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Abstract—This article presents the modified residual power
series approach using Laplace transform, the method is used
to solve partial integro differential equations. The basic defi-
nitions and theorems related to the method are presented and
discussed. Moreover, the steps of the method are utilized and
applied to solve various examples.

Index Terms—Infinite series, Laplace transform, residual
power series, Laplace residual power series; integral equation.

I. INTRODUCTION

THE investigation of linear Volterra partial integro-
differential equations is an important area in mathemat-

ical analysis, with applications spanning various fields such
as physics, engineering, and finance. These equations, which
incorporate both differential and integral operators, face some
challenges in producing exact and approximate solutions.
Over the years, numerous methods have been developed
to tackle these equations, with the Laplace residual power
series method (LRPSM) emerging as a particularly effective
approach.

The LRPSM, a hybrid approach merging Laplace trans-
form and residual power series method, has been shown to
be a powerful technique to solve fractional system partial
differential equations (FSPDEs). This method allows for the
simple calculation of solutions in the form of a power series
expansion, as demonstrated by 1. Al-Sawalha et al. [1] in
their work on FSPDEs using LRPSM. The reliability of the
method and its validity in solving the problems have been
tested by solving some examples.

The basic concept of the the LRPSM is Laplace trans-
form, which has been extensively discussed in classical texts
such as in [2], [3]. These works provide a comprehensive
understanding of the Laplace transform, which is basic fin
the application of LRPSM.

El-Ajou et al. in [4] further investigate modern analytic
methods to solve various kinds of differential equations,
highlighting the versatility of analytic techniques in han-
dling complex mathematical problems. Similarly, Trench [5],
Boyce, DiPrima, and Meade [6], and Wazwaz [7] have
contributed significantly to the understanding of differential
equations and integral equations, respectively, laying the
groundwork for advanced solution methods like LRPSM.
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The application of LRPSM is extended to solve various
types of Volterra partial integral and integro-differential equa-
tions, as evidenced by the works of Fahim et al. [8], Gu and
Wu [9], and, Prakasam and Arul Joseph [10]. These studies
have employed different numerical and analytical methods,
showcasing the diversity of approaches in tackling Volterra
equations. Khodabin [11], Brunner [12], Avazzadeh et al.
[13], and Feldstein and Sopka [14] have also contributed to
the field by developing numerical methods for systems of
nonlinear integro-parabolic equations of Volterra type and
exploring various aspects of Volterra integral equations.

The basic theorems for power series and Laplace trans-
forms, discussed by Heywood [15], [16], Prudnikov and
Marichev [17], and others, provide a theoretical foundation
for the LRPSM. Chen et al. [18], Dyke [19], Wintner
[20], Sherman, Kerr, and González-Parra [21], Pramesti and
Solekhudin [22], Davies [23], Pranajaya and Sugiarto [24],
ALshemary [25], Cai and Kou [26], McLachlan [27], and
Schiff [28] have further expanded on the applications and
theoretical aspects of the Laplace transform and its use in
solving differential equations [29], [30].

In summary, the Laplace residual power series method
stands out as a robust and efficient technique for solving
linear Volterra partial integro-differential equations, build-
ing upon the foundational work in the Laplace transform
and power series methods. The method’s ability to handle
complex equations efficiently makes it a valuable tool in the
arsenal of mathematicians and engineers alike.

II. PRELIMINARIES

In this section, we present some preliminaries about the
Laplace transform, power series, and integral equation, in-
cluding some properties essential to this article. The follow-
ing definitions and theorems can be found in [31]

Definition 2.1: Let g(x, t) be a piecewise continuous
function on I × [0,∞) and of exponential order δ. Then,
the Laplace transform of the function g(x, t) with respect to
x, is denoted by G (s, t) and defined as follows:

G (s, t) = L[g(x, t)] =
∫ ∞

0

e−sxg(x, t)dx, s > 0. (1)

If the integral (1) converges for any value of x, then the
Laplace transform of g(x, t) exists; otherwise, it does not.

The expression for the inverse Laplace transform is for-
mulated as:

L−1 [G (s, t)] = g (x, t) =
1

2πi

∫ c+i∞

c−i∞
esx G (s, t) ds,

c ∈ R.
(2)
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Theorem 2.1: Assume that g (x, t) and h (x, t) are two
continuous functions on I × [0,∞) of exponential order δ,
with their Laplace transforms G (s, t), H (s, t) respectively,
µ1 and µ2 are two constants, then we have the following
properties:

i. L [µ1 g (x, t) + µ2h (x, t)] = µ1 L [g (x, t)]
+ µ2 [h (x, t)] = µ1 G (s, t) + µ2H (s, t) .

ii. L [xng(x, t)] = (−1)
n ∂nG(s,t)

∂sn , n = 1, 2, . . ..
iii. lim

s→∞
sG (s, t) = g (0, t) .

iv. L [ g(x, t) ∗ h(x, t)] = L [g (x, t)] L [h (x, t)]
= G (s, t) H(s, t), where
g (x, t) ∗ h (x, t) =

∫ x

0
g (x− τ)h (x, t) dx.

v. L−1 [µ1G (s, t) + µ2H(s, t)] = µ1g (x, t) + µ2h (x, t) .

The Laplace transform of the partial derivatives with respect
to t of the function g(x, t) , are given by

i. L
[
∂ng(x,t)

∂xn

]
= snG (s, t)−

∑n−1
j=0 sn−j−1 ∂jg(0,t)

∂xj .

ii. L
[
∂mg(x,t)

∂tm

]
= ∂mG(s,t)

∂tm .

Definition 2.2: An infinite series of the form:
∞∑

n=0

cn (x− x0)
n
= c0 + c1 (x− x0) + c2 (x− x0)

2
+ . . . ,

(3)
is called a power series about x = x0 where x is a variable
and c,ns are constants called the coefficients of the series

Definition 2.3: A series that has the following representa-
tion ∞∑

n=−∞
cnx

n =

∞∑
n=1

c−n

xn
+

∞∑
n=0

cnx
n, (4)

is called Laurent series about x = 0, where x is the
variable and c′ns are the coefficients of the series. The series∑∞

n=0 cnx
n is known as the analytic or the regular part of

Laurent series, while
∑∞

n=1
c−n

xn is known as the singular or
the principal part of Laurent series.

Theorem 2.2: If there exists a power series representation
(expansion) for function g(x) centered at x0 as follow,
g(x) =

∑∞
n=0 cn (x− x0)

n has radius of convergence R >
0, then g(x) is infinitely differentiable in |x− x0| < R, and
in this case, the formula provides the coefficients for the
series cn = g(n)(x0)

n! , then g (x) must have the following
structure:

g (x) =
∞∑

n=0

g(n) (x0)

n!
(x− x0)

n
. (5)

The series in equation (5) is called the Taylor series of the
function g(x) at x0. For the special case x0 = 0, the Taylor
series becomes called the Maclaurin series.

Theorem 2.3: If g(x, t) is a piecewise continuous func-
tion on I × [0,∞) and of exponential order δ, suppose
that G (s, t) = L [g(x, t)] has a Laurent series representation
about s = 0 as follows:

G (s, t) =
c0(t)

s
+

∞∑
n=1

cn(t)

sn+1
, s > 0, (6)

then the remainder Rn (s, t) of the series (6) satisfies the
following condition:

Rn (s, t) ≤
M (t)

sn+2
, x ∈ I & t ∈ [a, b) .

Theorem 2.4: Let g (x, t) be a continuous function on I ×
[0,∞), and assume that G (s, t) = L [g(x, t)] exists and can
be expressed in the form of equation (6). If∣∣∣∣s L

[
∂(n+1)g (x, t)

∂x(n+1)

]∣∣∣∣ ≤ M (t) , on I × [a, b) ,

then the remainder Rn (s, t) of the series (6) satisfies the
following condition:

Rn (s, t) ≤
M (t)

sn+2
, x ∈ I & t ∈ [a, b) .

Definition 2.4: An integral equation is an equation where
the unknown function g(x, t) that needs to be determined
appears within an integral. Integral equations are highly
valuable mathematical tools in both pure and applied math-
ematics. A typical form of an integral equation in g(x, t) is
of the form:

g (x, t) = f (x, t) + λ

∫ b(x)

a(x)

k (x, τ) g (τ, t) dτ, (7)

where K(x, τ) is called the kernel of the integral equation
(7), and a(x), b(x) are the limits of the integration.
.

Definition 2.5: The standard form of Volterra linear inte-
gral equations is typically expressed as:

h(x, t)g (x, t) = f(x, t) + λ

∫ x

a

k (x, τ) g (τ, t) dτ, (8)

in this equation, the unknown function is g(x, t) which
appears linearly under the integral sign. If h(x, t) = 1, the
equation is simplified to:

g (x, t) = f(x, t) + λ

∫ x

a

k (x, τ) g (τ, t) dτ, (9)

this equation is referred to as the Volterra integral equation
of the second kind. Conversely, if h (x, t) = 0, the equation
becomes:

f(x, t) + λ

∫ x

a

k (x, τ) g (τ, t) dτ = 0. (10)

Remark 2.1: If k(x, τ) = k(x− τ), such that in (x− τ),
ex−τ , · · · ,then the equation (8) is called Volterra integral
equation of convolution type.

III. LRPS METHOD FOR SOLVING LINEAR VOLTERRA
PARTIAL INTEGRO-DIFFERENTIAL EQUATION

This section consists of two parts, the first one includes
the steps of the LRPS method for solving partial integro
differential equations, and in the other section we solve some
illustrative examples to show the simplicity of the method.

A. Steps of LRPS method

To perform the LRPS technique, for solving the linear
Volterra partial integro-differential equation of the form:

∂ng(x, t)

∂xn
+

∂mg(x, t)

∂tm
+ h (x, t)

=

∫ x

0

k (x− τ) g(τ, t)dτ, n,m = 0, 1, 2, . . . ,

(11)
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where h (x, t) and k (x) are known functions, with the initial
conditions:

g (0, t) = a1(t),
∂g (0, t)

∂x
= a2(t),

∂2g (0, t)

∂x2
= a3(t),

. . . ,
∂n−1g (0, t)

∂xn−1
= an(t),

where a1, a2, a3, . . . , an are functions of t.
To get the solution by LRPS method, we follow the steps:
Step 1. Starting with the application of the Laplace transform
to both sides of equation (11) with respect to x, we obtain
the following result:

L
[
∂ng(x, t)

∂xn

]
+ L

[
∂mg(x, t)

∂tm

]
+ L [h (x, t)]

= L
[∫ x

0

k (x− τ) g(τ, t)dτ

]
.

(12)

Step 2. Depending on Laplace transform and convolution
theorem, the equation (12), can be rewritten as follows:

snG (s, t)−sn−1g (0, t)− sn−2 ∂g (0, t)

∂x
− . . .

− ∂n−1g (0, t)

∂xn−1
+

∂mG (s, t)

∂tm
+H (s, t)

= K (s)G (s, t) ,

(13)

where, G (s, t) = L [g (x, t)], H (s, t) = L [h (x, t)],
K (s) = L [k (x)].
Step 3. Multiplying equation (13) by 1

sn , and utilizing the
initial conditions to simplify equation (13) into the following
form:

G (s, t) =
n−1∑
i=0

ai+1(t)

si+1
− 1

sn
∂mG (s, t)

∂tm
− 1

sn
H (s, t)

+
1

sn
K (s)G (s, t) .

(14)

Step 4. Examining the solution to equation (14) which takes
on the following structure:

G (s, t) =
∞∑
i=0

ci(t)

si+1
, s > 0. (15)

Step 5. Applying the initial condition by credit Theorem 2.4,
we can determine the first n- coefficients of the previous
structure, so the equation (15) can be written as follows:

G (s, t) =
n−1∑
i=0

ai+1(t)

si+1
+

∞∑
i=n

ci(t)

si+1
, s > 0, (16)

and the µ-th truncated series of (16) is given by:

Gµ (s, t) =
n−1∑
i=0

ai+1 (t)

si+1
+

µ∑
i=n

ci (t)

si+1
, s > 0, (17)

where, µ = n, n+ 1, . . ..
Step 6. Evaluating the Laplace residual function from equa-
tion (14) and the µth-truncated Laplace residual function
independently,

LRes (s, t) = G (s, t)−
n−1∑
i=0

ai+1 (t)

si+1
+

1

sn
∂mG (s, t)

∂tm

+
1

sn
H (s, t)− 1

sn
K (s)G (s, t) ,

(18)

and

LResµ (s, t) = Gµ (s, t)−
n−1∑
i=0

ai+1 (t)

si+1

+
1

sn
∂mGµ (s, t)

∂tm
+

1

sn
H (s, t)

− 1

sn
K (s) Gµ (s, t) .

(19)

Step 7. Substituting the sum of Gµ(s) into (17) in place of
the term (19) to get:

LResµ (s, t) =
n−1∑
i=0

ai+1 (t)

si+1
+

µ∑
i=n

ci (t)

si+1
−

n−1∑
i=0

ai+1 (t)

si+1

+
1

sn

∂m
(∑n−1

i=0
ai+1(t)
si+1 +

∑µ
i=n

ci(t)
si+1

)
∂tm

+
1

sn
H (s, t)

− 1

sn
K (s)

(
n−1∑
i=0

ai+1 (t)

si+1
+

µ∑
i=n

ci (t)

si+1

)
.

(20)

Step 8. Multiplying both sides of equation (20) by sµ+1,
then taking the limit as s approaches infinity, we need the
following facts that can be found in [4]

i. lim
µ→∞

LResµ (s) = LRes (s), LRes (s) = 0,

for all s > 0,
ii. lim

µ→∞
s LRes (s) = 0, which implies

lim
µ→∞

s LResµ (s) = 0.

iii. lim
µ→∞

sµ+1LRes (s) = lim
µ→∞

sµ+1LResµ (s) = 0, µ =

1, 2, 3, · · · , to obtain:

lim
µ→∞

sµ+1 1

sn

∂m
(∑n−1

i=0
ai+1(t)
si+1 +

∑µ
i=n

ci(t)
si+1

)
∂tm

− lim
µ→∞

sµ+1 1

sn
K (s)

(
n−1∑
i=0

ai+1(t)

si+1
+

µ∑
i=n

ci(t)

si+1

)
.

(21)

Step 9. Determining the values of the coefficient ci,s(t) in
equation (21) by solving the system in equation (21) for
µ = 1, 2, 3, · · · , recursively.
Step 10. Substituting the calculated values of ci,s(t) into the
truncated series of G(s, t) to derive the approximate solution.
Step 11. Applying the inverse Laplace transform to G(s, t)
in order to obtain the approximate solution of g(x, t).

B. Applications
Example 3.1. Consider the partial integro-differential equa-

tion of the form:

t
∂g(x, t)

∂t
=

∂2g(x, t)

∂x2 + t sinx+

∫ x

0

sin (x− τ)g (τ, t) dτ,

(22)
with the initial conditions: g (0, t) = 0, ∂g(0,t)

∂x = t.
Solution. Utilizing the Laplace transform on both aspects of
the equation with respect to x to obtain:

L
[
t∂g(x, t)

∂t

]
= L

[
∂2g(x, t)

∂x2

]
+ L [t sinx]

+ L
[∫ x

0

sin (x− τ)g (τ, t) dτ

]
.

(23)
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Running Laplace transform

t
∂G (s, t)

∂t
= s2G (s, t)− s g (0, t)− ∂g (0, t)

∂x
+

t

s2 + 1

+
G (s, t)

s2 + 1
.

(24)

Multiplying Equation (24) by 1
s2 and utilizing the initial

conditions to get the following equation

G (s, t) =
t

s2
∂G (s, t)

∂t
+

t

s2
− t

s2 (s2 + 1)
− G (s, t)

s2 (s2 + 1)
.

(25)
Assume that:

G (s, t) =
∞∑
i=0

ci(t)

si+1
, s > 0. (26)

Applying the initial condition, as stated in Theorem 2.4, the
Equation (26) can be written as follows:

G (s, t) =
t

s2
+

∞∑
i=2

ci(t)

si+1
, s > 0, (27)

and the µth-truncated series of (27) is given by:

Gµ (s, t) =
t

s2
+

µ∑
i=2

ci(t)

si+1
, s > 0. (28)

We define the Laplace residual function of equation (25) as
follows:

LRes (s, t) = G (s, t)− t

s2
∂G (s, t)

∂t
− t

s2
+

t

s2 (s2 + 1)

+
1

s2 (s2 + 1)
G (s, t) ,

(29)

and

LResµ (s, t) = Gµ (s, t)−
t

s2
∂G (s, t)

∂t
− t

s2
+

t

s2 (s2 + 1)

+
1

s2 (s2 + 1)
Gµ (s, t) .

(30)

To find the second coefficient c2 (t), we define the second
truncated series G2 (s, t) as:

G2 (s, t) =
t

s2
+

c2(t)

s3
,

substituting G2 (s, t) in the second Laplace residual function
LRes2(s, t), to get:

LRes2 (s, t) =
t

s2
+

c2 (t)

s3
− t

s2
∂

∂t

(
t

s2
+

c2 (t)

s3

)
− t

s2

+
t

s2 (s2 + 1)
+

1

s2 (s2 + 1)

(
t

s2
+

c2 (t)

s3

)
.

(31)

Multiply both sides by s3, then we get:

s3LRes2(s, t) = c2 (t)− ts

(
1

s2
+

c′2(t)

s3

)
+

ts

(s2 + 1)

+
s

(s2 + 1)

(
t

s2
+

c2 (t)

s3

)
.

(32)

By taking the limit to both sides as s → ∞, we get the value
of c2 (t), c2 (t) = 0. Thus, the second approximation of the
solution of Equation (24) G2 (s, t) =

t
s2 .

Following the same steps to calculate c3 (t), we define the
third truncated series G3 (s, t) as:

G3 (s, t) =
t

s2
+

c3 (t)

s4
,

substituting G3 (s, t) in the third Laplace residual function
LRes3(s, t), to get:

LRes3 (s, t) =
t

s2
+

c3 (t)

s4
− t

s2
∂

∂t

(
t

s2
+

c3 (t)

s4

)
− t

s2

+
t

s2 (s2 + 1)
+

1

s2 (s2 + 1)

(
t

s2
+

c3(t)

s4

)
.

(33)

Multiplying both sides by s4, and simplifying the right side
of previous equation to get:

s4LRes3(s, t) = c3 (t)− ts

(
1

s2
+

c′3(t)

s4

)
+

ts2

(s2 + 1)

+
s2

(s2 + 1)

(
t

s2
+

c3 (t)

s4

)
.

(34)

By taking the limit to both sides as s → ∞, we get the value
of c3 (t) : c3 (t) = 0. Thus, the third approximation of the
solution of Equation (24) is:

G3 (s, t) =
t

s2
,

repeating the same steps, we can find the values of the
coefficients as follows:

c4 (t) = c5 (t) = c6 (t) = . . . = 0.

To find the solution g(x, t), of Equation (22), we operate the
inverse Laplace transform to G(s, t), to get:

g(x, t) = L−1 [G(s, t)] = L−1

[
t

s2

]
= xt.

In the following figure, Figure 1, we plot the exact solution
of Example 3.1.

Fig. 1. The graph of solution of Example 3.1

IAENG International Journal of Computer Science

Volume 51, Issue 7, July 2024, Pages 746-753

 
______________________________________________________________________________________ 



Example 3.2. Consider the partial integro-differential equa-
tion of the form:

∂2g(x, t)

∂x2 =
∂g(x, t)

∂t
+ 2

∫ x

0

(x− τ) g (τ, t) dτ − 2et,

(35)
with initial conditions: g (0, t) = et, ∂g(0,t)

∂x = 0.
Solution. Utilizing the Laplace transform to both aspects of
equation with respect to x to obtain:

L
[
∂2g(x, t)

∂x2

]
= L

[
∂g(x, t)

∂t

]
+ 2L

[∫ x

0

(x− τ) g (τ, t) dτ

]
− 2L

[
et
]
.

(36)

Running Laplace transform and using convolution theory of
Laplace transform to get:

s2G (s, t)s g (0, t)− ∂g (0, t)

∂x
=

∂G (s, t)

∂t

+
2

s2
G (s, t)− 2et

s
.

(37)

Multiplying previous equation by 1
s2 , and utilizing the initial

conditions to simplify Equation (37) into the following form:

G (s, t) =
et

s
+

1

s2
∂G (s, t)

∂t
+

2

s4
G (s, t)− 2et

s3
. (38)

Assume that:

G (s, t) =
∞∑
i=0

ci(t)

si+1
, s > 0. (39)

G (s, t) =
et

s
+

∞∑
i=2

ci(t)

si+1
, s > 0. (40)

Applying the initial condition, so the Equation (39) can be
written as follows: and the µth-truncated series of (40) is
given by:

Gµ (s, t) =
et

s
+

µ∑
i=2

ci(t)

si+1
, s > 0. (41)

We define the Laplace residual function of Equation (38) as
follows:

LRes (s, t) = G (s, t)− et

s
− 1

s2
∂G (s, t)

∂t
− 2

s4
G (s, t)+

2et

s3
,

(42)
and

LResµ (s, t) = Gµ (s, t)−
et

s
− 1

s2
∂G (s, t)

∂t

− 2

s4
Gµ (s, t) +

2et

s3
.

(43)

To find the second coefficient c2 (t), we define the second
truncated series G2 (s, t) as: G2 (s, t) = et

s + c2(t)
s3 , sub-

stituting G2 (s, t) in the second Laplace residual function
LRes2(s, t), to get:

LRes2 (s, t) =
et

s
+

c2 (t)

s3
− et

s
− 1

s2
∂

∂t

(
et

s
+

c2 (t)

s3

)
− 2

s4

(
et

s
+

c2 (t)

s3

)
+

2et

s3
.

(44)

Multiplying both sides by s3, then we get:

s3LRes2 (s, t) = c2 (t)− s

(
et

s
+

c′2 (t)

s3

)
− 2

s

(
et

s
+

c2 (t)

s3

)
+ 2et.

(45)

By taking the limit to both sides as s → ∞, we get the value
of c2 (t) : c2 (t) = −et.
Thus, the second approximation of the solution of equation
(38)

G2 (s, t) =
et

s
− et

s3
.

Following the same steps to calculate c3 (t), we define the
third truncated series G3 (s, t) as:

G3 (s, t) =
et

s
− et

s3
+

c3 (t)

s4
,

substituting G3 (s, t) in the third Laplace residual function
to get

LRes3 (s, t) =
et

s
− et

s3
+

c3 (t)

s4
− et

s

− 1

s2
∂

∂t

(
et

s
− et

s3
+

c3 (t)

s4

)
− 2

s4

(
et

s
− et

s3
+

c3 (t)

s4

)
+

2et

s3
.

(46)

Multiplying both sides by s4, and simplifying the right side
of previous equation to get:

s4LRes3 (s, t) = c3 (t) +
et

s
− c′3 (t)

s2

− 2

(
et

s
− et

s3
+

c3 (t)

s4

)
.

(47)

By taking the limit to both sides as s → ∞, we get the value
of c3 (t) : c3 (t) = 0.
Thus, the third approximation of the solution of Equation
(38) is:

G3 (s, t) =
et

s
− et

s3
.

Following the same steps to calculate c4 (t), we define the
fourth truncated series G4 (s, t) as:

G4 (s, t) =
et

s
− et

s3
+

c4 (t)

s5
,

substituting G4 (s, t) in the fourth Laplace residual function
LRes4(s), to get:

LRes4 (s, t) =
et

s
− et

s3
+

c4 (t)

s5
− et

s

− 1

s2
∂

∂t

(
et

s
− et

s3
+

c4 (t)

s5

)
− 2

s4

(
et

s
− et

s3
+

c4 (t)

s5

)
+

2et

s3
.

(48)

Multiplying both sides by s5, and simplifying the right side
of previous equation to get:

s5LRes4 (s, t) = c4 (t)− et − c′4 (t)

s2
− 2

(
− et

s2
+

c4 (t)

s4

)
.
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By taking the limit to both sides as s → ∞, we get the value
of c4 (t) : c4 (t) = et. Thus, the fourth approximation of the
solution of Equation (38)

G4 (s, t) =
et

s
− et

s3
+

et

s5
. (49)

Similarly
c5 (t) = 0, c6 (t) = −et, . . . .

To find the solution g(x, t) , of Equation (35), we operate
the inverse Laplace transform to G(s, t), to get:

g(x, t) = L−1 [G(s, t)]

= etL−1

[
1

s
− 1

s3
+

1

s5
− 1

s7
+ . . .

]
= et cosx.

In Figure 2, below we sketch the solution of Example 3.2

Fig. 2. The graph of solution of Example 3.2

Example 3.3. Consider the partial integro-differential equa-
tion of the form:
∂g(x, t)

∂x
+

∂3g(x, t)

∂x3 −
∫ x

0

sinh (x− τ)
∂3g (τ, t)

∂t3
dτ = 0.

(50)
With initial conditions: g (0, t) = 0, ∂g(0,t)

∂x = t, ∂2g(0,t)
∂x2 = 0.

Solution. Utilizing the Laplace transform to both aspects of
equation with respect to x to obtain:

L
[
∂g(x, t)

∂x

]
+ L

[
∂3g (x, t)

∂x3

]
−L

[∫ x

0

sinh (x− τ)
∂3g (τ, t)

∂t3
dτ

]
= 0.

(51)

Running Laplace transform and convolution theory of
Laplace transform to get:

sG (s, t)− g (0, t) + s3G (s, t)− s2 g (0, t)− s
∂g (0, t)

∂x

− ∂2g (0, t)

∂x2 − 1

s2 − 1

∂3G (s, t)

∂t3
= 0.

(52)

Multiplying previous equation by 1
s3 , and utilizing the initial

conditions to simplify Equation (52) into the following form:

G (s, t) = − 1

s2
G (s, t)+

t

s2
+

1

s3 (s2 − 1)

∂3G (s, t)

∂t3
. (53)

Assume that:

G (s, t) =
∞∑
i=0

ci(t)

si+1
, s > 0. (54)

Applying the initial condition, so the Equation (54) can be
written as follows:

G (s, t) =
t

s2
+

∞∑
i=3

ci(t)

si+1
, s > 0, (55)

and the µth-truncated series of (55) is given by:

Gµ (s, t) =
t

s2
+

µ∑
i=3

ci(t)

si+1
, s > 0. (56)

We define the Laplace residual function of Equation (53) as
follows:

LRes (s, t) = G (s, t) +
1

s2
G (s, t)

− t

s2
− 1

s3 (s2 − 1)

∂3G (s, t)

∂t3
,

(57)

and

LResµ (s, t) = Gµ (s, t) +
1

s2
G (s, t)

− t

s2
− 1

s3 (s2 − 1)

∂3G (s, t)

∂t3
.

(58)

To find the second coefficient c3 (t), we define the third trun-
cated series G3 (s, t) as: G3 (s, t) =

t
s2 +

c3(t)
s4 , substituting

G3 (s, t) in the third Laplace residual function LRes3 (s, t),
to get:

LRes3 (s, t) =
t

s2
+

c3 (t)

s4
+

1

s2

(
t

s2
+

c3 (t)

s4

)
− t

s2
− 1

s3 (s2 − 1)

(
c′′′3 (t)

s4

)
.

(59)

Multiply both sides by s4, then we get:

s4LRes3(s, t) = c3 (t) + t+
c3 (t)

s2
− 1

s3 (s2 − 1)
(c′′′3 (t)) .

(60)
By taking the limit to both sides as s → ∞, we get the value
of c3 (t), c3 (t) = −t. Thus, the third approximation of the
solution of Equation (53)

G3 (s, t) =
t

s2
− t

s4
.

Following the same steps to calculate c4 (t), we define the
fourth truncated series G4 (s, t) as:

G4 (s, t) =
t

s2
− t

s4
+

c4 (t)

s5
,

substituting G4 (s, t) in the fourth Laplace residual function
LRes4(s, t), to get:

LRes4 (s, t) =
t

s2
− t

s4
+

c4 (t)

s5
+

1

s2

(
t

s2
− t

s4
+

c4 (t)

s5

)
− t

s2
− 1

s3 (s2 − 1)

(
c′′′4 (t)

s5

)
.

(61)
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Multiplying both sides by s4, and simplifying the right side
of previous equation to get:

s5LRes4 (s, t) = c4 (t) +
c4 (t)

s2
− 1

s3 (s2 − 1)
(c′′′3 (t)) .

(62)
By taking the limit to both sides as s → ∞, we get the value
of c4 (t): c4 (t) = 0.

Thus, the fourth approximation of the solution of Equation
(53)

G4 (s, t) =
t

s2
− t

s4
.

Following the same steps to calculate c5 (t), we define the
fifth truncated series G5 (s, t) as:

G5 (s, t) =
t

s2
− t

s4
+

c5 (t)

s6
,

substituting G5 (s, t) in the fourth Laplace residual function
LRes5(s), to get:

LRes5 (s, t) =
t

s2
− t

s4
+

c5 (t)

s6
+

1

s2

(
t

s2
− t

s4
+

c5 (t)

s6

)
− t

s2
− 1

s3 (s2 − 1)

(
c′′′4 (t)

s6

)
.

(63)

Multiplying both sides by s6, and simplifying the right
side of previous equation to get:

s6LRes5 (s, t) = c5 (t)− t− c5 (t)

s2
− 1

s3 (s2 − 1)
(c′′′5 (t)) .

(64)
By taking the limit to both sides as s → ∞, we get the
value of c5 (t), c5 (t) = t. Thus, the fifth approximation of
the solution of Equation (53) is:

G5 (s, t) =
t

s2
− t

s4
+

t

s6
.

Similarly,

c6 (t) = 0, c7 (t) = −t . . . .

To find the solution g(x, t), of Equation (50), we operate the
inverse Laplace transform to G(s, t), to get:

g(x, t) = L−1 [G(s, t)] = L−1

[
t

s2
− t

s4
+

t

s6
− t

s8
+ . . .

]
=

[
1

s2
− 1

s4
+

1

s6
− 1

s8
+ . . .

]
= tL−1

[
1

s2
− 1

s4
+

1

s6
− 1

s8
+ . . .

]
= t sinx.

In Figure 3, below we sketch the solution of Example 3.3.

Fig. 3. The graph of solution of Example 3.3

IV. CONCLUSION

The study validates the LRPSM for linear Volterra partial
integro-differential equations. The LRPSM, combines the
Laplace transform with a power series, excels in handling
complex equations. The research illustrates the steps of
LRPSM and its effectiveness through examples, showing
its proficiency for accurate approximations. This method is
valuable in fields like physics and engineering, with potential
for future research in more complex systems [32], [33], [34].
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