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Abstract—The evolution of Digital Predistortion (DPD) for 

Power Amplifier (PA) linearization in wireless communications 
has seen a natural progression towards increasingly complex 
DPD models. This complexity directly correlates with 
improved accuracy in modeling PAs, thereby enhancing the 
linearization performance of DPD systems. As the demand for 
bandwidth and PA operation frequencies continues to rise, 
there is a growing trend towards achieving higher accuracy at 
the expense of increased complexity. This trend poses 
challenges for DPD design, necessitating the introduction of 
more complex algorithms to ensure effective PA linearization. 
This phenomenon is especially apparent in Volterra Series 
DPD algorithms, which are widely used for modelling 
nonlinear systems like PAs. This paper showcases the steps of 
reducing the modelling operations complexity of the Simplified 
Volterra (SV) method. The treated SV method presented in 
this paper is compared against the original SV method through 
simulation. The DPD model operations complexity is evaluated 
using the number of required multiplication operations. The 
DPD PA linearization performance is evaluated with respective 
model’s Normalized Mean Square Error (NMSE). A 57% 
reduction on the number of multiplication operations is 
observed in the treated SV against the original SV. Measured 
NMSE is similar for both models, indicating the treated SV 
model achieves this reduction in complexity without sacrificing 
linearization performance. 
 

Index Terms—digital predistortion, memory polynomial, PA 
linearization, Volterra Series, wireless communications 
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I. INTRODUCTION 

HE rise of Digital Predistortion (DPD) as one of the 
most reliable Power Amplifier (PA) Linearization 

method is not surprising when it is compared against the 
other PA linearization methods. DPD offers distinct 
advantages, such as straightforward implementation, power 
efficiency, and favourable trade-offs that lead to improved 
linearization outcomes [1], [2], [3], [4], [5].  

The DPD system aims to mitigate the non-linearity effects 
exhibited by the PA, encompassing amplitude distortions, 
phase distortions, adjacent channel interference and the 
notorious Memory Effects [6]. The non-linearity of the PA 
becomes evident when it operates beyond its saturation 
point, causing the output to plateau despite increasing input 
signal power. Today’s communication systems, with their 
escalating bandwidth demands, induce fluctuations in the 
PA’s input signal power, leading to undesirable spurious 
peaks and a high Peak to Average Power Ratio (PAPR) [7], 
[8]. Variations in electrical thermals introduce Memory 
Effects, where pass and present input signal values influence 
the current output signal values at the PA. These effects 
underscore the significance of DPD as an effective PA 
linearization tool. 

Fig. 1 shows a basic DPD block diagram redrawing from 
[9]. In the DPD system, the PA input signal is fed into the 
DPD function that is inversely non-linear to PA’s function. 
Subsequently, the output signal from this DPD block feeds 
into the PA. This sequential processing yields a linearized 
PA output, mitigating distortions in both amplitude and 
phase. For optimized linearizing performance, the DPD 
function must closely mirror the inversed non-linearity of 
the PA, further justifies the need for precise PA modelling.  

The modeling of PA nonlinearity exemplifies an 
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Fig. 1.  Diagram of a basic DPD block linearizing the PA. The PA input is 
pre-distorted with a function that is inversely non-linear with respect to the 
PA’s function (Redrawing based on [9]). 
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engineering paradox: as modeling accuracy improves, 
complexity escalates [10]. This trade-off is evident in widely-
used methods like the Volterra Series [11] frequently 
employed for modeling nonlinear systems such as PAs. 
Enhanced accuracy necessitates a substantial increase in the 
number of model coefficients, leading to an exponential rise 
in model operation complexity [3]. 

In [12], the diagonal kernels of the Volterra Series are 
extracted and leads to a more efficient algorithm, known as 
the Memory Polynomial (MP). Further modelling accuracy 
enhancing efforts is observed in [13], where  a treatment is 
introduced that considers both leading and lagging elements 
of the memorial point. This treatment results in Generalized 
MP (GMP), a modelling algorithm structure with a greater 
number of total summation branches compared to MP. 

GMP introduced in [13] is subsequently expanded into 
Simplified Volterra (SV) in [14], which serves as the focal 
point of this paper. The objective is to refine the SV modeling 
algorithm while preserving its linearization efficacy, with a 
specific focus on reducing model operations complexity.  

Section II of the paper describes the various DPD 
algorithms, starting with Volterra Series, Memory 
Polynomial (MP), Generalized MP (GMP), and finally to 
Simplified Volterra (SV). The treatment of SV is shown with 
the optimization steps. Section III describes the performance 
metrics used to measure the linearization performance of the 
treated SV algorithm against the original SV algorithm. 
Ensuring equitable comparison involves matching the 
number of model coefficients between the original and 
enhanced models, indicating identical model sizes. The 
widely used Normalized Mean Square Error (NMSE) 
calculation formula is presented to assess linearization 
performance. To evaluate model operations complexity, the 
multiplication operations required for SV and treated SV is 
each calculated and presented. Section IV presents the results 
harvested together with analysis. Section V concludes the 
paper and potential future research directions. 

II. MODEL DESCRIPTION 

A. Volterra Series 

The notable Volterra Series is shown below: 

𝑦(𝑡) = ∑ ∫ ⋯ ∫ ℎଶ௞ାଵ(𝜏ଶ௞ାଵ) ∏ 𝑧(𝑡 −௞ାଵ
௜ୀଵ௞

𝜏௜) ∏ 𝑧∗(𝑡 − 𝜏௜)𝑑𝜏ଶ௞ାଵ
ଶ௞ାଵ
௜ୀ௞ାଶ  (1) 

where 

ℎଶ௞ାଵ(𝜏ଶ௞ାଵ) =
ଵ

ଶమೖ ቀ
2𝑘 + 1

𝑘
ቁ ℎ෨ଶ௞ାଵ(𝜏ଶ௞ାଵ)𝑒ି௝ଶగቀ∑ ఛ೔ି∑ ఛ೔

మೖశభ
೔సೖశమ

ೖశభ
೔సభ ቁ  

In discrete-time domain,  (1) becomes the following: 

𝑦(𝑛) = ∑ ∑ ⋯ ∑ ℎଶ௞ାଵ(𝑙ଵ, 𝑙ଶ, ⋯ , 𝑙ଶ௞ାଵ) ∏ 𝑧(𝑛 −௞ାଵ
௜ୀଵ௟మೖశభ௟భ௞

𝑙௜) ∏ 𝑧∗(𝑛 − 𝑙௜)ଶ௞ାଵ
௜ୀ௞ାଶ  (2) 

The number of model coefficients in Volterra Series 
increases exponentially when the model dimensions increase. 

This introduces exponential increment in model complexity 
when the algorithm is configured to model PAs operating in 
high demand environments with high Memory Effects. This 
encourages researchers to find solutions to the complexity 
challenge presented. 

B. Memory Polynomial (MP) 

In [3], the diagonal kernels of Volterra Series are extracted, 
resulted in the Memory Polynomial (MP) with reduced 
complexity but with matching linearization performance. 

𝑧(𝑛) = ∑ ∑ 𝑎௞௤𝑥(𝑛 − 𝑞)|𝑥(𝑛 − 𝑞)|௞ିଵொ
௤ୀ଴

௄
௞ୀଵ

௞ ௢ௗௗ

  (3) 

Where 𝐾 is the non-linearity order, 𝑄 is the memory depth, 
𝑥(𝑛) is PA input signal, and 𝑎௞௤ are the model coefficients 

First, the input signal 𝑥(𝑛) is replaced with the output 
signal 𝑦(𝑛), then the Least Square Method together with the 
Moore-Penrose Inverse [15] is used to calculate the model 
coefficients: 

𝑧(𝑛) = ෍ ෍ 𝑎௞௤𝑦(𝑛 − 𝑞)|𝑦(𝑛 − 𝑞)|௞ିଵ

ொ

௤ୀ଴

௄

௞ୀଵ
௞ ௢ௗௗ

 

 (4) 

(4) in matrix form: 

𝑧 = 𝑌 ∙ 𝑎 (5) 

Where 

𝑧 = [𝑧(0), 𝑧(1), … , 𝑧(𝑁 − 1)]் (6) 

𝑌 = ൣ𝑦ଵ଴, … , 𝑦௄଴ , … , 𝑦ଵொ , … 𝑦௄ொ൧ (7) 

𝑦௄ொ = ൣ𝑦௄ொ(0), 𝑦௄ொ(1), … 𝑦௄ொ(𝑁 − 1)൧
்

 (8) 

𝑎 = ൣ𝑎ଵ଴, … , 𝑎௄଴, … , 𝑎ଵொ , … 𝑎௄ொ൧
்
 (9) 

To obtain the model coefficients, (5) could be rewritten 
as: 

𝒂 = (𝒀𝒄𝒐𝒏𝒋 ∙ 𝒀)ି𝟏𝒀𝒄𝒐𝒏𝒋𝒛 (10) 

C. Generalized MP (GMP) 

In [13], MP is further expanded to include the lagging and 
leading components of the respective input signal, with 
regards to the memory depth configured in the model. This 
yields the Generalized MP, shown in the equation below: 

𝑦ீெ௉(𝑛) = ෍ ෍ 𝑎௞௤𝑥(𝑛 − 𝑞)|𝑥(𝑛 − 𝑞)|௞

ொೌିଵ

௤ୀ଴

௄ೌିଵ

௞ୀ଴

+ 

෍ ෍ ෍ 𝑏௞௤௠𝑥(𝑛 − 𝑞)|𝑥(𝑛 − 𝑞 − 𝑙)|௞

௅್

௟ୀଵ

ொ್ିଵ

௤ୀ଴

௄್

௞ୀଵ

+ 

෍ ෍ ෍ 𝑐௞௤௠𝑥(𝑛 − 𝑞)|𝑥(𝑛 − 𝑞 + 𝑙)|௞

௅೎

௟ୀଵ

ொ೎ିଵ

௤ୀ଴

௄೎

௞ୀଵ

 

  (11) 
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Where 𝐾௔  , 𝐾௕ , 𝐾௖ , 𝑄௔ , 𝑄௕  , 𝑄௖ are the non-linearity order 

and memory depth dimensions respectively, and 𝐿௕ is the 
dimension for lagging component, while 𝐿௖ is the leading 
component model dimension. Respectively, 𝑎௞௤ , 𝑏௞௤௠ and 
𝑐௞௤௠  are the model coefficients. 

With a clear increase in model dimensions configurations 
and summation branches, the GMP increases in complexity 
compared to MP, but comes with improved linearization 
performance, strengthening the notion where model 
complexity is increased conveniently to improve PA 
modelling accuracies. 

D. Simplified Volterra (SV) 

GMP from [13] is then further expanded into Simplified 
Volterra in [14], for improvements in linearization 
performance, and is coined as Simplified Volterra (SV), as 
shown below: 

𝑦ௌ௏(𝑛) = ෍ ෍ 𝑎௞௤𝑥(𝑛 − q)|𝑥(𝑛 − q)|௞ିଵ

ொೌ

௤ୀ଴

௄ೌ

௞ୀଵ

+ 

෍ ෍ ෍ 𝑏௞௤௟𝑥(𝑛 − 𝑞)|𝑥(𝑛 − 𝑞 − 𝑙)|௞

௅್

௟ୀଵ

ொ್

௤ୀ଴

௄್

௞ୀଵ

+ 

෍ ෍ ෍ 𝑐௞௤௟𝑥(𝑛 − 𝑞)|𝑥(𝑛 − 𝑞 + 𝑙)|௞

௅೎

௟ୀଵ

ொ೎

௤ୀ଴

௄೎

௞ୀଵ

+ 

෍ ෍ ෍ 𝑑௞௤௟𝑥∗(𝑛 − 𝑞)𝑥ଶ(𝑛 − 𝑞 − 𝑙)|𝑥(𝑛 − 𝑞 − 𝑙)|௞

௅೏

௟ୀଵ

ொ೏

௤ୀ଴

௄೏

௞ୀଵ

+ 

෍ ෍ ෍ 𝑒௞௤௟𝑥∗(𝑛 − 𝑞)𝑥ଶ(𝑛 − 𝑞 + 𝑙)|𝑥(𝑛 − 𝑞 + 𝑙)|௞

௅೐

௟ୀଵ

ொ೐

௤ୀ଴

௄೐

௞ୀଵ

 

 (12) 

 
Where 𝐾௔ , 𝐾௕ , 𝐾௖ , 𝐾ௗand 𝐾௘ are the non-linearity order 

dimensions. 𝑄௔  , 𝑄௕  , 𝑄௖ , 𝑄ௗ  and 𝑄௘  are the memory depths 
respectively. 𝐿௕ and 𝐿ௗ  are the model dimension for lagging 
component, while 𝐿௖ and 𝐿௘ are the leading component model 
dimensions. Similarly, the model coefficients are 𝑎௞௤, 𝑏௞௤௟, 𝑐௞௤௟, 

𝑑௞௤௟ and 𝑒௞௤௟ . 

E. Simplified Volterra with Binomial Reduction (SV-BR) 

The optimization of SV through Binomial Reduction is 
inspired by the work in [16], [17] on MP, and then in [18] on 
GMP, where evidently the Binomial Reduction optimization 
method could be applied in MP based DPD algorithms. 

SV from (12) is rephrased into below, to have both k and q 
to start from 0: 

𝑦ௌ௏(𝑛) = ෍ ෍ 𝑎௞௤𝑥(𝑛 − q)|𝑥(𝑛 − q)|௞

ொೌ

௤ୀ଴

௄ೌିଵ

௞ୀ଴

+ 

෍ ෍ ෍ 𝑏௞௤௟𝑥(𝑛 − 𝑞)|𝑥(𝑛 − 𝑞 − 𝑙)|௞ାଵ

௅್

௟ୀଵ

ொ್

௤ୀ଴

௄್ିଵ

௞ୀ଴

+ 

෍ ෍ ෍ 𝑐௞௤௟𝑥(𝑛 − 𝑞)|𝑥(𝑛 − 𝑞 + 𝑙)|௞ାଵ

௅೎

௟ୀଵ

ொ೎

௤ୀ଴

௄೎ିଵ

௞ୀ଴

+ 

෍ ෍ ෍ 𝑑௞௤௟𝑥∗(𝑛 − 𝑞)𝑥ଶ(𝑛 − 𝑞 − 𝑙)|𝑥(𝑛 − 𝑞 − 𝑙)|௞ାଵ

௅೏

௟ୀଵ

ொ೏

௤ୀ଴

௄೏ିଵ

௞ୀ଴

+ 

෍ ෍ ෍ 𝑒௞௤௟𝑥∗(𝑛 − 𝑞)𝑥ଶ(𝑛 − 𝑞 + 𝑙)|𝑥(𝑛 − 𝑞 + 𝑙)|௞ାଵ

௅೐

௟ୀଵ

ொ೐

௤ୀ଴

௄೐ିଵ

௞ୀ଴

 

 (13) 

The absolutes in the basis functions are expanded: 
 

𝑦ௌ௏(𝑛) = ෍ ෍ 𝑎௞௤𝑥(𝑛

ொೌ

௤ୀ଴

௄ೌିଵ

௞ୀ଴

− q)ට𝑥(𝑛 − 𝑞)௥௘௔௟
ଶ

+ 𝑥(𝑛 − 𝑞)௜௠௔௚
ଶ

௞

+ 

෍ ෍ ෍ 𝑏௞௤௟𝑥(𝑛

௅್

௟ୀଵ

ொ್

௤ୀ଴

௄್ିଵ

௞ୀ଴

− 𝑞)ට𝑥(𝑛 − 𝑞 − 𝑙)௥௘௔௟
ଶ

+ 𝑥(𝑛 − 𝑞 − 𝑙)௜௠௔௚
ଶ

௞ାଵ

+ 

෍ ෍ ෍ 𝑐௞௤௟𝑥(𝑛

௅೎

௟ୀଵ

ொ೎

௤ୀ଴

௄೎ିଵ

௞ୀ଴

− 𝑞)ට𝑥(𝑛 − 𝑞 + 𝑙)௥௘௔௟
ଶ

+ 𝑥(𝑛 − 𝑞 + 𝑙)௜௠௔௚
ଶ

௞ାଵ

+ 

෍ ෍ ෍ 𝑑௞௤௟𝑥∗(𝑛 − 𝑞)𝑥ଶ(𝑛 − 𝑞

௅೏

௟ୀଵ

ொ೏

௤ୀ଴

௄೏ିଵ

௞ୀ଴

− 𝑙)ට𝑥(𝑛 − 𝑞 − 𝑙)௥௘௔௟
ଶ

+ 𝑥(𝑛 − 𝑞 − 𝑙)௜௠௔௚
ଶ

௞ାଵ

+ 

෍ ෍ ෍ 𝑒௞௤௟𝑥∗(𝑛 − 𝑞)𝑥ଶ(𝑛 − 𝑞

௅೐

௟ୀଵ

ொ೐

௤ୀ଴

௄೐ିଵ

௞ୀ଴

+ 𝑙)ට𝑥(𝑛 − 𝑞 + 𝑙)௥௘௔௟
ଶ

+ 𝑥(𝑛 − 𝑞 + 𝑙)௜௠௔௚
ଶ

௞ାଵ

 

 (14) 

Rearranging (14): 

𝑦ௌ௏(𝑛) = ෍ ෍ 𝑎௞௤𝑥(𝑛

ொೌ

௤ୀ଴

௄ೌିଵ

௞ୀ଴

− q)ൣ𝑥(𝑛 − 𝑞)௥௘௔௟
ଶ

+ 𝑥(𝑛 − 𝑞)௜௠௔௚
ଶ

൧
௞
ଶ + 
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෍ ෍ ෍ 𝑏௞௤௟𝑥(𝑛

௅್

௟ୀଵ

ொ್

௤ୀ଴

௄್ିଵ

௞ୀ଴

− 𝑞)ൣ𝑥(𝑛 − 𝑞 − 𝑙)௥௘௔௟
ଶ

+ 𝑥(𝑛 − 𝑞 − 𝑙)௜௠௔௚
ଶ

൧
ଵ
ଶൣ𝑥(𝑛 − 𝑞 − 𝑙)௥௘௔௟

ଶ

+ 𝑥(𝑛 − 𝑞 − 𝑙)௜௠௔௚
ଶ

൧
௞
ଶ + 

෍ ෍ ෍ 𝑐௞௤௟𝑥(𝑛

௅೎

௟ୀଵ

ொ೎

௤ୀ଴

௄೎ିଵ

௞ୀ଴

− 𝑞)ൣ𝑥(𝑛 − 𝑞 − 𝑙)௥௘௔௟
ଶ

+ 𝑥(𝑛 − 𝑞 − 𝑙)௜௠௔௚
ଶ

൧
ଵ
ଶൣ𝑥(𝑛 − 𝑞 + 𝑙)௥௘௔௟

ଶ

+ 𝑥(𝑛 − 𝑞 − 𝑙)௜௠௔௚
ଶ

൧
௞
ଶ + 

෍ ෍ ෍ 𝑑௞௤௟𝑥∗(𝑛 − 𝑞)𝑥ଶ(𝑛 − 𝑞

௅೏

௟ୀଵ

ொ೏

௤ୀ଴

௄೏ିଵ

௞ୀ଴

− 𝑙)ൣ𝑥(𝑛 − 𝑞 − 𝑙)௥௘௔௟
ଶ

+ 𝑥(𝑛 − 𝑞 − 𝑙)௜௠௔௚
ଶ

൧
ଵ
ଶൣ𝑥(𝑛 − 𝑞 − 𝑙)௥௘௔௟

ଶ

+ 𝑥(𝑛 − 𝑞 − 𝑙)௜௠௔௚
ଶ

൧
௞
ଶ + 

෍ ෍ ෍ 𝑒௞௤௟𝑥∗(𝑛 − 𝑞)𝑥ଶ(𝑛 − 𝑞

௅೐

௟ୀଵ

ொ೐

௤ୀ଴

௄೐ିଵ

௞ୀ଴

+ 𝑙)ൣ𝑥(𝑛 − 𝑞 + 𝑙)௥௘௔௟
ଶ

+ 𝑥(𝑛 − 𝑞 + 𝑙)௜௠௔௚
ଶ

൧
ଵ
ଶൣ𝑥(𝑛 − 𝑞 + 𝑙)௥௘௔௟

ଶ

+ 𝑥(𝑛 − 𝑞 + 𝑙)௜௠௔௚
ଶ

൧
௞
ଶ 

 (15) 

Using the binomial theorem: 

𝑆𝑖𝑛𝑐𝑒 (𝑎 + 𝑏)௛ = ෍ ൫௛
௜
൯𝑎௜𝑏௛ି௜

௛

௜ୀ଴
= ෍ ൫௛

௜
൯𝑏௜𝑎௛ି௜

௛

௜ୀ଴
 (16) 

Let ℎ =  
௞

ଶ
  , 𝑎 = 𝑥(𝑛 − 𝑞)௥௘௔௟

ଶ and 𝑏 = 𝑥(𝑛 − 𝑞)௜௠௔௚
ଶ,   

Fig. 2.  Plot of Binomial Basis Function (y) in (22) against xj, when h is 3. 

Fig. 3.  Plot of Binomial Basis Function (y) in (22) against xj, when h is 4. 

Fig. 4.  Plot of Binomial Basis Function (y) in (22) against xj, when h is 5. 

IAENG International Journal of Computer Science

Volume 51, Issue 7, July 2024, Pages 801-812

 
______________________________________________________________________________________ 



 

Basis function of SV is restructured as: 

ൣ𝑥(𝑛 − 𝑞)௥௘௔௟
ଶ

+ 𝑥(𝑛 − 𝑞)௜௠௔௚
ଶ

൧
௛

= ෍ ൫௛
௜
൯

௛

௜ୀ଴
ൣ𝑥(𝑛 −

𝑞)௥௘௔௟
ଶ

൧
௜
ൣ𝑥(𝑛 − 𝑞)௜௠௔௚

ଶ
൧

௛ି௜
 (17) 

ൣ𝑥(𝑛 − 𝑞)௥௘௔௟
ଶ

+ 𝑥(𝑛 − 𝑞)௜௠௔௚
ଶ

൧
௛

= ෍ ൫
௛
௜
൯

௛

௜ୀ଴
ൣ𝑥(𝑛 −

𝑞)௜௠௔௚
ଶ

൧
௜
ൣ𝑥(𝑛 − 𝑞)௥௘௔௟

ଶ
൧

௛ି௜
 (18) 

Where 

൬
ℎ

𝑖
൰ =

ℎ!

𝑖! (ℎ − 𝑖)!
 

 

Restructuring (17) into the following: 

෍ ൫
௛
௜
൯

௛

௜ୀ଴
ൣ𝑥(𝑛 − 𝑞)௥௘௔௟

ଶ
൧

௜
ൣ𝑥(𝑛 − 𝑞)௜௠௔௚

ଶ
൧

௛ି௜
=

෍ ൫௛
௜
൯

௛

௜ୀ଴
ൣ𝑥(𝑛 − 𝑞)௥௘௔௟

ଶ௜
൧ ൤

௫(௡ି௤)೔೘ೌ೒
మ೓

௫(௡ି௤)೔೘ೌ೒
మ೔ ൨ =  𝑥(𝑛 −

𝑞)௜௠௔௚
ଶ௛

෍ ൫௛
௜
൯

௛

௜ୀ଴
൤

௫(௡ି௤)ೝ೐ೌ೗

௫(௡ି௤)೔೘ೌ೒
൨

ଶ௜

 (19) 

Restructuring (18) into the following: 

෍ ൫
௛
௜
൯

௛

௜ୀ଴
ൣ𝑥(𝑛 − 𝑞)௜௠௔௚

ଶ
൧

௜
ൣ𝑥(𝑛 − 𝑞)௥௘௔௟

ଶ
൧

௛ି௜
=

෍ ൫
௛
௜
൯

௛

ூୀ଴
ൣ𝑥(𝑛 − 𝑞)௜௠௔௚

ଶ௜
൧ ൤

௫(௡ି௤)ೝ೐ೌ೗
మ೓

௫(௡ି௤)ೝ೐ೌ೗
మ೔ ൨ =  𝑥(𝑛 −

𝑞)௥௘௔௟
ଶ௛

෍ ൫௛
௜
൯

௛

௜ୀ଴
ቂ

௫(௡ି௤)೔೘ೌ೒

௫(௡ି௤)ೝ೐ೌ೗
ቃ

ଶ௜

  (20) 

The binomial basis function of (19) is extracted and let 

෍ ൫௛
௜
൯

௛

௜ୀ଴
൤

௫(௡ି௤)ೝ೐ೌ೗

௫(௡ି௤)೔೘ೌ೒
൨

ଶ௜

= ෍ ൫௛
௜
൯

௛

௜ୀ଴
𝑥ଶ௜ (21) 

The binomial basis function of (20) is extracted and let 

෍ ൫
௛
௜
൯

௛

௜ୀ଴
ቂ

௫(௡ି௤)೔೘ೌ೒

௫(௡ି௤)ೝ೐ೌ೗
ቃ

ଶ௜

= ෍ ൫
௛
௜
൯

௛

௜ୀ଴
𝑥ଶ௜ (22) 

Let 

𝑦 = ෍ ൫௛
௜
൯

௛

௜ୀ଴
𝑥ଶ௜ ≈ 𝑥௝ (23) 

Equation (23) is then expanded and explored in Figs. 2 to 4 
and summarized in Table I.  

Let 

𝑦 = ෍ ൫
௛
௜
൯

௛

௜ୀ଴
𝑥ଶ௜ ≈ 𝑥ଶ௛  (24) 

Substituting (24) into (21) and  (22), then to (19) and 
(20), and finally in (15), results in SV with Binomial 
Reduction below 

𝑦ௌ௏ି஻ோ(𝑛) = ෍ ෍ 𝑎௞௤𝑥(𝑛 − q)𝑥(𝑛 − 𝑞)௥௘௔௟
௞ିଵ

ொೌ

௤ୀ଴

௄ೌ

௞ୀଵ

+ 

෍ ෍ ෍ 𝑏௞௤௟𝑥(𝑛 − 𝑞)𝑥(𝑛 − 𝑞 − 𝑙)௥௘௔௟
௞

௅್

௟ୀଵ

ொ್

௤ୀ଴

௄್

௞ୀଵ

+ 

෍ ෍ ෍ 𝑐௞௤௟𝑥(𝑛 − 𝑞)𝑥(𝑛 − 𝑞 + 𝑙)௥௘௔௟
௞

௅೎

௟ୀଵ

ொ೎

௤ୀ଴

௄೎

௞ୀଵ

+ 

෍ ෍ ෍ 𝑑௞௤௟𝑥
∗(𝑛 − 𝑞)𝑥ଶ(𝑛 − 𝑞 − 𝑙)𝑥(𝑛 − 𝑞 − 𝑙)௥௘௔௟

௞

௅೏

௟ୀଵ

ொ೏

௤ୀ଴

௄೏

௞ୀଵ

+ 

෍ ෍ ෍ 𝑒௞௤௟𝑥
∗(𝑛 − 𝑞)𝑥ଶ(𝑛 − 𝑞 + 𝑙)𝑥(𝑛 − 𝑞 + 𝑙)௥௘௔௟

௞

௅೐

௟ୀଵ

ொ೐

௤ୀ଴

௄೐

௞ୀଵ

 

 (25) 

𝑦ௌ௏ି஻ோ(𝑛) = ෍ ෍ 𝑎௞௤𝑥(𝑛 − q)𝑥(𝑛 − 𝑞)௜௠௔௚
௞ିଵ

ொೌ

௤ୀ଴

௄ೌ

௞ୀଵ

+ 

෍ ෍ ෍ 𝑏௞௤௟𝑥(𝑛 − 𝑞)𝑥(𝑛 − 𝑞 − 𝑙)௜௠௔௚
௞

௅್

௟ୀଵ

ொ್

௤ୀ଴

௄್

௞ୀଵ

+ 

෍ ෍ ෍ 𝑐௞௤௟𝑥(𝑛 − 𝑞)𝑥(𝑛 − 𝑞 + 𝑙)௜௠௔௚
௞

௅೎

௟ୀଵ

ொ೎

௤ୀ଴

௄೎

௞ୀଵ

+ 

෍ ෍ ෍ 𝑑௞௤௟𝑥∗(𝑛 − 𝑞)𝑥ଶ(𝑛 − 𝑞 − 𝑙)𝑥(𝑛 − 𝑞 − 𝑙)௜௠௔௚
௞

௅೏

௟ୀଵ

ொ೏

௤ୀ଴

௄೏

௞ୀଵ

+ 

෍ ෍ ෍ 𝑒௞௤௟𝑥
∗(𝑛 − 𝑞)𝑥ଶ(𝑛 − 𝑞 + 𝑙)𝑥(𝑛 − 𝑞 + 𝑙)௜௠௔௚

௞

௅೐

௟ୀଵ

ொ೐

௤ୀ଴

௄೐

௞ୀଵ

 

 (26) 

TABLE I 
SUMMARY OF FIG 2, 3 AND 4 

When h=3 When h=4 When h=5 

𝑦 = ෎ ൬
3

𝑖
൰

ଷ

௜ୀ଴

𝑥ଶ௜ ≈ 𝑥଺ 𝑦 = ෎ ൬
4

𝑖
൰

ସ

௜ୀ଴

𝑥ଶ௜ ≈ 𝑥଼ 𝑦 = ෎ ൬
5

𝑖
൰

ହ

௜ୀ଴

𝑥ଶ௜ ≈ 𝑥ଵ଴  
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In the following sections, (26) will be referred as the 
treated SV: SV with Binomial Reduction (SV-BR). Based on 
the binomial reduction of MP in [19], (26) is predicted to have 
better linearization performance compared to (25)  

III. PERFORMANCE METRICS 

A. Model Coefficients 

To achieve meaningful comparison between the treated 
algorithm against the original algorithm, it is crucial that both 
algorithms are configured with identical numbers of model 
coefficients. When the two algorithms possess the same 
number of model coefficients, their model sizes are identical. 
This ensures the comparison of model operations complexity 
remains valid, unaffected by differences in model sizes. 

The model coefficients calculation of SV as obtained from 
[20] is as follows: 

 𝐾௔( 𝑀௔ + 1) +  𝐾௕( 𝑀௕ + 1)𝐿௕ + 𝐾௖( 𝑀௖ + 1)𝐿௖ +
𝐾ௗ( 𝑀ௗ + 1)𝐿ௗ + 𝐾௘( 𝑀௘ + 1)𝐿௘ (27) 

Similarly, the model coefficients for the treated SV 
method, SV with Binomial Reduction has an identical 
calculation formula as above (24). 

To identify the right model dimensions, the same general 
sweep method in [14] is applied, where the non-linearity 
orders are swept from 1 to 8, memory depths are swept from 
1 to 5, and the leading/lagging components are swept from 1 
to 3. 

B. Normalized Mean Square Error (NMSE) 

The infamous Normalized Mean Square Error (NMSE) has 
been used widely to evaluate the linearization performance of 
DPD models. The predistorted output is compared against the 
ideal PA output, where a lower number of NMSE (dB) 
indicates a smaller magnitude of error against the ideal 
output. 

The general NMSE calculation formula for DPD [20] is 
shown below: 

𝑁𝑀𝑆𝐸(𝑑𝐵) = 10 𝑙𝑜𝑔
∑ ห௬೔೏೐ೌ೗(௡)ି௬೛೏(௡)หಿ

೙సభ  మ

∑ |௬೔೏೐ೌ೗(௡)|ಿ
೙సభ  మ

 (28) 

 
The NMSE calculation of SV is shown as: 

𝑁𝑀𝑆𝐸ௌ௏(𝑑𝐵) = 10 𝑙𝑜𝑔
∑ ห௬೔೏೐ೌ೗(௡)ି௬೛೏(ೄೇ)(௡)หಿ

೙సభ  మ

∑ |௬೔೏೐ೌ೗(௡)|ಿ
೙సభ  మ

 (29) 

 
Similarly, the NMSE calculation for the treated SV 

method: SV with Binomial Reduction (SV-BR), is shown 
below: 

𝑁𝑀𝑆𝐸ௌ௏ି஻ (𝑑𝐵) = 10 𝑙𝑜𝑔
∑ ห௬೔೏೐ೌ೗(௡)ି௬೛೏(ೄೇషಳೃ)(௡)หಿ

೙సభ  మ

∑ |௬೔೏೐ೌ೗(௡)|ಿ
೙సభ  మ

 (30) 

C. Model Operations Complexity (Multiplication 
Operations Calculation) 

To evaluate the model operations complexity of SV, the 
multiplication operations calculations equation is as follows: 

𝑁𝑜. 𝑜𝑓 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑆𝑉 

= ෍ ෍ ቀ1 + 3൫𝑘 − 1൯ቁ

𝑄𝑎

𝑞=0

𝐾𝑎

𝑘=1

+ ෍ ෍ ෍ ቀ1 + 3൫𝑘൯ቁ

𝐿𝑏

𝑙=1

𝑄𝑏

𝑞=0

𝐾𝑏

𝑘=1

+ ෍ ෍ ෍ ቀ1 + 3൫𝑘൯ቁ

𝐿𝑐

𝑙=1

𝑄𝑐

𝑞=0

𝐾𝑐

𝑘=1

+ ෍ ෍ ෍ ቀ3 + 3൫𝑘൯ቁ

𝐿𝑑

𝑙=1

𝑄𝑑

𝑞=0

𝐾𝑑

𝑘=1

+ ෍ ෍ ෍ ቀ3 + 3൫𝑘൯ቁ

𝐿𝑒

𝑙=1

𝑄𝑒

𝑞=0

𝐾𝑒

𝑘=1

=
𝐾𝑎(3𝐾𝑎 − 1)൫𝑄𝑎 + 1൯

2

+
𝐾𝑏𝐿𝑏൫3𝐾𝑏 + 5൯൫𝑄𝑏 + 1൯

2

+
𝐾𝑐𝐿𝑐൫3𝐾𝑐 + 5൯൫𝑄𝑐 + 1൯

2

+
3𝐾𝑑𝐿𝑑(𝐾𝑑 + 3)൫𝑄𝑑 + 1൯

2

+
3𝐾𝑒𝐿𝑒(𝐾𝑒 + 3)൫𝑄𝑒 + 1൯

2
 

 (31) 

To evaluate the model operations complexity of the treated 
SV: SV-BR, the multiplication operations calculations 
equation is shown below: 

𝑁𝑜. 𝑜𝑓 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑆𝑉 − 𝐵𝑅 

= ෍ ෍ ቀ1 + 1൫𝑘 − 1൯ቁ

𝑄𝑎

𝑞=0

𝐾𝑎

𝑘=1

+ ෍ ෍ ෍ ቀ1 + 1൫𝑘൯ቁ

𝐿𝑏

𝑙=1

𝑄𝑏

𝑞=0

𝐾𝑏

𝑘=1

+ ෍ ෍ ෍ ቀ1 + 1൫𝑘൯ቁ

𝐿𝑐

𝑙=1

𝑄𝑐

𝑞=0

𝐾𝑐

𝑘=1

+ ෍ ෍ ෍ ቀ3 + 1൫𝑘൯ቁ

𝐿𝑑

𝑙=1

𝑄𝑑

𝑞=0

𝐾𝑑

𝑘=1

+ ෍ ෍ ෍ ቀ3 + 1൫𝑘൯ቁ

𝐿𝑒

𝑙=1

𝑄𝑒

𝑞=0

𝐾𝑒

𝑘=1

=
1
2

𝐾𝑎(𝐾𝑎 + 1)൫𝑄𝑎 + 1൯

+
1
2

𝐾𝑏𝐿𝑏(𝐾𝑏 + 3)(𝑄
𝑏

+ 1)

+
1
2

𝐾𝑐𝐿𝑐(𝐾𝑐 + 3)(𝑄
𝑐

+ 1)

+
1
2

𝐾𝑑𝐿𝑑(𝐾𝑑 + 7)(𝑄𝑑 + 1)

+
1
2

𝐾𝑒𝐿𝑒(𝐾𝑒 + 7)(𝑄𝑒 + 1) 

 (32) 

D. Model Operations Complexity Reduction (Savings in 
Multiplication Operations) 

To evaluate and quantify the complexity reductions in 
model operations, the following equation is applied: 
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𝑀𝑜𝑑𝑒𝑙 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (%) =
(୒୭.୭୤ ୑୳୪୲୧୮୪୧ୡୟ୲୧୭୬ ୓୮ୣ୰ୟ୲୧୭୬ୱ ୧୬ ୗ୚ି

ே௢.௢௙ ெ௨௟௧௜௣௟௜௖௔௧௜௢௡ ை௣௘௥௔௧௜௢௡௦ ௜௡ ௌ௏୆ୖ)

ே௢.௢௙ ெ௨௟௧௜௣௟௜௖௔௧௜௢௡ ை௣௘௥௔௧௜௢௡௦ ௜௡ ௌ௏
𝑥100 (33) 

IV. RESULTS AND DISCUSSION 

Table II presents the linearization performance and model 
operations complexity reduction results for SV and the 
treated SV: SV with Binomial Reduction (SV-BR). The 
results from [14] (where SV is first coined) is presented 
together as a reference. The respective model dimensions  are 
shown, where the number of model coefficients are calculated 
using (24) from [20]. The linearization performance is 
presented using NMSE, while the model operations 
complexity is shown using multiplication operations 
calculated using (31). The reference SV from [14] uses 26 
model coefficients, yields a reported -35.38dB NMSE, with a 
complexity cost of 214 multiplication operations. 

In this paper, the SV algorithm is simulated as per (12) 
gives a yield of -34.48dB NMSE, with 24 model coefficients 
and a complexity cost of 195 multiplication operations. The 
simulated SV results are in near proximity of the reference 
results extracted from [14], with a minor lag in NMSE, 
justified by the reduced number of model coefficients and 
hence number of multiplication operations. 

The treated SV (SV-BR) is simulated with a set of model 
dimensions that has an identical number of model coefficients 
against the original SV algorithm simulated: 24. SV-BR 
yields a similar linearization performance of -35.12dB in 
NMSE, with a complexity cost of 83 multiplication 
operations. Using (33), the SV-BR yields an improvement of 
57.43% in model operations complexity reduction. The 
model operations complexity reduction is achieved in SV-BR 
without compromising linearization performance in terms of 
NMSE and matching model coefficients against the original 
SV algorithm. 

The model dimensions in SV and SV-BR were swept 
across values from 1 to 8 to further stress-test both models. 
This results in model coefficient ranges of 1 to 200 for both 
SV and SV-BR models. This ensures a fair comparison of 
similar model sizes, where both models are compared using 
matching model coefficient numbers, despite differences in 
model dimensions. As a result, a total of 231105 SV and 
264780 SV-BR simulation samples are harvested. The 
following figures show various comparisons between SV-BR 
against SV, on number of multiplication operations, NMSE, 

improvement percentages and the cumulative average of 
improvement percentages across the 200 model coefficients.   

Fig. 5 shows the number of multiplication operations 
against number of model coefficients for SV and SV-BR. In 
Fig. 5, as number of model coefficients increases, SV-BR 
requires fewer number of multiplication operations compared 
to SV. This indicates savings in number of multiplication 
operations, which results in reduction of model operations 
complexity in SV-BR against SV. 

Fig. 6 shows the best NMSE performance for SV and SV-
BR with respect to number of model coefficients. The 
differences in best NMSE performance of the two models are 
better represented in Fig. 7, where a positive graph bar 
indicates a better performing NSME of SV-BR compared 
against SV. A negative graph bar indicates the opposite, 
which is where SV was performing better than SV-BR for 
that respective number of model coefficient. The length of the 
bar indicates the magnitude of NMSE differences in dB. In 
the middle of Fig. 7, a graph line is drawn to show the 
cumulative average of NMSE differences as the number of 
model coefficients increases. The final cumulative average of 
NMSE difference of SV-BR against SV is at -0.16dB. The 
small number of NMSE difference indicates that the 
linearization performance of SV-BR is similar to the original 
SV algorithm. 

Following the best NMSE of SV and SV-BR shown 
previously in Fig. 6, Fig. 8 shows the respective number of 
multiplication operations of each simulation sample that 
produces the best NMSE results and is plotted against number 
of model coefficients. Aligning with what was shown 
previously in Fig. 5, SV requires higher number of 
multiplication operations compared to SV-BR. Fig. 8 also 
shows that SV-BR requires fewer number of multiplications 
operations, while capable of achieving similar linearization 
performance in SV as shown in Fig. 6 and Fig. 7. The crude 
visual inspection of Fig. 8 shows almost 50% reduction in the 
required number of multiplication operations in SV-BR 
compared to SV. This estimation is proven to be true in Fig. 
9, where the percentage of model operations complexity 
reduction is calculated using (33), and is plotted against 
number of model coefficients. Similar to Fig. 7, a line is again 
plotted in the middle of Fig. 9, where it shows the cumulative 
average of model operations complexity reduction 
percentage, as model coefficients increase. The cumulative 
average of model operations complexity reduction percentage 
is 55.38%. This value almost matches with the simulation 
results presented earlier in Table II, where both SV and SV-

TABLE II 
NMSE AND MULTIPLICATION OPERATIONS OF SIMPLIFIED VOLTERRA (SV) AND SIMPLIFIED VOLTERRA WITH BINOMIAL REDUCTION (SV-BR) 

Method Model Dimensions 
No. of 
Model 

Coefficients 

NMSE 
(dB) 

Multiplication 
Operations 

Model Operations 
Complexity 
Reduction 

Simplified Volterra  
(results extracted from [14]) 

Ka(9) Kb(3) Kc(3) Kd(1) Ke(1) 
Ma(3) Mb(0) Mc(0) Md(1) Me(1) 

Lb(1) Lc(1) Ld(1) Le(1) 
26 -35.38 214 - 

Simplified Volterra 
(simulated using (12)) 

Ka(1) Kb(1) Kc(1) Kd(1) Ke(5) 
Ma(4) Mb(1) Mc(4) Md(1) Me(1) 

Lb(1) Lc(1) Ld(1) Le(1) 
24 -34.48 195 - 

Simplified Volterra with 
Binomial Reduction 

(Simulated using (16)) 

Ka(1) Kb(1) Kc(1) Kd(1) Ke(4) 
Ma(4) Mb(1) Mc(2) Md(2) Me(1) 

Lb(1) Lc(1) Ld(2) Le(1) 
24 -35.12 83 57.43% 
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BR models are ran at a similar number model coefficient 
referred in [14] where SV is first coined. 

V. CONCLUSION 

SV from [14] is optimized and results in the SV with 
Binomial Reduction algorithm (SV-BR), capable of 
achieving 57% of reduction in model operations complexity, 
while retaining most of the linearization performance, 
evaluated through NMSE. Future SV-based algorithms could 
be treated using the binomial reduction method, expecting to 
be able to reduce model operations complexity, while 
retaining PA linearization performance.  
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Fig. 7.  Differences of best NMSE performance for SV-BR against SV when no. of model coefficients increase 
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Fig. 8.  No. of multiplication operations of SV-BR and SV with best NMSE results when no. of model coefficients increase  
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Fig. 9.  Multiplication operations reduction percentage of SV-BR against SV for best NMSE results with respect to no. of model coefficients 
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