach for Non-Smooth Domains,”
IAENG Transactions on Engineering Technologies: Special Issue of the
World Congress on Engineering and Computer Science 2012, Springer
Netherlands, 2014.

[24] S. Idaamar, M. Louzar, A.Lamnii and S. Ben Rhila, ”Comparison of
iteratively regularized Gauss-Newton method with Adam optimization
for image reconstruction in electrical impedance tomography,” Com-
mun. Math. Biol. Neurosci. 2023 , Article ID 128, 2023.

[25] N.Chakhim et al, ”Image reconstruction in diffuse optical tomogra-
phy using adaptive moment gradient based optimizers: a statistical
study.”Applied Sciences 9117, 2020.

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 688-693

 
______________________________________________________________________________________ 




