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Abstract—Wind field forecasting is crucial for human ac-
tivities, but numerical weather prediction still has room to
improve accuracy. In this paper, we formalize wind field forecast
correction as a spatiotemporal sequence prediction task and
propose MotionUVRNN, a recurrent neural network model
suitable for wind field correction. The model consists of three
elements: a feature decoupling module, an encoder, and a
corrector. The feature decoupling module decouples the wind
field into U-Wind (Wind component in x/longitude-direction)
feature, V-Wind (Wind component in y/latitude direction)
feature, and spatiotemporal feature. The encoder unifiedly
models the motion trend and transient variation of the wind
field. A novel long short-term memory dynamic capture unit
(RS-LSTM) is proposed as the core part of the encoder to
capture the different dynamic patterns of U-Wind and V-Wind.
The corrector extracts and integrates multi-scale wind field
information to capture regional features. By correcting the 3-
12 hour wind field forecasts from the European Centre for
Medium-Range Weather Forecasts (ECMWF; EC for short),
the proposed model reduced the wind speed prediction error
by 53.37% to 46.52%, and lowered the wind direction error by
21.99% to 13.26%. Moreover, this model surpasses the existing
leading spatiotemporal sequence prediction models in wind field
correction.

Index Terms—Wind field forecast correction, Spatiotemporal
prediction, Recurrent neural network, Motion trend modeling.

I. INTRODUCTION

W IND, as an omnipresent natural phenomenon, ex-
erts a significant impact on people’s production and

daily lives. The accuracy of wind forecasts is paramount
in various domains, including aviation transportation, wind
power generation planning, and the organization of outdoor
sports events, among others [1], [2], [3]. Achieving precise
predictions of wind speed and direction stands as a crucial
pursuit for meteorologists, providing fundamental support
across industries.
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Wind forecasts primarily rely on numerical weather pre-
diction models [4], [5]. However, as numerical predictions
are based on physical models, parameters and structure
uncertainties may lead to results biases [6], [7]. Such biases
could produce predictions that deviate from the underlying
physical principles, thus generating inaccurate outcomes.
Addressing and correcting these biases in forecast data is
essential for improving forecast accuracy.

In recent years, various numerical bias correction methods
have been proposed. For instance, He et al. employed the
variational method along with historical data to correct biases
in short-term numerical weather forecasts [8]. Rincón et
al. introduced the WRF-ARW model, which utilizes the
Kalman Filter with Model Output Statistics for correcting
biases in solar irradiance forecasts [9]. Cho et al. proposed
utilizing Random Forests and Support Vector Regression
for temperature bias correction [10]. However, wind field
data exhibits non-linear features, which cannot be handled
effectively by traditional linear statistical methods [11]. Re-
cent advancements in neural networks within atmospheric
science have offered a viable solution for modeling these
non-linear features [12], [13]. Due to the effectiveness of
neural networks in capturing non-linear patterns, numerous
deep learning models have been devised specifically for
correcting biases in wind field data. For example, Han et al.
introduced a deep learning model named CU-net to correct
biases in wind field forecasts from the EC model [14]. Zhu et
al. proposed a 3D-CNN model for decoupling the temporal
and spatial features of wind speed prediction [15]. Liu et
al. presented an LSTM network incorporating Variational
Mode Decomposition and Singular Spectrum Analysis for
multi-step wind speed forecasting [16]. However, despite
addressing the limitations of traditional linear methods, these
neural network models often overlook the unique spatiotem-
poral features present in numerical wind field forecasting
data. These forecasts encapsulate spatial correlations between
different locations and temporal evolutions over time, pre-
senting challenges that standard convolutional or recurrent
neural networks may struggle to handle effectively.

Wind field grid forecasts exhibit typical spatiotemporal
sequence data features, which can be viewed as grid in-
formation sequences with significant spatial correlation that
dynamically change over time. As a result, correcting biases
in wind field forecasts has been widely recognized as a
spatiotemporal sequence prediction problem. In order to gain
a deeper understanding of the spatiotemporal relationships
within wind fields, we introduce a novel model called Mo-
tionUVRNN. Our contributions are as follows:

1) We have introduced a novel RS-LSTM unit, which
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skillfully captures the concealed dynamic patterns of U-
Wind (Wind component in x/longitude-direction) and V-
Wind (Wind component in y/latitude direction) through dis-
tinct internal gated units. This unit effectively extracts the
fluctuating, intermittent, and chaotic features displayed by
the wind field.

2) We decompose the spatiotemporal motion of the wind
field into two components: motion trend and transient vari-
ation. An encoder is designed to model the motion trend of
the wind field while simultaneously responding to transient
variation in the wind field.

3) We have designed a corrector, which is a convolutional
structure capable of extracting and integrating multi-scale
information. It can further rectify the features extracted by
the encoder.

4) Experimental results on the dataset demonstrate that
this proposed method outperforms current mainstream spa-
tiotemporal prediction models. Additionally, ablation studies
validate the effectiveness of each designed component of
MotionUVRNN.

II. RELATED WORK

In recent years, numerous spatiotemporal sequence pre-
diction models have been successively proposed. To address
the precipitation prediction problem, Shi et al. proposed
the ConvLSTM model [17]. Based on the FC-LSTM [18],
this model replaces the original multiplication operation
with a convolution operation, thereby better capturing spa-
tiotemporal features. Shi et al. introduced the TrajGRU
[19] model to compensate for the convolutional position
invariance deficiency in ConvLSTM. Wang et al. proposed
the PredRNN model [20] with a novel network structure to
resolve the issue of previous models neglecting the influence
of top-level output on lower levels. Moreover, they designed
a new RNN unit, the Spatiotemporal LSTM (ST-LSTM),
to facilitate separate transmission of temporal and spatial
memory. Wang et al. introduced PredRNN++ [21], which
builds on PredRNN by incorporating additional nonlinear
units to capture short-term features and abrupt changes. Ad-
ditionally, it includes a new spatiotemporal recursive struc-
ture called GHU to alleviate vanishing gradients. Fan et al.
proposed CubicLSTM [22], which utilizes two ConvLSTMs
to separately process temporal and spatial information while
emphasizing ConvLSTM’s position. Wang et al. proposed
MIM [23], which introduces a differential operation into Pre-
dRNN’s forget gate to extract stationary and non-stationary
information. Lin et al. proposed the SA-ConvLSTM [24]
model, which introduces a self-attention memory module
into ConvLSTM to extract temporal dependencies, with the
widespread application of attention mechanisms. Su et al.
proposed Conv-TT-LSTM [25], which combines multi-step
historical state gates to extend ConvLSTM to higher orders
and uses tensor-train decomposition to reduce complexity
and capture long-term dependencies. Wu et al. introduced
MotionRNN [26] which can model overall motion trend
as well as transient variation and can be combined with
other models to improve their performance. The SimVp [27]
model proposed by Tan et al. outperforms many other models
despite its simple structure, such as PhyDNet [28], E3D-
LSTM [29], and CrevNet [30].

Some spatiotemporal sequence prediction models have
been recently applied in numerical wind field forecasting.
For example, Ye et al. proposed DynamicNet [31], which em-
ploys an encoder-decoder framework to capture wind speed
fluctuations, intermittency, and chaotic properties. Ye et al.
also introduced SPLNet [32], which learns and captures long-
range spatial dependencies through Spatiotemporal Dynamic
Attention (STD-Atten) units. It uses a time-varying structure
with different STD-Atten units for wind speed prediction at
various time steps. Zhang et al. proposed the DETrajGRU
[33] model, which can simultaneously correct both wind
speed and direction. It uses a multi-task learning loss func-
tion, enabling a single model to accomplish bias correction
for both speed and direction. Research has shown that decou-
pling wind into U-Wind and V-Wind can effectively enhance
the correction accuracy of both wind direction and speed
[34]. However, the decoupled U-Wind and V-Wind exhibit
different dynamic patterns at the same location, necessitating
separate capture of these distinct dynamic patterns [35]. The
motion trend and transient variation of the wind field are
not only complex and variable, but adjacent locations also
exhibit similar wind field features, making it challenging to
unifiedly model the entire wind field.

All the studies mentioned above have overlooked the
distinct dynamic patterns exhibited by U-Wind and V-Wind
at the same location in the wind field, as well as the inherent
complexity and variability of the wind field itself.

III. METHODOLOGY

A. Problem Definition

Multi-step regional wind field correction is a problem that
involves predicting a sequence of wind speed and direction
of length T in the future. This prediction is based on a
given wind field sequence X of length S, with the objective
of minimizing the difference between the predicted values
and the actual values. Typically, the wind field is viewed
as a vector field and is decoupled into U-Wind and V-Wind
to model and correct wind direction and wind speed. The
wind field region is typically represented as a grid uniformly
divided into M rows and N columns, where each grid
point corresponds to the wind speed and direction within
its designated area.

The mathematical formulation for wind field correction
can be expressed as follows:

Ŷ = F (X; θ) (1)

where X ∈ RS×P×M×N represents the input wind field
features, S denotes the length of the input spatiotemporal
sequence, and P signifies the dimension of the input features.
Ŷ ∈ RT×R×M×N represents the wind speed and wind
direction sequence after correction, T denotes the length of
the output sequence, R signifies the dimension of the output
features. Additionally, θ denotes the model parameter.

B. The proposed MotionUVRNN

1) Model Framework: The MotionUVRNN model con-
sists of three main components: a feature decoupling module,
an encoder, and a corrector, as shown in Fig. 2. The input data
X is first passed through the feature decoupling module to
decompose it into separate features K, U , and V representing
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Fig. 1. Architecture of the Encoder: the MotionGRU is embedded between different layers of the RS-LSTM, and dashed lines between different layers
represent the Motion Highway.

distinct features of the wind field. The encoder then extracts
and integrates internal feature representations from K, U ,
and V to achieve unified modeling of the entire wind
field. Finally, the corrector takes the encoded features F
from the encoder and refines them to generate the final
prediction Û&V̂ closer to the target values. Formally, the
model operations are:

K,U, V = Decouple(X) (2)

F = Encoder(K,U, V ) (3)

(Û&V̂ ) = Corrector(F ) (4)

where Decouple denotes the feature decoupling operation,
the Encoder and Corrector represent the encoder module
and corrector module respectively. F represents the encoded
features from the Encoder, and Û&V̂ is the final prediction
after correcting.

F
eatu
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u
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Fig. 2. The Framework of the MotionUVRNN

2) Feature decoupling module: The dynamic features of
U-Wind and V-Wind are analogous, making it difficult for
the model to differentiate them during training. The feature
decoupling module helps enhance the model’s ability to
extract distinct information from the coupled input data X .
It decouples the wind field data into separate components
representing the overall spatiotemporal features, U-Wind

dynamic features, and V-Wind dynamic features. After the
feature decoupling operation, the model’s ability to extract
the various information contained in the wind field data
can be enhanced. The formula specification of the feature
decoupling module is as follows:

K = tanh(X) (5)

U = Sliceu(X) (6)

V = Slicev(X) (7)

where X denotes the input wind field information, tanh
denotes the hyperbolic tangent activation function, K repre-
sents the input information containing the overall spatiotem-
poral features of the wind field, Slice denotes the array
slicing operation, and U and V contain the isolated dynamic
patterns of U-Wind and V-Wind, respectively.

3) Encoder: Modeling the intricate spatiotemporal varia-
tions of wind fields presents a formidable challenge, given
their propensity for phenomena such as dissipation, displace-
ment, and deformation over time. Conventional spatiotempo-
ral neural networks struggle to capture such complex wind
field dynamic patterns while modeling the motion trend and
transient variation of the wind field. We propose an effective
encoder structure, as depicted in Fig. 1, to address these
issues. Meanwhile, we employ a novel RS-LSTM unit (see
section III-B4 for details) as the primary component of the
encoder to capture the spatially diverse changes of U-Wind
and V-Wind in the wind field. This unit can extract and
integrate these features through specially designed gate units.
To enhance the model’s ability to handle wind field motion,
we draw inspiration from the MotionRnn architecture[26],
introducing the MotionGRU unit and Motion Highway. The
MotionGRU unit is used to model the motion trend of the
wind field and respond to transient variation in the wind field.
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Additionally, the Motion Highway is utilized to balance the
dynamic and static aspects of the grid in the wind field.

The overall formula for the l-th layer at time step t is as
follows:

X l
t ,F l

t ,Dl
t = MotionGRU

(
Hl

t,F l
t−1,Dl

t−1

)
(8)

Hl+1
t , Cl+1

t ,M l+1
t , Rl+1

t−1, S
l+1
t−1 = RS − LSTM(X l

t ,

Hl+1
t−1, C

l+1
t−1,M

l
t , R

l+1
t−1, S

l+1
t−1)

(9)

Hl+1
t = Hl+1

t + (1− ot)⊙Hl
t (10)

where, in Equation (8), the tensors F l
t and Dl

t are used
to model transient variation and motion trend, while X l

t

represents the input after the MotionGRU transformation. In
Equation (9), Hl+1

t−1 and Cl+1
t−1 represent the hidden state and

memory state from the previous time step, while M l
t is the

spatiotemporal state coming from the next layer. Rl+1
t−1 and

Sl+1
t−1 represent the dynamic states of U-Wind and V-Wind

from the previous time step, respectively. In Equation (10),
ot is the output gate based on the RNN prediction module,
and ⊙ denotes the Hadamard product. The Equation (10)
represents the Motion Highway, which compensates for the
output of the prediction block through the previous hidden
state Hl

t.
4) RS-LSTM: To effectively capture the distinct dynamic

patterns of U-Wind and V-Wind at the same locations within
the wind field, we propose the Long Short-Term Memory
Dynamic Capture (RS-LSTM) Unit, as depicted in Fig. 3.
In addition to possessing the hidden state H l

t , spatiotem-
poral state M l

t , and cell state Cl
t of ST-LSTM [20], also

introduces the memory states Rl
t and Sl

t. Furthermore, Rl
t

represents the dynamic state of U-Wind, and Sl
t represents

the dynamic state of V-Wind. Given the strong correlation
between dynamic states and temporal changes, both Rl

t

and Sl
t exhibit horizontal movement. While the ST-LSTM

captures spatiotemporal information, it does not take into
account the features of wind field data and lacks the learning
of inherent meteorological information within the wind field.
The RS-LSTM unit’s design addresses the ST-LSTM unit’s
limitations in discerning the dynamic patterns of U-Wind
and V-Wind. RS-LSTM employs two sets of gating units,
each comprising an input gate, a forget gate, and an input
modulation gate. This allows for the independent capture of
the hidden dynamic patterns of U-Wind and V-Wind within
the data.

Specifically, in each RS-LSTM, the following calculations
are performed:

i = σ
(
Wix ∗Kt +Wih ∗H l

t−1

)
f = σ

(
Wfx ∗Kt +Wfh ∗H l

t−1

)
g = tanh

(
Wgx ∗Kt +Wgh ∗H l

t−1

)
Cl

t = f ⊙ Cl
t−1 + i⊙ g

(11)

i′ = σ
(
Wi′x ∗Kt +Wi′h ∗M l−1

t

)
f ′ = σ

(
Wf ′x ∗Kt +Wf ′h ∗M l−1

t

)
g′ = tanh

(
Wg′x ∗Kt +Wg′h ∗M l−1

t

)
M l

t = f ′ ⊙M l−1
t + i′ ⊙ g′

(12)

i′′ = σ
(
Wi′′u ∗ Ut +Wi′′h ∗ Sl

t−1

)
f ′′ = σ

(
Wf ′′u ∗ Ut +Wf ′′h ∗ Sl

t−1

)
g′′ = tanh

(
Wg′′u ∗ Ut +Wg′′h ∗ Sl

t−1

)
Sl
t = f ′′ ⊙ Sl

t−1 + i′′ ⊙ g′′

(13)

i′′′ = σ
(
Wi′′′v ∗ Vt +Wi′′′h ∗Rl

t−1

)
f ′′′ = σ

(
Wf ′′′v ∗ Vt +Wf ′′′h ∗Rl

t−1

)
g′′′ = tanh

(
Wg′′′v ∗ Vt +Wg′′′h ∗Rl

t−1

)
Rl

t = f ′′′ ⊙Rl
t−1 + i′′′ ⊙ g′′′

(14)

o = σ(Wox ∗Xt +Woh ∗H l
t−1 +Woc ∗ Cl

t +Wom∗
M l

t +Wos ∗ Slt +Wor ∗Rl
t)

(15)
H l

t = o⊙ tanh
(
W1×1 ∗

[
Cl

t,M
l
t ,S

l
t, R

l
t

])
(16)

where W represents the parameters that the module needs
to learn, ∗ and ⊙ denote the convolution operator and
the hadamard product, respectively. Kt represents the input
information of the overall spatiotemporal features of the wind
field, while Ut and Vt represent the input information of the
U-Wind dynamic pattern and V-Wind dynamic pattern. i, f
and g denote the input gate, forget gate, and input modulation
gate. σ and tanh represent the Sigmoid activation function
and the hyperbolic tangent activation function, respectively.
Equations 11, 12, 13, and 14 represent the calculation process
of the four gating unit groups, which can respectively obtain
the cell state Cl

t , the spatiotemporal state M l
t , the U-Wind

dynamic state Sl
t, and the V-Wind dynamic state Rl

t. In
Equation (15), o represents the output gate, which determines
the proportion of retention and discard of the new state.
Equation (16) indicates that the final hidden state H l

t of each
node is determined by the combination of the cell state Cl

t ,
spatiotemporal state M l

t , U-Wind dynamic state Sl
t, and V-

Wind dynamic state Rl
t. In the calculation process, Cl

t , M
l
t ,

Sl
t and Rl

t are concatenated. Then, a 1*1 convolution layer
is applied to reduce the dimension so that the final hidden
state H l

t has the same dimension as the other memory states.
Finally, the Hadamard product is multiplied by the output
gate to obtain the final result H l

t .
5) Corrector: The Corrector excels in modeling local

area trends within the wind field, effectively capturing lo-
cal spatial correlations, as depicted in Fig. 4. It leverages
the capabilities of multiple upsampling and downsampling
techniques to extract information from varying scales em-
bedded within the wind field data. Additionally, it integrates
multi-scale information through a skip connection scheme,
enhancing its effectiveness in capturing the complexity of
the data. These mechanisms collectively aid the Corrector
in refining the encoder’s output, thereby amplifying the
correction effect on areas in the wind field where the wind
speed markedly surpasses the average value. Additionally,
they equip the model with the capacity to discern when the
wind direction aligns in both the overall and local areas.
The Corrector’s design draws inspiration from the UNet++
[36] model, progressively rectifying the encoder features,
rendering the predicted wind field increasingly precise and
detailed. The correction process can be analogized to the
procedure of iteratively sharpening a blurry image.

The skip connection path of the Corrector can be described
in the following way. xi,j represents the output of node Xi,j ,
i is the index number along the downsampling direction, and
j is the index number in the horizontal direction. The stack
of feature maps represented by xi,j is computed as follows:

xi,j =

{
H

(
D
(
xi−1,j

))
, j = 0

H
([[

xi,k
]j−1

k=0
,U

(
xi+1,j−1

)])
, j > 0

(17)
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where the function H () is a convolution operation followed
by an activation function, U () represents the upsampling
layer, D () represents the downsampling layer, and [] rep-
resents the concatenation layer.

6) Loss Function: Wind field correction consists of two
subtasks: wind speed correction and wind direction cor-
rection. Wind speed correction focuses primarily on the
numerical magnitudes of U-Wind and V-Wind. In contrast,
wind direction correction pays more attention to the sign
correctness of U-Wind and V-Wind. Traditional regression
loss functions like MAE and MSE cannot satisfy the diverse
needs of these two different tasks. Zhang et al. proposed
dedicated loss functions for wind direction and speed cor-
rection respectively [33]. Using task-specific losses facilitates
rapid model convergence when training for these disparate
tasks. The loss functions are defined as follows: MAEdir

represents the wind direction loss function, and MAEspeed

represents the wind speed loss function.

MAEdir =
1

L

N∑
n=1

H∑
i=1

W∑
j=1


∣∣∣Un,i,j − Ûn,i,j

∣∣∣
+∣∣∣Vn,i,j − V̂n,i,j

∣∣∣
 (18)

MAEspeed =
1

L

N∑
n=1

H∑
i=1

W∑
j=1

∣∣∣∣∣∣∣∣
√
U2
n,i,j + V 2

n,i,j

−√
Û2
n,i,j + V̂ 2

n,i,j

∣∣∣∣∣∣∣∣ (19)

where L is the product of N , H , and W , N is the product
of the number of samples per batch B, and the length of the

output time sequence T . Furthermore, H and W represent
the height and width of the model’s output, respectively.

IV. EXPERIMENTS

A. Experiment data

The experimental data used in this study originated from
historical wind field data obtained from the Anshan region
in Liaoning Province, China, covering the period from 2017
to 2019. The data from 2017 and 2018 formed the training
set, while the 2019 data served as the test set. The data
set comprised wind field numerical forecasts issued by EC
and real wind field measurement data supplied by the China
National Meteorological Center. The model training utilized
the U-Wind, V-Wind, and surface pressure features from
EC’s wind field numerical forecast and the U-Wind and V-
Wind features from the actual wind field data. The dataset
had a temporal resolution of 3 hours and a spatial resolution
of 64*64 grid cells based on longitude and latitude.

B. Data Preprocessing and Sample Construction

To address the issue of prediction errors accumulating with
increasing time steps in the multi-step prediction process of
the RNN model, a strategy is employed where multi-step pre-
dictions are decomposed into multiple single-step predictions
[37]. A unique single-time-step rolling method is employed
to construct samples based on the data characteristics. In
this method, the EC input features closest to the prediction
time point are provided at each step throughout the entire
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prediction horizon. These features include U-Wind and V-
Wind data, along with other relevant features for wind field
forecasting. This approach maximizes the utilization of the
available data for accurate predictions.

During preprocessing, U-Wind and V-Wind are not nor-
malized, as their signs hold wind direction information that
would be lost if normalized. In contrast, surface pressure
values are much larger in magnitude without directional
significance, so they are normalized to facilitate learning.
The normalization formula is as follows:

Xnorm =
X −Xmin

Xmax −Xmin
(20)

where X represents the original data, while Xmax and Xmin

denote the maximum and minimum values of the data,
respectively.

C. Evaluation MetricsEvaluation Metrics

The model’s predictive targets are U-Wind and V-Wind,
which need to be converted into wind speed and wind
direction before error calculation can be performed. The
functions for converting U-Wind and V-Wind into wind
speed and wind direction are shown in Equation (21) and
Equation (22), respectively.

speed =
√
U2 +V2 (21)

dir =


270− arctan (V/U) ∗ 180/π U > 0
90− arctan (V/U) ∗ 180/π U < 0

180 U = 0andV > 0
360 U = 0andV < 0
0 U = 0andV = 0

(22)

To intuitively evaluate the model’s performance, two eval-
uation metrics are used to assess the model’s performance
in wind speed correction and wind direction correction,
respectively. For wind speed correction, the Mean Absolute
Error (MAE) function is used to calculate the error between
the predicted wind speed and the actual wind speed, as
defined in Equation (23). For wind direction correction,
according to the “QXT 229–2014 Verification Method for

Wind Forecast”, the MAEd function is used to calculate the
error between the corrected wind direction value and the
actual value, as defined in Equation (24) [14].

MAE =
1

T ∗H ∗W

T∑
t=1

H∑
i=1

W∑
j=1

|yt,i,j − ŷt,i,j | (23)

MAEd =
1

T ∗H ∗W

T∑
t=1

H∑
i=1

W∑
j=1

|Et,i,j | (24)

En,i,j

 Dn,i,j −180 ≤ Dn,i,j ≤ 180
Dn,i,j + 360 Dn,i,j < −180
Dn,i,j − 360 Dn,i,j > 180

(25)

Dn,i,j = d̂irn,i,j − dirn,i,j (26)

where T represents the length of the output time sequence,
while H and W denote the height and width of the study
area, respectively. In this context, T is set to 4, both H and
W are set to 64.

D. Experimental Results and Analysis

TABLE I
COMPARISON MAE RESULTS OF DIFFERENT MODELS IN WIND SPEED

CORRECTION TASK

Models 3h 6h 9h 12h

PredRNN[20] 0.5908 0.6493 0.6717 0.6797
PredRNN++[21] 0.5844 0.6482 0.6701 0.6755
CubicLSTM[22] 0.5833 0.6474 0.6670 0.6746

MIM[23] 0.5817 0.6478 0.6672 0.6720
Conv-TT-LSTM[25] 0.5883 0.6437 0.6636 0.6703
MotionPredRnn[26] 0.5815 0.6387 0.6608 0.6683

SimVP[27] 0.6043 0.6575 0.6762 0.6830
MotionUVRNN 0.5667 0.6252 0.6494 0.6499
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TABLE II
COMPARISON MAED RESULTS OF DIFFERENT MODELS IN WIND

DIRECTION CORRECTION TASK

Models 3h 6h 9h 12h

PredRNN 37.9151 41.4038 42.6962 42.8014
PredRNN++ 37.8137 41.3412 42.5241 42.7533
CubicLSTM 37.6307 41.2683 42.3559 42.7225

MIM 37.7903 41.1996 42.4195 42.5823
Conv-TT-LSTM 37.7744 41.2044 42.3736 42.4729
MotionPredRnn 37.4989 41.1435 42.2130 42.3568

SimVP 36.8724 40.1874 41.3368 41.5858
MotionUVRNN 36.2234 38.9162 39.9073 40.2750

A quantitative analysis of the performance of MotionU-
VRNN in wind speed and wind direction correction tasks
has been conducted. The analysis results are shown in Table
I and Table II, respectively. The MAE evaluation metric of
MotionUVRNN in the wind speed correction task outper-
forms all comparison models. Compared with MotionPre-
dRnn, which performs best among the comparison models,
the MAE for future 3, 6, 9, and 12 hours has been reduced
by 0.0148, 0.0135, 0.0114, and 0.0184, respectively. In the
wind direction correction task, the MAEd evaluation metric
of MotionUVRNN also achieved the best results. Compared
with SimVP, which performs best in the wind direction task
among the comparison models, the MAEd loss values for
future 3, 6, 9, and 12 hours have been reduced by 0.6490,
1.2712, 1.4295, and 1.3108, respectively. We calculated the
error between the EC wind field forecast and the actual
values, with a wind speed error (MAE) of 1.2153 and a wind
direction error (MAEd) of 46.4317. It is evident that the error
values of MotionUVRNN for future 3, 6, 9, and 12 hours are
significantly lower than those before correction. The error in
the wind speed correction task has decreased by 53.37% to
46.52%, and the error in the wind direction correction task
has decreased by 21.99% to 13.26%.

3h 6h 9h 12h
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Fig. 5. Framewise MAE comparison

Figures 5 and 6 provide a more detailed step-by-step
comparison of evaluation metrics. The figures show that the
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Fig. 6. Framewise MAEd comparison

MotionUVRNN model outperforms the current mainstream
spatiotemporal sequence prediction models in both wind
direction and wind speed correction tasks.

E. Ablation experiment

We conducted an ablation study on MotionUVRNN to
evaluate the contribution of the Corrector module by com-
paring model performance with and without it. The results
show that with the introduction of the Encoder and Corrector
modules, the model’s performance on these metrics has
improved. The experimental results are shown in Table III
and Table IV, respectively. In the tables, the symbols w and
w/o represent with and without, respectively. Meanwhile E
and C denote Encoder and Corrector, respectively.

TABLE III
ABLATION EXPERIMENT OF MOTIONUVRNN ON WIND SPEED TASK

Module 3h 6h 9h 12h

w/o C 0.5695 0.6264 0.6507 0.6528
w E, w C 0.5667 0.6252 0.6494 0.6499

TABLE IV
ABLATION EXPERIMENT OF MOTIONUVRNN ON WIND DIRECTION

TASK

Module 3h 6h 9h 12h

w/o C 36.8093 40.0757 41.0562 41.3456
w E, w C 36.2234 38.9162 39.9073 40.2750

To visually demonstrate the wind field correction results
and ablation study, we have created visualizations of wind
field data in the research area. These visualizations show the
wind speed and wind direction correction results, as shown in
Fig. 7. In the figures, the arrows indicate the wind direction
at each location, with the length representing the wind speed
magnitude.
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(a) EC Forecast (b) TRUE Wind

(c) MotionUVRNN(w/o C) (d) MotionUVRNN(w E, w C)

Fig. 7. Example of Correction Results for Different Models

As shown in Fig. 7(b), the real wind field exhibits complex
spatial patterns. In contrast, the EC forecast in Fig. 7(a) can
only roughly capture the overall wind trends, with significant
deficiencies in local details. After MotionUVRNN(w/o C)
correction, the wind field in Fig. 7(c) shows greatly improved
details compared to before correction. This enhancement
stems from the Encoder, which can model the wind field’s
motion trend and transient variation in a unified manner.
Its internal RS-LSTM units can also separately capture the
dynamic patterns of U-Wind and V-Wind at the same location
in the wind field.

Introducing the Corrector module further refines the local
depictions in Fig. 7(d) to be closer to the real wind field
versus Fig. 7(c). This is because the wind field features in
local areas of the wind field are likely to be consistent. Since
the spatiotemporal sequence prediction model composed of

a combination of convolution and LSTM units is limited
by its number of layers, it is difficult to fully exploit the
deep information contained in the wind field. Therefore, it
is necessary to use multi-layer convolutional models to fur-
ther process the features generated after the spatiotemporal
prediction model extraction. The convolution operation and
up and downsampling operations in the Corrector module
help the model learn the multi-scale information hidden in
the wind field, thereby enhancing the model’s performance
in wind field correction.

F. Experimental Details

Given the transient and abrupt nature of wind field varia-
tions, we have chosen an input sequence length of S=7 and
an output sequence length of T=4. Furthermore, the changes
in the wind field are closely related to surface pressure [38].
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The high and low pressure determine the wind direction, and
the size of the pressure difference affects the wind speed.
This study introduces surface pressure as an auxiliary feature
to improve the accuracy of correcting the EC wind field
forecast.

In order to ensure the fairness of the experimental results,
this study adopts the same experimental settings for all
models involved in the comparison. The hidden state size is
configured as 48 for all RNN structure models, excluding the
SimVP convolutional network, with a stacking of 4 layers.
In the experiment, we employed Adam as the optimizer
and initialized the learning rate to 0.00006 for the wind
speed correction task and 0.00004 for the wind direction
correction task. During training, we used a batch size of 16
and conducted training for 30 epochs before termination.

V. CONCLUSION

This work transforms wind field correction into a spa-
tiotemporal sequence forecasting problem, proposing Mo-
tionUVRNN well suited for short-term wind field forecast
correction. MotionUVRNN can effectively correct short-
term EC wind field forecasts for the upcoming 12 hours
simultaneously. Compared to the original EC forecasts, Mo-
tionUVRNN achieves a significant reduction in errors across
the 3-12 hour horizons. Specifically, it decreases wind speed
errors by 53.37% to 46.52%, and reduces wind direction
errors by 21.99% to 13.26%.

Furthermore, MotionUVRNN outperforms current main-
stream spatiotemporal models in wind field correction tasks,
highlighting its effectiveness. For future work, we plan
to incorporate physical constraints to further enhance the
model’s performance. In summary, this research lays the
groundwork for further improving the accuracy of wind
field forecasts, particularly by enhancing numerical weather
prediction models using deep learning techniques.

REFERENCES

[1] Y. Jin, S. Wang, Z. Ling, D. Wang, and G. Wang, “A hybrid
prediction framework based on deep learning for wind power,” in 2023
3rd International Conference on Neural Networks, Information and
Communication Engineering (NNICE). IEEE, 2023, pp. 116–121.

[2] Yu Ye, Jinxing Che, and Heping Wang, ”Optimal Component IGSCV-
SVR Ensemble Model Improved by VMD for Ultra-short-term Wind
Speed Forecasting,” Engineering Letters, vol. 30, no.3, pp1166-1175,
2022

[3] W. J. Ross and M. Orr, “Predicting climate impacts to the olympic
games and fifa men’s world cups from 2022 to 2032,” Sport in Society,
vol. 25, no. 4, pp. 867–888, 2022.

[4] P. Bauer, A. Thorpe, and G. Brunet, “The quiet revolution of numerical
weather prediction,” Nature, vol. 525, no. 7567, pp. 47–55, 2015.

[5] X. Shen, J. Wang, Z. Li, D. Chen, and J. Gong, “Research and
operational development of numerical weather prediction in china,”
Journal of Meteorological Research, vol. 34, no. 4, pp. 675–698, 2020.

[6] M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert, M. Langguth,
L. H. Leufen, A. Mozaffari, and S. Stadtler, “Can deep learning
beat numerical weather prediction?” Philosophical Transactions of the
Royal Society A, vol. 379, no. 2194, p. 20200097, 2021.

[7] S. Vannitsem, J. B. Bremnes, J. Demaeyer, G. R. Evans, J. Flowerdew,
S. Hemri, S. Lerch, N. Roberts, S. Theis, A. Atencia et al., “Statistical
postprocessing for weather forecasts–review, challenges and avenues
in a big data world,” Bulletin of the American Meteorological Society,
pp. 1–44, 2020.

[8] D. He, Z. Zhou, Z. Kang, L. Liu et al., “Numerical studies on forecast
error correction of grapes model with variational approach,” Advances
in Meteorology, vol. 2019, 2019.

[9] A. Rincón, O. Jorba, M. Frutos, L. Alvarez, F. P. Barrios, and J. A.
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