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Abstract—Temporal completion of knowledge graphs is of
significant importance in real-world applications. However,
previous research has mostly focused on stationary knowledge
graphs, largely ignoring the dynamic evolutionary properties
of facts. Furthermore, the volatility and scarcity of temporal
knowledge graphs, along with the intricate temporal dependen-
cy characteristics, render existing models incapable of accurate-
ly representing facts that undergo temporal changes. To more
accurately represent changes in entities over time, we provide a
learning algorithm for representing temporal knowledge graphs
using quaternion rotation. This approach characterises the
evolution of entities as a temporal rotation transformation in
quaternion space. The Hamiltonian product in quaternion space
is more effective at capturing potential interdependencies than
the Ermitian inner product in complex number space. This
results in a learning process that is both more efficient and
more expressive. The model shows exceptional performance, as
evidenced by experimental results on benchmark datasets.

Index Terms—Knowledge representation learning, complex
network, deep learning, quaternion embedding, temporal
knowledge graph

I. INTRODUCTION

Knowledge graph technology is essential in the field of
knowledge representation and reasoning. A knowledge graph
is an extensive semantic network consisting of nodes and
edges [1]–[3]. It can be thought of as a graph-based data
structure. A knowledge graph is typically represented as a
triplet, consisting of a head entity, a tail entity, and a con-
nection between the two entities. Popular knowledge graphs
such as FreeBase, YAGO and Schema.org are examples
of typical knowledge graphs [4]. A knowledge graph can
effectively convey the connections between things using a
well-organised framework, offering the benefits of exten-
sibility and comprehensibility. The knowledge graph has
been helpful in areas such as system recommendation and
knowledge retrieval.

Typically, knowledge graphs are very large [5], such as the
Google Knowledge Graph, which contains tens of billions
of relationships and entities [6]. In general, the knowledge
graph is still incomplete and there is a serious data sparsity
problem [7], i.e. many facts in the knowledge graph lack
corresponding relationships or entities. This missing informa-
tion can limit the performance of the knowledge graph and
its wider applications, so completing the knowledge graph
is very important. Knowledge graph completion [8] is a
type of knowledge reasoning that aims to predict missing
facts based on existing facts in the knowledge graph, it
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can also be called link prediction. In the early stage, the
scale of knowledge graph was mainly expanded by artificial
construction, but this way is inefficient and difficult to
cope with super-large scale knowledge graph. Knowledge
representation learning represents entities and relationships
in low-dimensional vectorisation [1], [2], [4], which can
effectively solve the problem of sparse data. At present,
knowledge representation learning has become the basis of
large-scale knowledge graph construction and application,
and is also the most mainstream knowledge graph completion
technology.

However, current studies focus mainly on the stationary
knowledge graph, making it difficult to understand the tem-
poral dynamics of information. In fact, many facts change
over time. For example, the triad of facts consisting of
South Korean President Moon Jae-in was exclusively in place
from May 2017 to May 2021. However, there have been
other cases where different triads have been established,
such as South Korea, President Park Geun-hye and South
Korea, President Lee Myung-bak. Ignoring the time element
when answering the question ”Who is the President of South
Korea?” is likely to lead to inaccurate results. Therefore,
there is great value in conducting research on knowledge
graphs that incorporate temporal information.

In this paper, we present a learning algorithm called TKGR
for representing temporal knowledge graphs. TKGR uses
quaternion rotation to accurately capture the evolutionary
process of entities over time. It defines the transformation
of entities over time as a temporal rotation in quaternion
space. The Hamiltonian product in quaternion space provides
a more efficient and expressive learning process compared
to the Ermitian inner product in complex number space,
allowing for a better capture of potential interdependencies.
The main contributions of this study are outlined below.

• To make efficient use of temporal information and to
accurately represent changes in entities over time, we
propose a learning technique that represents temporal
knowledge graphs using quaternion rotation. The model
represents the temporal progression of entities using a
rotation transformation in quaternion space, which in-
creases the efficiency and expressiveness of the learning
process.

• Our method models the temporal and relational evolu-
tion of knowledge graphs through Hamiltonian product-
based quaternion rotations, leveraging their properties
for precise representation of relational data, outperform-
ing the Ermitian product in complex numbers.

• Finally, we validate the effectiveness and appropriate-
ness of the TKGR model through extensive experimen-
tal comparisons with state-of-the-art algorithms from
multiple perspectives.
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The rest of this paper is structured as follows. Section
II introduces the related work, Section III gives a detailed
description of the related theory of quaternions. Section
IV describes the TKGR model. Section V presents specific
experimental results. The research work is summarized in
Section VI.

II. RELATED WORK

Embedding techniques can transform entities and relation-
ships in a knowledge network into low-dimensional con-
tinuous vectors. This section deals specifically with static
knowledge graph embedding and temporal knowledge graph
embedding.

A. Static Knowledge Graph Embedding

Various knowledge graph embedding approaches have
been presented by researchers for static knowledge graphs.
The methods can be divided into three main groups: (1)
knowledge graph embedding based on matrix decomposition,
(2) knowledge graph embedding based on convolutional
neural networks, and (3) knowledge graph embedding based
on graphs.

TransE [9] was first proposed to solve models of knowl-
edge graph embedding that use a score function to map
entities h, t and relations r: h + r ≈ t. The aim is to minimise
the distance between h and t. However, TransE is limited
in its ability to handle complex relations. It performs well
only on 1 to 1 relations and cannot handle 1 to N and N to
1 relations. To overcome these limitations, several extended
models have been proposed. One such model is TransH [10],
which introduces a hyperplane for each relation onto which
entities are projected. This allows TransH to handle both 1
to N and N to 1 relations. Another model is TransR [10],
which uses a separate relation-specific matrix to transform
the entities into a different vector space. This allows TransR
to effectively handle different types of relations. TransD
[11] is another extended model that addresses the limitations
of TransE. It introduces additional matrices to model the
semantic meaning of entities and relations separately. This
allows TransD to capture more fine-grained information and
handle complex relationships.

Matrix factorization techniques such as DistMult [12],
RESCAL [13], HolE [14], ComplEx [15], and SimplE [16]
convert relationships into matrix-based linear operations on
entity representations. In contrast, CNN-based approaches
like ConvE [17] and ConvKB [5] utilize convolution to
model entity and relation interactions, transforming them into
multi-dimensional matrices and enhancing the expressiveness
of the embeddings through feature extraction. Additionally,
graph-based methods are considered, with DeepWalk [18]
pioneering the generation of vector representations for net-
work nodes through a random walk model, and R-GCN [19],
a graph neural network variant, being among the first to
aggregate neighborhood information for learning node em-
beddings with equal weights. However, these strategies fall
short in capturing temporal dynamics in temporal knowledge
graphs, rendering them less applicable for such scenarios.

B. Temporal Knowledge Graph Embedding

Previous research has mainly focused on improving static
knowledge graph techniques by integrating temporal ele-
ments. One prominent model, TTransE [16], pioneered the
learning of entity and relation embeddings by representing
transitions between temporal relations using temporal con-
straints. For example, it considers the sequential relation
between the events ”diedIn” and ”wasBornIn”. The fusion
of temporal information from static models does not simply
extend the above models. The ConT model extends the
static knowledge graph model to include temporal knowledge
graphs [20]. This allows the model to retain plot data
and extrapolate to incorporate new information. HyTE [21]
incorporates time into the entity relationship framework by
linking each timestamp to the relevant hyperplane in a clear
and direct manner. HyTE employs time-sensitive guidance to
enhance knowledge graph reasoning and prognosticates the
temporal validity of relationships missing temporal data. TA-
DisMult [22] addresses the task of predicting the temporal
knowledge graph by capturing the encoding of potential
entities and connection types. The model uses recurrent
neural networks to acquire time-sensitive representations of
relationship types, allowing their integration with established
potential factor decomposition techniques for temporal infor-
mation fusion.

DE-SimplE [23] augments a traditional knowledge graph
framework with a dynamic entity embedding mechanism,
facilitating the depiction of temporal entity characteristics
across various time frames. It differs from current temporal
knowledge graph embedding methods, which only provide
static attributes of entities. SubEE [23] uses a fixed size vo-
cabulary to assign labels to entities, relationships, timestamps
and locations. Meanwhile, the framework leverages a spatial-
temporal communication layer to extract the underlying
feature vectors within the knowledge network. BoxTE [24] is
an extended version of the static knowledge graph embedding
model, it exhibits rich expressiveness and robust inductive
capacity in temporal settings.

While existing methods for temporal knowledge graph
completion are promising, they often fail to capture the
graph structure and temporal relationships. Unlike these
approaches, which tend to focus on either entity features
or connections without integration, TKGR uniquely captures
both temporal dynamics and graph structure, resulting in
more accurate embeddings for these tasks.

III. THEORY OF QUATERNIONS

This part offers an initial summary of the conceptual
underpinnings pertaining to quaternions. The quaternionic
structure H represents a broadening of the realm of complex
numbers, commonly comprising one real element and three
imaginary units, as outlined further in the text.

q = qr + qii + qjj + qkk (1)

where qr, qi, qj , and qk are the corresponding real coeffi-
cients. i, j and k are the imaginary units. If qj=qk=0, it is
the conventional complex form. The mentioned imaginary
components conform to a specific set of guidelines.

i2 = j2 = k2 = ijk = −1 (2)
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Some other rules that do not satisfy commutativity can be
deduced from this rule, such as ij=k, ji=-k, jk=i, ki=j, kj=-i,
and ik=-j . A quaternion vector q ∈ Hn is defined as follows.

q = qr + qii + qjj + qkk (3)

where qr, qi, qj and qk are n-dimensional real vectors. These
definitions are used in this paper to model relational data.
Some common arithmetic rules for quaternions are defined
as follows.

Conjugate: The definition of the conjugate for quaternion
q from H is defined as follows.

q̄ = qr − qii− qjj − qkk (4)

Norm: The norm of quaternion q ∈ H is defined as
follows.

‖q‖ =
√
q2r + q2i + q2j + q2k (5)

By means of this operation, the definition of the quaternion
of the unit qC is obtained.

qC =
q

‖q‖
(6)

The unit representation of the quaternion vector q ∈ Hn
is defined below.

qC =
qr + qii + qjj + qkk√

q2
r + q2

i + q2
j + q2

k

(7)

Addition: The addition operation of two quaternions q1 =
qr1 + qr1i+ qj1j + qk1k and q2 = qr1 + qr2i+ qj2j + qk2k
is defined as follows.

q1 + q2 = (qr1 + qr2) + (qi1 + qi2) i

+ (qj1 + qj2) j + (qk1 + qk2)k
(8)

Scalar multiplication: The multiplication of a scalar λ
with a quaternion q from the set H is specified as follows.

λq = λqr + λqii + λqjj + λqkk (9)

Inner product: Similar to the inner product operation
on vectors, the result of the inner product operation on
quaternions can be obtained by computing the product of
the corresponding components of two quaternions q1 ∈ H
and q2 ∈ H and then summing them.

q1 · q2 = qr1qr2 + qi1qi2 + qj1qj2 + qk1qk2 (10)

The inner product operation of two quaternion vectors q1 ∈
Hn and q2 ∈ Hn is defined below.

q1 · q2 = qTr1qr2 + qTi1qi2 + qTj1qj2 + qTk1qk2 (11)

Hamiltonian product: Hamiltonian product is also called
quaternion multiplication. The Hamiltonian product ⊗ of two
quaternions q1 ∈ H and q2 ∈ H is defined as

q1 ⊗ q2 = (qr1qr2 − qi1qi2 − qj1qj2 − qk1qk2)

+ (qi1qr2 + qr1qi2 − qk1qj2 + qj1qk2) i

+ (qj1qr2 + qk1qi2 + qr1qj2 − qi1qk2) j

+ (qk1qr2 − qj1qi2 + qi1qj2 + qr1qk2)k

(12)

The Hamiltonian product of two quaternion vectors q1 ∈
Hn and q2 ∈ Hn is defined as

q1 ⊗ q2 = (qr1 ◦ qr2 − qi1 ◦ qi2 − qj1 ◦ qj2 − qk1 ◦ qk2)

+ (qi1 ◦ qr2 + qr1 ◦ qi2 − qk1 ◦ qj2 + qj1 ◦ qk2) i

+ (qj1 ◦ qr2 + qk1 ◦ qi2 + qr1 ◦ qj2 − qi1 ◦ qk2) j

+ (qk1 ◦ qr2 − qj1 ◦ qi2 + qi1 ◦ qj2 + qr1 ◦ qk2)k
(13)

where ◦ represents the multiplication between corresponding
elements. It can be seen from Eq.(12) that the Hamiltonian
product has non commutativity, i.e. q1 ⊗ q2 6= q2 ⊗ q1.

IV. PROPOSED MODEL

We use (h, r, t, τ ) to represent quaternions in a temporal
knowledge graph, A time-aware knowledge graph G may be
regarded as an assembly of quaternion elements. For each
training quaternion in the graph, it is necessary to generate
corresponding negative samples using negative sampling
technology to support effective representation learning of
entities and relations. This section employs the notation G ′
to denote the collection of negative instances generated by
swapping the head or tail entities. Considering a knowledge
graph that evolves over time, the model aims to master a
compact representation using quaternions and to establish a
scoring formula g (h, r, t, τ) that quantifies the compatibility
of the head entity, tail entity, relationship, and associated time
point with the real numbers. The objective of this evaluation
metric is to assess the veracity of quads, where genuine and
functional quads receive higher scores compared to those
deemed ineffectual.

A. Model Definition

The model aims to employ quaternion embeddings for
representing entities, relationships, and temporal data. Given
a quaternion (h, r, t, τ ), the quaternion representations qh, qr,
qt and qτ ∈ Hn corresponding to each constituent element
are defined as follows.

qh = ah + bhi + chj + dhk (14)

qr = at + bti + ctj + dtk (15)

qt = ah + bhi + chj + dhk (16)

qτ = aτ + bτ i + cτj + dτk (17)

where the coefficients of the real part as well as each
imaginary part unit are n-dimensional vectors in real space.

While static knowledge graph completion models are able
to learn multiple relational interactions between entities,
they ignore the temporal factor and are therefore unable
to reason effectively on temporal knowledge graphs. To
address this problem, our model defines temporal evolution
as a Hamiltonian product-based rotation transformation in
quaternion space. Specifically, the model uses the unit vector
form qC

τ of the temporal quaternion to represent the rotation
operator, and rotates the head entity vector qh and the tail
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entity vector qt to obtain a temporal entity representation,
respectively.

qh,τ = qh ⊗ qC
τ (18)

qt,τ = qt ⊗ qC
τ (19)

The quaternion vectors of the head and tail entities can
be considered as a point in the quaternion space, while qC

τ

denotes a rotation transformation. After obtaining the time-
dependent entities, the model uses the relation as a rotation
transformation based on the Hamiltonian product, with the
aim of rotating the time-dependent head entity to the vicinity
of the time-dependent tail entity through the relation transfor-
mation. The general structure of the model is shown in Figure
1. To effectively represent the rotation transformation, we
normalise the relation quaternion vector. For real quaternions,
the model expects to satisfy qh,τ ⊗ qC

τ ≈ qt,τ . With two
Hamiltonian product-based rotations, the entities, relations
and timestamps can be allowed to interact sufficiently to
capture the potential interdependencies between these three.

Fig. 1: Schematic diagram of quaternion rotation.

Differing from the Euler distance-based scoring methods
of earlier studies, our model employs the angle between
vectors as a metric for their similarity. For assessing the
quaternion compatibility, the scoring function g (h, r, t, τ )
of our model is established thusly.

g (h, r, t, τ) = qh,τ ⊗ qC
r · qt,τ (20)

B. Model Training

For parameter learning of the model, it’s essential to
establish a matching loss function derived from the scoring
function. Within the training data, for every quadruple, we
create a negative example by substituting either the head or
tail entity with an alternative from the entity set. The loss
function is then formulated such that the score assigned to
the model’s negative example is less than that of the positive
example.

L (θ) = −
∑

(h,r,t,τ)(
exp (g (h, r, t, τ))∑

T1=(h,r,t′,τ)∈G exp (T1)
+

exp (g (h, r, t, τ))∑
T2=(h′,r,t,τ)∈G′ exp (T2)

)
(21)

where θ denotes the learnable parameters of the model.
We introduce parametric regularization terms to the entity,

relationship, and timestamp embeddings to avoid overfitting
and enhance the model’s capacity to generalize unseen data,
as indicated by Equation (22).

Lregular (θ) =
∑

(h,r,t,τ)

(
‖qh‖22 + ‖qr‖22 + ‖qt‖22 + ‖qτ‖22

)
(22)

Furthermore, we assume that the existing knowledge of
past time intervals can be used to accurately capture the
progression pattern of the whole graph during model training.
The literature [25] presents experimental results indicating
that subgraphs of successive time steps exhibit minimal
changes, and the embedding space of successive time steps
should also exhibit smoothness. Consequently, the TKGR
model must have smoothing requirements on successive time
intervals.

Lsmooth (θ) =
1

| T | −1

|T |−1∑
i=1

| qτi+1 − qτi |
2

2
(23)

where | T | denotes the number of time steps. By adding
parameter regularization constraints as well as temporal
smoothing constraints to the model, the final loss function
of the TKGR model is shown below.

L (θ) = L (θ) + λ1Lregular (θ) + λ2Lsmooth (θ) (24)

where λ1 and λ2 represents the coefficient of the regulariza-
tion term.

Meanwhile, a suitable initialisation method can improve
the training speed and reduce the risk of gradient explosion
or gradient disappearance. It has been shown that the pa-
rameters of the hyper-complex representation cannot simply
be initialised randomly. Thus, we use a specific approach
to initialize parameters and facilitate the TKGR model’s
convergence.

wr = ϕ cos (θ) (25)

wi = ϕQC
imgi

sin (θ) (26)

wj = ϕQC
imgj

sin (θ) (27)

wk = ϕQC
imgk

sin (θ) (28)

where wr, wi, wj , and wk represent the real and imaginary
parts of the initialized quaternion, respectively. θ is randomly
generated over the interval [−π, π]. QC

img denotes the nor-
malised unit quaternion, generated according to a uniform
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distribution in the interval [0, 1]. ϕ is randomly generated
based on the value of quaternion and the chosen initialization
principle.

Finally, we use the AdaGrad algorithm to optimise the ob-
jective function. Algorithm 1 describes the learning process
of the TKGR model.

Algorithm 1 Learning process of the TKGR model

Input: Temporal knowledge graph entity set E . Relation-
ship set R. Timestamp set T . Training set Gtrain =
{(h, r, t, τ)}. The dimension of quaternion vector n.
Learning rate α. Batch size b. Regular term coefficient
λ1 and λ2. Number of negative samples γ. Number of
model iterations M.

Output: Vector representation of entities, relationships, and
timestamps

1: Initialize model parameters according to Equation (21)
2: for epoch =1 to M do
3: Sbatch ← Sample (Gtrain, b)
4: for each(h, r, t, τ) ∈ Sbatch do
5: S (h′, r, t′, τ)← Sample

(
S(h,r,t,τ)

)
6: end for
7: Apply Equation (16) to compute the scores for pos-

itive and negative instances
8: Determine the loss function value by applying Equa-

tion (20)
9: Update model parameters

10: end for

C. Learning Different Relationship Patterns

Some existing temporal knowledge graph embedding mod-
els may have limitations in learning complex relationship
patterns, while this model can simultaneously model complex
relationship types such as symmetric relationships, anti-
symmetric relationships, and inverse relationships. We first
provide definitions of these complex relationships and then
prove that this model has this modelling capability.

Symmetric relationship: A connection r (h, t, τ) →
r (t, h, τ) is considered symmetric if h, t, and τ exist.

Anti symmetric relationship: If variables h, t and τ
satisfy the condition r (h, t, τ)→ r (t, h, τ), then the relation
r is called antisymmetric.

Inverse relationship: If variables h, t and τ result in
the transformation r2 (h, t, τ) → r1 (t, h, τ), then r1 is
considered to be the inverse of r2.

Given a fact quaternion (h, t, τ ), If r is a symmetric
relationship, then both qh,τ⊗qC

r = qt,τ and qt,τ⊗qC
r = qh,τ

are satisfied, which is equivalent to qC
r degenerating into

a scalar. Since this model uses the angle between vectors
to measure similarity, the length of the vector does not
affect the final scoring function, so the imaginary part of
the relationship qr will be 0. On the contrary, if r is an
antisymmetric relationship, then it is sufficient to make the
imaginary part of qr not zero.

Given two fact quaternions (h, r1, t, τ) And (h, r2, t, τ),
So r1 and r2 are a pair of inverse relationships, which is
easy to verify, that is, this model can use a pair of conjugate
quaternions to express a pair of inverse relationships. The
specific verification process is given below.

qh,τ ⊗ qC
r · qt,τ

= ahatar − bhbtbr − chatar − dhatdr + bhbtar + ahbtbr

− dhbtcr + chbtdr + chctar + dhctbr + ahctcr − bhctdr
+ chctar + dhctbr + ahctcr − bhctdr

(29)

qt,τ ⊗ q̄C
r · qh,τ

= ahatar + ahbtbr + ahctcr + ahdtdr + bhbtar − bhatbr
+ bhdtcr − bhctdr + chctar − chdtbr − chatcr + chbtdr

+ dhctar + dhctbr − dhbtcr − dhatdr
(30)

According to the expansion results, it can be found that
these two formulas are completely consistent overall, so
qh,τ ⊗ qC

r · qt,τ = qt,τ ⊗ q̄C
r · qh,τ .

V. EXPERIMENTS AND RESULT ANALYSIS

The goal of this section is to validate the excellence
of our proposed model. Firstly, we list the state-of-the-art
algorithms and experimental setups, and then we conduct
experimental comparisons from different perspectives, and
the following are the specific experimental sessions.

A. Datasets

We opt for the trio of prevalent temporal knowledge graph
benchmarksłICEWS14, ICEWS05-15, and GDELTłtypically
used to appraise completion models in this domain. TABLE
I lists the detailed statistical information of these three
datasets.

ICEWS14: This dataset consists of four tuples taken from
social news related to political events. ICEWS14 is a subset
of ICEWS that focuses on events from the year 2014. It has
7,128 entities, 230 relationships and spans 365 time steps.

ICEWS05-15: ICEWS05-15 is a subset of the ICEWS
dataset containing events that occurred between 2005 and
2015. The dataset contains 10,488 entities, 251 relationships
and spans 4,017 time steps.

GDELT: This dataset is a collection of human social
relationships. We isolate a subset from the source [26] that
represents events that occurred between 2015 and 2016. This
subset contains 500 entities, 20 relationships and spans 366
time steps.

B. Evaluation Metrics

The evaluation metrics employed for completing dynamic
knowledge graphs are consistent with those utilized in static
knowledge graph completion. First, For every quaternion
within the test data, we produce two variations by inter-
changing either the leading or trailing entity. Any potential
quaternion found in G must be removed. The exact formula
is given below.

hcandidate = {(h′, r, t, τ) | h′ ∈ ε, (h′, r, t, τ /∈ G)} (31)

hcandidate = {(h, r, t′, τ) | t′ ∈ ε, (h, r, t′, τ /∈ G)} (32)
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TABLE I: DETAILS OF THE DATASETS

Datasets Entities Relations Time Steps Training Validation Test
ICEWS14 7,128 230 365 72,826 8,941 8,963

ICEWS05-15 10,488 251 4,017 386,962 46,275 46,092
GDELT 500 20 366 2,735,685 341,961 341,961

It is then necessary to calculate the ratings of the test
quaternion and all candidate quaternions, and rank the ratings
in descending order to obtain the ranking of the test quater-
nion in each of the two candidate sets, which is denoted by fh
and ft, respectively. Based on this ranking, we select MRR
and Hit@k (k=1,3,10) as the model evaluation metrics. MRR
represents the reciprocal of the mean rank, while Hit@k
denotes the proportion of correctly predicted items within
the top k positions. The calculation for MRR is provided
below.

MRR =
1

2· | Gtest |
∑

(h,r,t,τ)∈Gtest

(
1

fh
+

1

ft

)
(33)

where | Gtest | is the size of the test set. A higher MRR
value indicates an improvement in the model’s performance.
The formula for hit@k is shown below.

Hit@k =
1

2· | Gtest |
∑

(h,r,t,τ)∈Gtest

(I (fh 6 k) + I (ft 6 k))

(34)
where I (·) denotes the indicator function, e.g. if fh 6 k,
then I(fh 6 k) = 1, otherwise I(fh 6 k) = 0. In the
experiments, the Hit@k results were multiplied by 100.

C. Experimental Setup

Our model is trained utilizing the PyTorch framework,
which harnesses the potent capabilities of the GeForce RTX
2080 GPU to enhance its performance. For the coefficients λ1
and λ2 of the parameter regularisation term and the temporal
smoothing constraint term, we assign the same values to both
coefficients as they have the same number of paradigms.
We then select the most appropriate values from the range
{0.1, 0.01, 0.001}.

The dimensionality of the embeddings is set to 500, with
the learning rate adjusted to 0.1. The negative to positive
sample ratio is 500 for both ICEWS datasets and 5 for
the GDELT dataset. The batch size is set to 512. Different
hyperparameters are used for each dataset to optimise the
training given their different sizes. For example, GDELT is
much larger than the other two datasets, resulting in smaller
hyperparameters. The model trains 5,000 times on ICEWS14
and ICEWS05-15, and 1,000 times on GDELT. The training
process uses the AdaGrad optimisation algorithm within the
small batch random gradient descent approach.

D. Baselines

We compare different knowledge graph embedding tech-
niques, including TransE [9], DistMult [27], SimplE [28],
ConT [20], TTransE [29], HyTE [21], TA-DisMult [22],
DE-SimplE [30], RoAN [31], SubEE [23], T-GAE [32],
GLANet [27], BoxTE [24], DualMatch [33], DKGE [23]
and TLmod [34]. These methods use different mechanisms

to handle entity relationships, temporal information, global
and local structure, and reasoning processes, with the aim
of improving the expressiveness and inference accuracy of
knowledge graphs.

E. Link Prediction

Tables II and III present the TKGR and baseline model
outcomes for forecasting temporal connections across three
distinct datasets. The empirical findings indicate that TKGR
surpasses the prevalent baseline model in the majority of
metrics, affirming the proficiency of TKGR. Quaternion
rotation operations based on Hamiltonian products allow for
a more comprehensive interaction between entities, time and
relationships. On the ICEWS05-15 dataset, TKGR showed
greater improvement than the TeRo model on MRR and
Hit@10, with increases of 2.55% and 1.38% respectively.
The ICEWS14 dataset contains a larger number of entities,
relationships, timestamps and training samples. TKGR has
the ability to describe complicated relationship types, in-
cluding symmetric/anti-symmetric and inverse relationships,
making it well suited to complicated datasets.

While TKGR’s performance on the GDELT dataset may
not stand out significantly among other advanced models,
it remains impressive. Compared to the BoxTE, T-GAE
and RoAN models, there is a slight improvement in all
indicators, but the level of performance improvement is not
very significant. In the GDELT dataset, the number of entities
and relationships is quite small. Conversely, the volume of
both the training and evaluation datasets is considerably
substantial. This poses a greater challenge to the models,
and as a result the test scores for all the models are not
particularly high.

In addition, traditional representation learning algorithms
such as TransE and DistMult models are mainly used for
static knowledge graphs. As a result, their performance in
temporal link prediction is generally unsatisfactory. This is
because both algorithms ignore the influence of temporal
information and are therefore unable to effectively capture
the temporal dynamic properties of knowledge graphs. In
conclusion, the results of the experiments show that TKGR
is both appropriate and necessary. This capability arises from
its adeptness at leveraging temporal data, which enables it
to accurately capture the mutable characteristics of entities
over time.

F. Impact of Regularisation

The final objective function is modified by TKGR to
incorporate parameter regularisation and temporal smoothing
constraints. These modifications are based on previous result-
s. We conduct an empirical validation with the ICEWS14
dataset to illustrate the effects of these two regularization
elements on the model’s efficacy. This is done by observing
the variation of the results and analysing them when these
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TABLE II: LINK PREDICTION RESULTS ON DATASETS ICEWS14 AND ICEWS05-15

Model ICEWS14 ICEWS05-15
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE 0..28 9.4 - 63.7 0.294 9.0 - 66.3
DistMult 0.439 32.3 - 67.2 0.456 33.7 - 69.1
SimplE 0.458 34.1 51.6 68.7 0.478 35.9 53.9 70.8
ConT 0.185 11.7 20.5 31.5 0.163 10.5 18.9 27.2

TTransE 0.255 7.4 - 60.1 0.271 8.4 - 61.6
HyTE 0.297 10.8 41.6 65.5 0.316 11.6 44.5 68.1

TA-DistMult 0.477 36.3 - 68.6 0.474 34.6 - 72.8
DE-SimplE 0.526 41.8 59.2 72.5 0.513 39.2 57.8 74.8

RoAN 0.560 45.3 63.1 74.2 0.587 47.1 66.9 79.7
SubEE 0.519 43.5 62.4 72.1 0.572 46.3 65.4 78.1

GLANet 0.509 44.6 63.1 73.5 0.564 46.7 65.3 78.7
T-GAE 0.554 44.8 62.1 73.8 0.552 47.5 65.1 77.2
DKGE 0.549 45.2 62.9 73.9 0.591 47.3 65.8 79.2
BoxTE 0.549 45.2 62.9 74.1 0.594 47.9 66.3 78.2
TKGR 0.568 45.9 63.6 74.8 0.602 48.3 67.9 80.8

TABLE III: LINK PREDICTION RESULTS ON THE DATASET GDELT

Model MRR Hit@1 Hit@3 Hit@10
TransE 0.113 0.0 15.8 31.2

DistMult 0.196 11.7 20.8 34.8
SimplE 0.206 12.4 22.0 36.6
ConT 0.144 8.0 15.6 26.5

TTransE 0.115 0.0 16.0 31.8
HyTE 0.118 0.0 16.5 32.6

TA-DistMult 0.206 12.4 21.9 36.5
DE-SimplE 0.230 14.1 24.8 40.3

RoAN 0.231 13.9 23.7 38.4
SubEE 0.224 12.4 22.6 37.8

GLANet 0.235 13.6 23.9 37.4
T-GAE 0.217 12.4 22.6 36.7
DKGE 0.225 13.1 22.9 37.1
BoxTE 0.229 13.7 23.5 37.5
TKGR 0.244 14.2 25.0 38.5

two regularisation terms are not used in the objective func-
tion, while the remaining parameters are kept at their original
values.

TABLE IV displays the findings from the pair of com-
parative tests conducted. The data in the table indicates
that the regularization component exerts a more pronounced
influence on the outcomes. For instance, the Mean Reciprocal
Rank (MRR) and Hit@1 metrics enhance the model’s per-
formance by 1% and 1.8% respectively when time smooth-
ing constraints and parameter regularization are applied,
as opposed to the model’s performance in their absence.
Therefore, these two regularisation terms are more beneficial
to the model.

G. Evolution of Relations

Investigations conducted thus far reveal that various mod-
els for temporal knowledge graph completion employ tempo-
ral data in distinct manners. The TA-TransE model combines
relational and temporal information to acquire a relational
representation that contains temporal information. The HyTE
model is able to learn temporal representations of entities
as well as interpersonal relations. TKGR in this study only
represents the evolution of entities and continues to use static
representations where relationships are concerned.

This section aims to confirm the rationality behind the
TKGR model’s development. we set up the experiments in
two different ways: the first is to perform temporal rotation
transformations only on relations, while entities remain static
representations; the second is to perform rotation transfor-
mations on both entities and relations simultaneously. The

ICEWS14 dataset is chosen as the experimental dataset, and
the parameters of the model are assumed to be compatible
with the parameter values described in Section 5.3. TABLE
V presents the outcomes of the conducted experiment.

If we focus only on the temporal evolution of relations,
then the performance of the model variant suffers in all
metrics. On the other hand, if we focus on the temporal
evolution of entities and relations simultaneously, the perfor-
mance of the variant model is comparable to that of TKGR.
The findings from the experimental outcomes lead to this
inference. This could be associated with the observation that
datasets typically contain a much larger quantity of entities
compared to relationships.

As a result, the temporal evolution of entities is a more ac-
curate indicator of the efficient use of temporal information.
In addition, it appears that the nature of entities is more likely
to change over time, whereas the nature of relationships tends
to remain more consistent. This can be understood from real
life experience. In partnerships, for example, the state of the
same individual is likely to be different at different times
before and after, whereas the opposite is true because of the
nature of the relationship. TKGR focuses on the development
of entities over time. This is done to preserve the simple
nature of the model and the geometric significance of the
changes that occur within the relations.

H. Parameter Adjustment

In this section, we focus on the regularisation coefficients
λ1 and λ2. Identify and select the ideal parameters. We start
by iterating the algorithm a thousand times. Subsequently, we
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TABLE IV: EFFECT OF REGULARISATION TERMS ON THE DATASET ICEWS14

Loss Function MRR Hit@1 Hit@3 Hit@10
L (θ) + λ1Lr (θ) + λ2Ls (θ) 0.568 45.9 63.6 74.8

L (θ) 0.563 45.1 63.2 74.4

TABLE V: EXPERIMENTAL RESULTS FOR DIFFERENT VARIANT MODELS ON THE DATASET ICEWS14

Variations MRR Hit@1 Hit@3 Hit@10
qh,τ ⊗ qC

r · qt,τ 0.568 45.9 63.6 74.8
qh ⊗ qC

r,τ · qt 0.563 45.1 63.2 74.4
qh,τ ⊗ qC

r,τ · qt,τ 0.563 45.1 63.2 74.4

assess the outcomes of the Hit@10 metric on the validation
subset to ascertain the optimal parameters.

Figure 2 illustrates the impact of adjusting the regulariza-
tion factor’s magnitude on the model’s performance using
the ICEWS14 dataset. The findings indicate that optimal
performance of the model is achieved when the parameter
λ is set to the values of λ1 and λ2, with each being 0.01. As
a result, λ1 and λ2 are both set to 0.01 in the trials described
above.

Fig. 2: The influence of regularization coefficient on the
TKGR model.

VI. CONCLUSION
This research presents a learning methodology anchored in

quaternion rotations for the portrayal of temporal knowledge
graphs, enhancing the depiction of entity development and
mutual connections compared to traditional complex number-
based systems. The superior performance of the model
is supported by benchmark dataset experiments. We plan
to extend negative sampling strategies, which are crucial
for training, to better adapt to the temporal dimension of
knowledge graphs.
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