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Abstract—The implementation of additive manufacturing as
a disruptive process for the development of components has
generated the need to know manufacturing parameters to
obtain mechanical properties similar to or better than those
of conventional processes. Thus, the improvement and optimi-
sation of materials used have aroused interest in converting
Polylactic acid (PLA) 3d printed parts from prototyping to
functional components. In this regard, they must withstand
cyclical loads. To do so, conventional methods must consider all
variables used in the manufacturing process. Herein, we propose
the use of neural networks to perform mechanical fatigue
analysis of the printed components of PLA. The mechanical
behaviour of the printed components was expressed for the
neural network as parameters based on quasistatic tests, and
the output of the network was the expected fatigue life in
cycles. The initial quasistatic behaviour of the 3d printed
parts was linearly elastic. However, a viscoelastic behaviour
developed over time. The discharge time between charging
cycles influenced the cumulative damage process. According to
the experimental results and their correlations, the fatigue life
of printed components can be predicted using neural networks
by achieving an average error of 1.59% .

Index Terms—Additive Manufacturing; Neural Network;
Mechanical Fatigue; cumulative damage; PLA

I. INTRODUCTION

THE latest evolution in manufacturing has introduced
an additive manufacturing (AM ) process, which

involves joining materials and building components from
three-dimensional data. The components are split into a
code, resulting in the slicing of the model into different
layers as functions of printed parameters. Then, shapes are
done layer by layer in a plane (x- and y-directions). The
movement of the bed connects the layers in the z-direction,
creating a three-dimensional (3d) component.

Because of the flexibility of AM with Polylactic acid
(PLA), it can be used in low production to customise compo-
nents [1], in automotives to generate lightweight structures to
reduce CO2 emissions [2], in building spare components and
rapid prototyping [3], [4] and in aeronautical applications. It
can also be used in biomedicine for surgical instruments,
such as implants to reduce the time of manufacturing [5].
AM with PLA has great application opportunities in the
above fields due to its high level of adaptation, as in
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Jacinto Cortés-Pérez is head of the technnology Center at FES Aragon -
UNAM, Edo. Mex. 57171 México (e-mail: jacop@unam.mx).

ankle-foot orthosis [6] and porous scaffolds in hard tissue
because of its biocompatibility [7], in addition to industrial
customised components.

However, these components of polymeric materials have to
overcome certain mechanical behaviours, such as low elastic
moduli, which affect applications where the components have
spatial constraints due to tolerance or assembly functions.
Another effect of AM is that it generates a thermal history
through the fusion process of the filament as its heating,
melting and cooling processes modify microstructures, which
also change as a function of build orientation [8]. Although
the flexibility of AM enables it to generate organic and op-
timised models without the need to modify and manufacture
tools, it has detrimental effects on the control of mechanical
properties, such as endurance strength to cyclic loads, as in
the case of long-term applications. In contrast to static loads,
there is much less information about the effects of fatigue
response on 3d printed components, which are essential for
predicting their dynamic behaviour as functional components
[9].

In implementing Fused filament fabrication (FFF )
printed components of PLA in industrial applications, nu-
merical tools and design procedures are necessary to predict
mechanical responses and durability. Otherwise, these com-
ponents would remain applied in nonstructural components
[10]. Like metals, plastics develop accumulated damage for
cyclic loads, where nucleating microcracks grow until fatigue
failure is reached [11].

As illustrated in Figure 1, the structural analyses for
durability assessments needs to consider designs, materials.
The environment can modify loads and influences materials
[12]. In this regard, the manufacturing process depends on
the parameters of AM printing. The parameters related to
construction affect its mechanical properties. These factors
comprise layer width, the direction of each layer (raster),
layer height, and filament angle—each of which can have an
impact on quasistatic properties [13]. Meanwhile, the tensile
strength and Young’s modulus of fused deposition modelling
AM − PLA materials increase as a function of the load
direction [14], [15].

Structural analyses for durability assessments must con-
sider designs, materials, loads and manufacturing processes
(Fig. 1). The environment can modify such loads but also
influences the materials [12]. In this regard, the manufac-
turing process depends on the AM printing parameters.
The parameters related to a construction affect its mechan-
ical properties. These include the layer width, direction of
each layer (raster), layer height and filament angle, which
affect quasistatic properties [13]. Meanwhile, the tensile
strength and Young’s modulus of fused deposition modelling
AM − PLA materials increase as a function of the load
direction [14]. Moreover, compressive mechanical behaviour
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is linearly dependent on the density [16]. The combination
of these layer parameters influences material bonding. De-
pending on the infill density and the printing pattern, air can
be left trapped, similar to voids in casting. The linear pattern
results in the highest tensile modulus, possibly because of the
smaller spaces between individual layers than other patterns
[15]. This affects the component with a different structure
along the section and in the boundary, causing an anisotropic
behaviour [17].

Fig. 1: Mechanical fatigue assessment in 3d printed compo-
nents

A combination of experimental–computational and ana-
lytical methods may be utilised to facilitate a systematic
approach using the V -model (Fig. 2). The development of a
component starts from dimensional constraints and functional
requirements. The material to be used is defined depending
on the operational characteristics and functional require-
ments. At this point, we begin to develop the manufacturing
strategy, which defines the printing parameters, leading us to
a printed component. Properties such as surface finish and
mechanical properties are evaluated, and quasistatic, transient
or dynamic tests are performed to evaluate the performance
of the final component. If any changes are required, the
printing parameters are changed.

Fig. 2: Analysis process for AM printed components using
V-model

Fig. 3 shows the schematic printing process and its
main components. The FFF process transports the filament
through the feeding system, where it is heated to melt, and
extruded through the nozzle to generate the component on
the platform.

Although the initial stress–strain behaviour of thermoplas-
tic such as PLA is linearly elastic, a nonlinear development
of viscoelasticity happens gradually with time [18]. Thermo-
plastic materials used in FFF have a strong dependence on
polymers based on the strain rate and frequency load [19].

Fig. 3: Schematic printing process

The best configurations of the printing components for
cyclic loads are 45°/− 45° longitudinal fibres and transver-
sals, respectively (Fig. 4). These were based on the stress
tensor [20]. From a fatigue design perspective, AM −PLA
can be treated as a homogeneous and isotropic material [21].
Although a solid component is desired to prevent internal
crack nucleation, the manufacturing process itself generates
a different behaviour depending on the printing direction and
parameters.

Fig. 4: Schematic layers in printed component for a raster
angle of 45°

Therefore, the introduction of an artificial neural network
(ANN ) to predict the fatigue life of PLA printed compo-
nents is proposed. In this respect, fatigue tests have been
performed using the staircase method. Based on the complex
process of printing a component with the printing parameters,
in addition to the nonlinear behaviour of the thermoplastic,
the quasistatic mechanical response of the printed component
must be considered to predict the fatigue strength using a
neural network.

II. FATIGUE ASSESSMENT USING AN ANN

Conventionally manufactured polymeric materials have
superior fatigue performance than printed materials. The
influences of the printing process and filament used signifi-
cantly impact their durability [22], [23]. However, despite
considerable advancements in AM techniques, 3d-printed
parts still face issues related the fatigue life according to
the thermal process generated during their processing. This
depends not directly on the microstructure as in a typical
alloy with different phases but on the formed internal geom-
etry due to the filament. Although cumulative damage models
can be used to predict fatigue life, the number of variables in
the 3d printed components creates a need for improvements
in fatigue life prediction processes. Thus, machine learning
models such as artificial intelligence have been used to
reduce the time and development cost in AM to improve
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not only its geometry but also the printing parameters and
the component quality [24], [25], [26].

The present study employs a multilayer neural network
to establish a non-parametric model for predicting fatigue
life. This network is conceptualized as a fully connected
network, wherein each neuron in every layer is linked to
every other neuron in the adjacent forward layer, as illus-
trated in Fig. 5. The training of the network employs a
backpropagation algorithm, requiring a set of training data
composed of input/target vector pairs. A target vector is
defined as the desired output post-training, while the output
vector is generated using the current neural network. The
backpropagation process consists of three stages: (i) forward
transmission involves computing the output signal at each
network layer, (ii) calculating and providing feedback on
the error between the output and target vectors, and (iii)
adjusting the weights. In stage (i), the computation entails
outputting weighted signals from the initial network layer to
the final layer. Stage (ii) is where network training utilizes
optimization techniques to minimize the associated error by
adjusting network weights and biases. This adjustment is
iterated for subsequent training pairs [27], [28].

Fig. 5: Schematic neuron

With reference to Fig. 6, let S(j) be the number of neurons
in the jth layer, and let J be the total number of layers. If
y
(j)
n is the S(j) × 1 vector comprising the signal outputs of

the jth layer, then:

a
(j)
k = y(j)n (1)

a
(1)
k = g(1)

(
W (1)xk + b(1)

)
(2)

a
(j)
k = g(j)

(
W (j)aj−1

k + b(j)
)
, j = 2, ...J (3)

In this context, the inputs xk encompass load amplitude,
mechanical properties (Young’s modulus and ultimate tensile
strength), strain (elastic and plastic), and absorbed energy.
The relationships between these inputs and the desired output
yk correspond to the cycles resulting from the experimental
tests. The terms W (j) and b(j) represent the matrix of weights
and vector of biases, respectively, for jth layer. Additionally,
g(j) is a vector operator comprising the transfer functions of
the neurons of the jth layer.

For a given user-prescribed architecture, the Artificial
neural network (ANN ) underwent training with input/output
data. The training procedure employed the Bayesian regular-
ization backpropagation [28] to determine optimal weights
and biases. This optimization aimed to minimize the mean
square error δ between the output of the network yjn and
the actual data (i.e. target) output for a given input xk. With
reference to Fig. 6, the current feedforward network consists

Fig. 6: Multilayer neural network

of only one hidden layer with 44 neurons, utilizing a binary
sigmoid transfer function to activate the neurons.

III. ADDITIVE MANUFACTURING

All specimens in this study were printed using an Ender
printer with a red colour plus filament. The print setup
utilized a raster angle of 45° with a solid infill density set at
100%. The material properties of the PLA utilized include
a diameter of 1.75mm, a printing temperature of 200oC, a
bed temperature of 55oC, and a density of 1.24g/cm3.

IV. EXPERIMENTAL TESTS

Three specimens were tested at 1.25mm/min to un-
derstand the mechanical behaviour of the printed PLA
components. The mechanical behaviours of the engineering
and true curves are shown in Fig. 7. Table I summarises
the results of the ultimate tensile strength, fracture stress,
strain at fracture, initial Young’s modulus and that after a
softening in the mechanical response. One advantage of the
true strain–stress curve is that it improves the analysis of the
tensile test by considering the change in the transverse area
during the test.

Fig. 7: Results of the tensile test

TABLE I: Summary results of the tensile tests.

Specimen UTSTrue σfTrue εfTrue Eo EM

1 53.14 46.43 0.081 2751.428 1756.8
2 48.23 43.11 0.076 1866 1654.8
3 48.19 47.14 0.078 2093.33 1642.8

Ave 48.85 45.56 0.0759 2236.9 1133.2

The process of accumulated damage depends on the loads
applied and the properties of the material, not only on its
strength but also on how it is recovered during discharge.
The recoverability depends on the elastic behaviour of the
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(a) force vs. displacement

(b) strain as a time function

Fig. 8: Creep at 2000 N

material and on how the layers interact in dissipating energy.
Thus, load control tests were performed at 2000 N (Fig.
8) and 3000 N (Figures 9–11) to understand the cyclic
behaviour and the dissipated energy. First, a ramp on load
control was applied and defined until it reached the expected
load. Then, the load was kept constant to measure the strain
response. This was repeated until the component was broken.

Tests were conducted at various discharge times to under-
stand the recovery processes of PLA. This allowed them to
assess whether a longer unloading time contributed to the
total deformation tolerated by the components. Fig. 9 has
an unloading time of 10 min between loads, Fig. 10 has
an unloading time of 30 min and Fig. 11 has an unloading
time of 60 min. The limitation of this approach is that in a
cyclic time history, there is no constant unloading time. The
most striking result that emerged from the Figures at 3000N
was that the permanent deformation occurred at a strain of
0.033± 0/0.002.

The strain reached was major when there was a greater
unloading time. This also increased that tolerated by the
quasistatic cycle based on the recovery. Using equation 4,
the dissipated energy was obtained and used as input in the
neural network.

Uo =
σ2
x

2E
(4)

Fig. 12a shows the creep test at 3500 N until failure.
Meanwhile, Fig. 12b can be related to the strain behaviour
of the material fatigue response. The tests revealed a small
period of crack nucleation, followed mostly by propagation
and a sudden failure. This behaviour was opposite to those
of metallic materials, where most of the life component was
required for crack initiation.

(a) force vs. displacement

(b) strain as a function of time

Fig. 9: Creep at 3000N unload 10 minutes

(a) force vs. displacement

(b) strain as a function of time

Fig. 10: Creep at 3000N unload 30 minutes
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(a) force vs. displacement

(b) strain as a function of time

Fig. 11: Creep at 3000N unload 60 minutes

(a) force vs. displacement

(b) strain as a function of time

Fig. 12: Creep at 3.5kN until failure

(a) uniaxial test machine

(b) specimen under test

Fig. 13: Fatigue tests

Training the neural network with more material informa-
tion is proposed to use parameters based on the strain. The
first is the relationship between the elastic strain (εelas) and
plastic strain εplas of the mean values in Fig. 12b.

εc =
εelas
εplas

(5)

Another parameter proposed is the ratio of the permanent
strain of the creep test at the first unloading (εp) and the
strain at the fracture (εf ) from table I using the following
equation:

εc =
εp
εf

(6)

Fig. 13 shows the experimental setup for the fatigue tests,
which were performed using a uniaxial Instron test machine.
Fig. 13b shows the component at compression load. Based
on the expected behaviour expressed in Fig. 12 and the
mechanism of failure propagation, the test was run until an
increment of ±0.5mm mm of displacement.

V. RESULTS AND DISCUSSION

The fatigue test results are summarised in Fig. 14 using an
S–N curve. The mean values per load level were evaluated
using an ANN and linear damage rule (LDR), the param-
eters for the S − N curve for this assessment is defined in
the range of high cycle fatigue [20], the expected cycles are
described by Miner’s rule, as is expressed by:

N2 = N1

(
S1

S2

)k

(7)
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where ni is the number of repetitions during the operation
and Ni are the repetitions tolerated and the amplitude S at
ith load level.

The results of the correlational analysis are compared in
table II, where a significant positive correlation between the
experimental results and the prediction using ANN was
found.

Fig. 14: S-N curve for printed PLA components

In order to analyze the cyclic behaviour, the failure area
has been evaluated as is shown in Fig. 15. Ductile failure is
presented by a slow progression of the failure propagation
(Fig.15a). While the fragile failure is rapidly spreading,
generating a shiny surface. The process of failure by cyclic
load can be observed by patterns where it is observed how
the failure zone increases after the load is again applied
(Fig.15b), until it reaches a critical parameter (Fig.16).

TABLE II: Fatigue life prediction using Linear Damage rule
and Artificial Neural Network

Load Cycles LDR ANN
500 3,683,006 6,157,265 3,683,006
600 2,422,194 2,062,056 2,422,194
700 1,140,484 1,020,736 1,140,484
800 609,455 637,092 583,696
900 431,701 420,372 381,072

1000 293,305 289,807 293,305
1200 193,442 152,265 193,442
1400 107,673 88,364 107,673
1600 47,469 72,953 47,469
1800 37,840 65,801 37,840

In summary, these results showed a softening in the PLA
printed component. This affected the component stiffness.
Although the UTS found reached a value of 48.8 MPa and
the Young’s modulus was 1.36 GPa, the UTS was 10.9%
more than that reported by [29]. The difference was that
the true strain–stress curve was used for the fatigue damage
evaluation, and the scatter present in this additive process for
the parameters is described in Fig. 1.

In the case of the Young’s modulus, the initial value of
2.23 GPa was not used; instead, we used the value of 1.13
GPa after a softening. This was around 5% more than that
reported by [29]. This process of softening agreed with the
change in behaviour to a nonlinear response in viscoelastic
thermoplastics after time load [18]. It is important to use
the value of Young’s modulus after softening because it
expresses the change in stiffness of the material found in
both static and cyclic tests. Thus, using quasistatic tests can

(a) brittle and ductile behaviour

(b) cyclic failure

Fig. 15: Failure analysis

Fig. 16: Failure in component

develop relationships that can be used to predict fatigue life
using (ANNs).

VI. CONCLUSIONS

In this work, the accumulated damage process was anal-
ysed in printed parts of PLA. Mechanical properties ob-
tained for the quasistatic tests were used to understand the
printed PLA. Fatigue life prediction in thermoplastics like
PLA is complex as they initially behave linearly, but this
behaviour changes over time to a nonlinear response due
to their viscoelastic response. Meanwhile, ANNs can be
used to perform fatigue assessments. The prediction using
(ANNs) has an error of 1.59%, using an accumulated
damage rule the error is 26.7%. Thus, extrapolating the
network prediction is not possible because of the nonlinear
behaviour of thermoplastics for quasistatic and dynamic
loads, which depends on all variables related to the time, time
at load level, strain rate, unloaded time and frequency load.
Notwithstanding the relatively limited sample, this work
offers valuable insights into the analysis of the fatigue life
of PLA printed components.
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