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Abstract—This work studies the identical synchronization of
drive-response neural networks of n reaction-diffusion systems
of FitzHugh-Nagumo type with arbitrary topological structures.
We propose a nonlinear adaptive controller in order to achieve
the desired synchronization of these two networks of the same
node dynamics. This work also shows the simulation results to
verify if the proposed method is effective.

Index Terms—drive-response neural networks, identical syn-
chronization, synchronous controller, reaction-diffusion system
of FitzHugh-Nagumo.

I. INTRODUCTION

SYNCHRONIZATION is known as one of the most
important topics of dynamical systems that have been

investigated in recent years. Especially, it has been interesting
in complex networks. As everyone knows, complex networks
are various in nature and human society such as trans-
portation networks, biological networks, social relationship
networks, neuronal networks, etc [5], [11], [12], [13], [14],
[21], and have been studied in many domains, especially
in neuroscience, and applied mathematics, [12], [14]. There
are many researchs reflecting the synchronization of complex
networks, and their application in the real world [1], [2], [7],
[15], [16], [18], [19], [20]. The meaning of synchronization
is to the same behavior at the same time [5]. Its principle
can be seen in many different applications, also in social pro-
duction and human activities [12], [14]. Many studies on the
synchronization of complex networks have been achieved.
Especially, internal synchronization in a complex network
is studied in many papers, for example, [1], [2], [7], [15],
[16], [18], [19], [20]. In reality, synchronization can also be
seen between two networks presenting two different groups
of cells with arbitrary network structures. In this paper,
the identical synchronization of two complex networks of
the same reaction-diffusion systems is studied. Specifically,
each node is presented by one reaction-diffusion system of
FitzHugh-Nagumo type (see Figure 1). In Figure 1, the left
graph is called the drive network, and the right one is called
the response network. They may have different structures and
connections which means it is difficult to synchronize them.
That is a reason why in this paper we would like to design
a nonlinear controller so that the identical synchronization
of two complex networks with the same nodes and different
topological structures is realized.
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As everyone knows, there are many kinds of synchro-
nization [5], and the identical one is studied the most.
Specifically, the identical synchronization of a network of
n reaction-diffusion systems of Hindmarsh-Rose type is
studied in [15], [16]. There are also a lot of works studying
the identical synchronization of n dynamical systems in
complete networks such as [7], [18], [19], [20]. However,
there are not any studies on the identical synchronization
of two neural networks of n reaction-diffusion systems of
FitzHugh-Nagumo model. In other words, this paper studies
the problem of identical synchronization for drive-response
neural networks of n reaction-diffusion systems of FitzHugh-
Nagumo type. In this work, we consider the drive-response
neural networks with arbitrary topological structures and
designs an appropriate adaptive controller in order to get the
identical synchronization of these two networks. The proof is
based on Lyapunov stability theory and LaSalle’s invariance
principle. This paper also shows the numerical results to
verify if the proposed method is effective.

This paper is organized as follows. In Section 2, the
definition of the identical synchronization between the drive-
response complex networks of n reaction-diffusion systems
and some preliminary knowledge are given. By using the
Lyapunov theory and LaSalle’s invariance principle, we
design some schemes to construct the response networks to
achieve the desired synchronization. In Section 3, we display
two numerical examples to see if the proposed method in
Section 2 is effective. Finally, conclusions are displayed in
Section 4.

II. IDENTICAL SYNCHRONIZATION BETWEEN TWO
COMPLEX NETWORKS OF n REACTION-DIFFUSION

SYSTEMS OF FITZHUGH-NAGUMO TYPE

In 1952, Hodgkin and Huxley introduced a four-
dimensional mathematical system that could approximate
many properties of neural membrane potential [7], [8], [10].
Based on this system, a lot of scientists published simpler
models describing the neuron voltage dynamics. In 1962,
FitzHugh and Nagumo introduced a new simpler model
called FitzHugh-Nagumo model [7], [1], [2], [3]. This system
was known as a simplified two-dimensional model from
Hodgkin-Huxley’s famous model [11]. Although this system
is simpler, it has a lot of extraordinary analytical results and
retains the energizing properties and biological significance
of cells. Specifically, this model consists of two equations in
the two variables u and v. The first variable is the fast one. It
is excitatory and represents the transmembrane voltage. The
second one is the slow recovery variable presenting some
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Fig. 1. An example of the drive-response networks of reaction-diffusion systems of FitzHugh-Nagumo type. Each node is represented by a reaction-
diffusion system of FitzHugh-Nagumo type.

physical quantities, such as the electrical conductivity of
ion currents across the membrane. The ordinary differential
equations of FitzHugh-Nagumo type are given by [1], [2],
[3]: 

ε
du

dt
= εut = f(u)− v + I,

dv

dt
= vt = au− bv + c,

(1)

where a, b, c are constants (a, b are strictly positive), 0 < ε <
1, f(u) = −u3 + 3u, I presents the external current, and t
presents the time.

However, the system (1) is not strong enough in order to
describe the propagation of action potential along the axon
of the cell. To solve this problem, the cable equation is
investigated in this work. It means the Laplace operator can
be added to the first equation of the system (1) in order to
obtain the model that can describe the propagation of action
potential. This mathematical system is obtained from a circuit
model of the membrane and its intracellular and extracellular
space to provide a quantitative description of current flow
and voltage change both within and between neurons. It
allows us to understand how cells function quantitatively
and qualitatively. Hence, the reaction-diffusion system of
FitzHugh-Nagumo type (FHN) is considered as follows: εut = f(u)− v + I + d∆u,

vt = au− bv + c,
(2)

where u = u(x, t), v = v(x, t), (x, t) ∈ Ω × R+, d
is a positive constant, ∆u is the Laplace operator of u,
Ω ⊂ RN is a regular bounded open set and with Neumann
zero flux boundary conditions, and N is a positive integer.
This model allows the appearance of many patterns and
relevant phenomena in physiology. This model consists of
two nonlinear partial differential equations. The first one
presents the action potential and the second one introduces

the recovery variable describing some physical quantities,
such as the electrical conductivity of ion currents across
the membrane. Besides, the first equation is similar to the
cable equation. It presents the distribution of the membrane
potential along the axon of a single cell [8], [11]. Hereafter,
system (2) is considered as a neural model, and a network
of n coupled systems (2) is constructed as follows:

εuit = f(ui)− vi + Ii + di∆ui +
n∑

j=1

cijh(ui, uj),

vit = aui − bvi + c,
i = 1, 2, ..., n,

(3)
where (ui, vi), Ii, di, i = 1, 2, ..., n is defined as (2). The
coefficients cij are the elements of the connectivity matrix
Cn = (cij)n×n, defined by: cij > 0 if neuron ith and jth are
coupled, cij = 0 if neuron ith and jth are not coupled; cii =

n∑
j=1,j 6=i

cij . This matrix also presents the network topology.

The function h presents the coupling function describing the
type of connection between cell ith and jth. It is known that
neurons connect through synapses, then it leads to two types
of connections between cells such as chemical connections
and electrical ones.

If the neurons connect through the chemical synapse, then
the coupling function is nonlinear [1], [2], [7] and is given
by the following formula:

h(ui, uj) = −(ui−Vsyn)gsyn
1

1 + exp(−λ(uj − θsyn))
, j 6= i,

(4)
where gsyn represents a positive number that is called the
coupling strength; Vsyn introduces the reversal potential, and
its value must be larger than ui(x, t), for all i = 1, 2, ..., n,
x ∈ Ω, t ≥ 0 since synapses are supposed excitatory; θsyn
represents the threshold value that is reached by every action
potential; λ is a positive number that could be big enough
to approach the Heaviside function [6], [7].
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If the neurons connect through the electrical synapse, then
the coupling function is linear [7], [15] and is given by the
following formula:

h(ui, uj) = −gsyn(ui − uj), j 6= i. (5)

The network (3) is considered a drive network, and the
following system is the corresponding response network:


εuit = f(ui)− vi + Ii + di∆ui +

n∑
j=1

cijh(uj) + wi,

vit = aui − bvi + c,
i = 1, 2, ..., n,

(6)
where (ui, vi), i = 1, 2, ..., n is defined by (2). The coeffi-
cients cij (i, j = 1, 2, ..., n) and the function h are defined
as cij and h in network (3), respectively; wi, i = 1, 2, ..., n
is the synchronous controller to be designed.

We can see from the model of drive-response neural
networks (3) and (6) that the structures of these two networks
can be different. For example, all cells in (3) are coupled
by chemical synapses, and all cells in (6) are coupled by
electrical synapses. Then, it is difficult to synchronize them
because of their different structures. Therefore, we need
to design the adaptive controllers to observe our desired
synchronization.

Before going to the main results, we need to see some
following remarks that help to prove our desired results.

Remark 1. The function f satisfies the following condition:

|f(ui)− f(uj)| ≤ α |ui − uj | , i, j = 1, 2, ..., n, (7)

where ui, uj present the transmembrane voltages, and α is
a positive number.

Proof: For all ui, uj , i, j = 1, 2, ..., n, we have:

f(ui)− f(uj) = −u3
i + 3ui + u3

j − 3uj

= (ui − uj)
[
3− (ui − uj)2 − uiuj

]
.

Since ui, uj , i, j = 1, 2, ..., n are bounded in [3], then we
can find a positive constant α such that:

|f(ui)− f(uj)| ≤ α |ui − uj | , i, j = 1, 2, ..., n.

Remark 2. The function h defined by (4) satisfies the
following condition:

|h(ui, uk)− h(uj , ul)| ≤ β |ui − uj | , i, j, k, l = 1, 2, ..., n,
(8)

where ui, uj , uk, ul present the transmembrane voltages, and
β is a positive number.

Proof: For all ui, uj , i, j = 1, 2, ..., n, we have:

|h(ui, uk)− h(uj , ul)| =∣∣∣∣gsyn(ui − Vsyn)
1

1 + exp(−λ(uk − θsyn))

−gsyn(uj − Vsyn)
1

1 + exp(−λ(ul − θsyn))

∣∣∣∣ ,
where k 6= i, l 6= j.

Since uk, ul, k, l = 1, 2, ..., n are bounded in [3], then we
can find a positive constant K such that:

−K ≤ 1

1 + exp(−λ(uk − θsyn))
≤ K,

and
−K ≤ 1

1 + exp(−λ(ul − θsyn))
≤ K.

Besides that ui − Vsyn < 0; uj − Vsyn < 0, for all
ui, uj , i, j = 1, 2, ..., n, since we only consider the rapid
chemical excitatory synapses [6], [7].

Thus
|h(ui, uk)− h(uj , ul)| ≤

|Kgsyn(ui − Vsyn) +Kgsyn(uj − Vsyn)|

≤ Kgsyn |ui + uj − 2Vsyn| .
Moreover, ui, uj , i, j = 1, 2, ..., n are bounded in [3], then

we can find a positive constant β such that:

|h(ui, uk)− h(uj , ul)| ≤ β |ui − uj | .

Remark 3. It is easy to see that the function h defined by
(5) satisfies the following condition:

|h(ui, uk)− h(uj , ul)| ≤ β |ui − uj | , i, j, k, l = 1, 2, ..., n,
(9)

where ui, uj , uk, ul present the transmembrane voltages, and
β is a positive number.

Remark 4. The function h in network (6) is defined as h in
network (3), then it also verifies the conditions in Remark 2
and Remark 3.

Definition 1 (see [1]). Let Si = (ui, vi), i = 1, 2, ..., n
and S = (S1, S2, ..., Sn) be a network. We say that S is
identically synchronous if

lim
t→+∞

n−1∑
i=1

(
‖ui − ui+1‖L2(Ω) + ‖vi − vi+1‖L2(Ω)

)
= 0,

where L2(Ω) is function space on Ω defined using a natural
generalization of the 2-norm for finite-dimensional vector
spaces.

By applying Definition 1 to this study, we let the node
error of complete synchronization between two systems (3)
and (6) be ei = ui − ui, ei = vi − vi, i = 1, 2, ..., n.

If there is a controller wi such that the Definition 1
satisfies, it means:

lim
t→+∞

n∑
i=1

(
‖ei‖L2(Ω) + ‖ei‖L2(Ω)

)
= 0,

then the networks (3) and (6) are said to be identical
synchronization.

To get the identical synchronization of networks (3) and
(6), the controller wi is designed as follows:

wi = εuit−f(ui)+vi−Ii−di∆ui−
n∑

j=1

cijh(ui, uj)−kiei,

(10)
with the updated rules defined as follows:

kit = rie
2
i , (11)
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where ri is an arbitrary positive constant, for i = 1, 2, ..., n.
Under the action of the controller, the error dynamic

equations of the system are described as:

εeit = ε(uit − uit)

= f(ui)− vi + Ii + di∆ui +
n∑

j=1

cijh(ui, uj)

−f(ui) + vi − Ii − di∆ui −
n∑

j=1

cijh(ui, uj)− kiei

= f(ui)− f(ui)− (vi − vi) + di∆(ui − ui)

+
n∑

j=1

cij(h(ui, uj)− h(ui, uj))− kiei,

(12)
and

eit = vit − vit = a(ui − ui)− b(vi − vi), (13)

for i = 1, 2, ..., n.
Next, we investigate the identical synchronization problem

of networks (3) and (6). The main result is given by the
following theorem.

Theorem 1. The drive-response neural networks (3) and
(6) can achieve identical synchronization under the adaptive
controller (10) and updated rule (11).

Proof: We construct the Lyapunov function as follows:

V (x, t) =
1

2

n∑
i=1

∫
Ω

[
aεe2

i + e2
i +

a

ri
(ki − k)

2
]
dx, (14)

where k is a positive constant to be determined.
Calculating the time derivative of V (x, t) along the error

systems (12) and (13), we get:

∂V (x, t)

∂t
=

n∑
i=1

∫
Ω

[
aεeieit + eieit +

a

ri
(ki − k)kit

]
dx

=
n∑

i=1

∫
Ω

[aei (f(ui)− f(ui)− (vi − vi) + di∆(ui − ui)

+
n∑

j=1

cij(h(ui, uj)− h(ui, uj))− kiei)

+ei (a(ui − ui)− b(vi − vi)) +
a

ri
(ki − k)kit

]
dx.

(15)
By using the Green formula and Neumann zero flux

boundary conditions, (15) becomes:

∂V (x, t)

∂t
≤

n∑
i=1

∫
Ω

[aei (f(ui)− f(ui))

+aei
n∑

j=1

cij(h(ui, uj)− h(ui, uj))

−kiae2
i − be2

i + kiae
2
i − ake2

i

]
dx

≤
n∑

i=1

∫
Ω

[aei (f(ui)− f(ui))

+aei
n∑

j=1

cij(h(ui, uj)− h(ui, uj))

−be2
i − ake2

i

]
dx.

(16)

By using Remarks 1-4, it is easy to obtain:

∂V (x, t)

∂t
≤

≤
n∑

i=1

∫
Ω

aαe2
i − be2

i − ake2
i +

n∑
j=1

aβ |cij | |ei| |ej |

dx.
(17)

Besides that, we can see:
n∑

i=1

n∑
j=1

aβ |cij | |ei| |ej |

= aβ
n∑

i=1

(
|ei|

n∑
j=1

|cij | |ej |

)

≤ aβ

 n∑
i=1

e2
i .

n∑
i=1

 n∑
j=1

|cij | |ej |

2


1
2

≤ aβ

 n∑
i=1

e2
i .

n∑
i=1

 n∑
j=1

cij
2.

n∑
j=1

e2
j

 1
2

≤ aβ

( n∑
i=1

e2
i

)2

.
n∑

i=1

(
n∑

j=1

cij
2

) 1
2

≤ aβ

( n∑
i=1

e2
i

)2

.n2 max
1≤i,j≤n

cij
2

 1
2

≤ aβn max
1≤i,j≤n

|cij |
n∑

i=1

e2
i .

(18)
Combining (17) and (18) yields:

∂V (x, t)

∂t
≤

≤
n∑

i=1

∫
Ω

[
aαe2

i − be2
i − ake2

i + aβn max
1≤i,j≤n

|cij | e2
i

]
dx

≤
n∑

i=1

∫
Ω

[
(aα− ak + aβn max

1≤i,j≤n
|cij |)e2

i − be2
i

]
dx

≤
n∑

i=1

∫
Ω

[
−(ak − aα− aβn max

1≤i,j≤n
|cij |)e2

i − be2
i

]
dx.

(19)
Take k > α + βn max

1≤i,j≤n
|cij |, then (19) can be estimated

as:

∂V (x, t)

∂t
≤ −γ

n∑
i=1

∫
Ω

[
1

2
(aεe2

i + e2
i )

]
dx, (20)

where

γ = min


2(k − α− βn max

1≤i,j≤n
|cij |)

ε
; 2b

 .

It can be found from (20) that 0 ≤ V (x, t) ≤ V (x, 0),
this together with (14) signifies V (x, t) is bounded. Based on
Lyapunov stability theory and LaSalle’s invariance principle
[4], we have:

lim
t→+∞

n∑
i=1

(
‖ei‖L2(Ω) + ‖ei‖L2(Ω)

)
= 0.
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Then it follows from Definition 1 that the drive-response
networks (3) and (6) achieve identical synchronization. The
proof is completed.

III. ILLUSTRATIVE NUMERICAL EXAMPLES

This section concretely shows two examples of drive and
response networks to demonstrate the effectiveness of the
proposed method in the previous section.

The numerical results are realized to observe the identical
synchronization of 2 networks of reaction-diffusion systems
of FHN with different network topologies. The integration
of systems is realized by using C++ and the results are
represented by Gnuplot.

Some parameters are fixed as [1], [2], [6], [7], [15], [16]:

f(u) = −u3 + 3u, a = 1, b = 0.001, c = 0, ε = 0.1,

Ii = 0, di = 0.05, i = 1, 2, ..., n,

[0;T ]× Ω = [0; 500]× [0; 100]× [0; 100] ,

λ = 10, Vsyn = 2, θsyn = −0, 25.

A. Example 1

Consider a drive network of 3 nodes that has the structure
called a ring network with unidirectionally linear coupling
as follows:

εu1t = f(u1)− v1 + I1 + d1∆u1 − gsyn(u1 − u2),
v1t = au1 − bv1 + c,
εu2t = f(u2)− v2 + I2 + d2∆u2 − gsyn(u2 − u3),
v2t = au2 − bv2 + c,
εu3t = f(u3)− v3 + I3 + d3∆u3 − gsyn(u3 − u1),
v3t = au3 − bv3 + c,

(21)
and the response network of 3 nodes that has the structure
called a complete (full) network with linear coupling is
described by:

εu1t = f(u1)− v1 + I1 + d1∆u1

−gsyn(u1 − u2)− gsyn(u1 − u3) + w1,
v1t = au1 − bv1 + c,
εu2t = f(u2)− v2 + I2 + d2∆u2

−gsyn(u2 − u3)− gsyn(u2 − u1) + w2,
v2t = au2 − bv2 + c,
εu3t = f(u3)− v3 + I3 + d3∆u3

−gsyn(u3 − u1)− gsyn(u3 − u2) + w3,
v3t = au3 − bv3 + c,

(22)
with the adaptive controllers defined as:

w1 = εu1t − f(u1) + v1 − I1 − d1∆u1

+gsyn(u1 − u2) + gsyn(u1 − u3)− k1(u1 − u1),
w2 = εu2t − f(u2) + v2 − I2 − d2∆u2

+gsyn(u2 − u1) + gsyn(u2 − u3)− k2(u2 − u2),
w3 = εu3t − f(u3) + v3 − I3 − d3∆u3

+gsyn(u3 − u1) + gsyn(u3 − u2)− k3(u3 − u3),
(23)

where  k1t = r1(u1 − u1)2,
k2t = r2(u2 − u2)2,
k3t = r3(u3 − u3)2.

(24)

Notice that the adaptive controllers (23) and the updated
rules (24) are defined as (10) and (11), respectively.

Figure 2 below illustrates the synchronization errors of
drive-response networks (21) and (22) without the adaptive
controllers (23) and the updated rules (24). Figure 2(a),
2(b), 2(c) represent the synchronization errors of the coupled
solutions, respectively:

(u1(x1, x2, t), u1(x1, x2, t)) , (u2(x1, x2, t), u2(x1, x2, t)) ,

and (u3(x1, x2, t), u3(x1, x2, t)) ,

where t ∈ [0;T ] and for all (x1, x2) ∈ Ω, with gsyn = 0.1.
This figure shows that the synchronization errors do not reach
zero, it means the drive-response networks can not achieve
identical synchronization.

Figure 3 below illustrates the synchronization errors of
drive-response networks (21) and (22) with the adaptive
controllers (23) and the updated rules (24). The simulations
show that this adaptive scheme is effective and we can get:

lim
t→+∞

3∑
i=1

(
‖ei‖L2(Ω) + ‖ei‖L2(Ω)

)
= 0,

where ei = ui − ui, ei = vi − vi, i = 1, 2, 3. Specifically,
Figure 3(a), 3(b), 3(c) represent the synchronization errors
of the coupled solutions, respectively:

(u1(x1, x2, t), u1(x1, x2, t)) , (u2(x1, x2, t), u2(x1, x2, t)) ,

and (u3(x1, x2, t), u3(x1, x2, t)) ,

where t ∈ [0;T ] and for all (x1, x2) ∈ Ω, with gsyn =
0.01, r1 = 0.1, r2 = 0.2, r3 = 0.3. Here, we even take the
coupling strength smaller than before, this figure shows that
the synchronization errors reach zero, it means:

u1(x1, x2, t) ≈ u1(x1, x2, t), u2(x1, x2, t) ≈ u2(x1, x2, t)

and u3(x1, x2, t) ≈ u3(x1, x2, t),

for all (x1, x2) ∈ Ω.
Figure 4(a), 4(b), 4(c) represent the solutions

ui(x1, x2, 499), i = 1, 2, 3, of the drive network (21), and
Figure 4(d), 4(e), 4(f) perform the solutions ui(x1, x2, 499),
i = 1, 2, 3, of the response network (22). We can see
that the neuron ith of network (21) and the neuron ith of
network (22) have the same shape (i = 1, 2, 3), i.e., the
synchronization is performed.

B. Example 2
Consider a drive network of 2 nodes that has the structure

called a complete (full) network with linear coupling as
follows:

εu1t = f(u1)− v1 + I1 + d1∆u1 − gsyn(u1 − u2),
v1t = au1 − bv1 + c,
εu2t = f(u2)− v2 + I2 + d2∆u2 − gsyn(u2 − u1),
v2t = au2 − bv2 + c,

(25)
and the response network of 2 nodes that has the structure
called a chain network with nonlinear coupling is described
by:

εu1t = f(u1)− v1 + I1 + d1∆u1

−gsyn(u1 − Vsyn)
1

1 + exp(−λ(u2 − θsyn))
+ w1,

v1t = au1 − bv1 + c,
εu2t = f(u2)− v2 + I2 + d2∆u2 + w2,
v2t = au2 − bv2 + c,

(26)
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Fig. 2. Synchronization errors of the drive-response networks (21) and (22) without controllers. We can see that the synchronization errors do not reach
zero which means there is not the synchronization.

Fig. 3. Synchronization errors of the drive-response networks (21) and (22) with controllers. We can see that the synchronization errors asymptotically
reaches zero which means the synchronization occurs.
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Fig. 4. Synchronization patterns of the drive-response networks (21) and (22) with controllers. Figure 4(a), 4(b), 4(c) represent the solutions
ui(x1, x2, 499), i = 1, 2, 3, of the drive network (21), and Figure 4(d), 4(e), 4(f) perform the solutions ui(x1, x2, 499), i = 1, 2, 3, of the response
network (22). We can see that the patterns of the second column have the same shape with the patterns of the first column, respectively. In other words,
the response network (22) synchronizes with the drive network (21).

with the adaptive controllers defined as:
w1 = εu1t − f(u1) + v1 − I1 − d1∆u1

+gsyn(u1 − Vsyn)
1

1 + exp(−λ(u2 − θsyn))
−k1(u1 − u1),

w2 = εu2t − f(u2) + v2 − I2 − d2∆u2 − k2(u2 − u2),
(27)

where {
k1t = r1(u1 − u1)2,
k2t = r2(u2 − u2)2.

(28)

Notice that the adaptive controllers (27) and the updated
rules (28) are defined as (10) and (11), respectively.

Figure 5 below illustrates the synchronization errors of
drive-response networks (25) and (26) without the adaptive
controllers (27) and the updated rules (28). Figure 5(a), 5(b)
represent the synchronization errors of the coupled solutions,
respectively:

(u1(x1, x2, t), u1(x1, x2, t)) ,

and
(u2(x1, x2, t), u2(x1, x2, t)) ,

where t ∈ [0;T ] and for all (x1, x2) ∈ Ω, with gsyn =
0.1. This figure shows that the synchronization errors do not
reach zero, which means the drive-response networks can not
achieve identical synchronization.

Figure 6 below illustrates the synchronization errors of
drive-response networks (25) and (26) with the adaptive
controllers (27) and the updated rules (28). The simulations
show that this adaptive scheme is effective and we can get:

lim
t→+∞

2∑
i=1

(
‖ei‖L2(Ω) + ‖ei‖L2(Ω)

)
= 0,

where ei = ui − ui, ei = vi − vi, i = 1, 2. Specifically,
Figure 6(a), 6(b) represent the synchronization errors of the
coupled solutions, respectively:

(u1(x1, x2, t), u1(x1, x2, t)) ,

and
(u2(x1, x2, t), u2(x1, x2, t)) ,

where t ∈ [0;T ] and for all (x1, x2) ∈ Ω, with gsyn =
0.01, r1 = 0.1, r2 = 0.2. Here, we even take the coupling
strength smaller than before, this figure shows that the
synchronization errors reach zero, it means:

u1(x1, x2, t) ≈ u1(x1, x2, t),

and
u2(x1, x2, t) ≈ u2(x1, x2, t),

for all (x1, x2) ∈ Ω. In other words, the controllers that we
built effectively work.

IAENG International Journal of Computer Science

Volume 51, Issue 7, July 2024, Pages 821-830

 
______________________________________________________________________________________ 



Fig. 5. Synchronization errors of the drive-response networks (25) and (26) without controllers. We can see that the synchronization errors do not reach
zero which means there is not the synchronization.

Fig. 6. Synchronization errors of the drive-response networks (25) and (26) with controllers. We can see that the synchronization errors asymptotically
reaches zero which means the synchronization occurs.

Fig. 7. Synchronization patterns of the drive-response networks (25) and (26) with controllers. Figure 7(a), 7(b) represent the solutions ui(x1, x2, 499), i =
1, 2, of the drive network (25), and Figure 7(c), 7(d) perform the solutions ui(x1, x2, 499), i = 1, 2, of the response network (26). We can see that
the patterns of the second column have the same shape with the patterns of the first column, respectively. In other words, the response network (25)
synchronizes with the drive network (26).
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Figure 7(a), 7(b) represent the solutions
ui(x1, x2, 499), i = 1, 2, of the drive network (25)
and Figure 7(c), 7(d) perform the solutions ui(x1, x2, 499),
i = 1, 2, of the response network (26). We can see that the
neuron ith of network (25) and the neuron ith of network
(26) have the same shape (i = 1, 2), i.e., the synchronization
is performed.

Remark 5. Notice that the synchronization above is the
identical synchronization between two networks of cells. It
means the ith cell of the first network will have the same
pattern as the ith cell of the second network. In other words,
one network will copy the behavior of the other. Meanwhile,
the behavior of cells in the same network can be different
(see Figure 4 and Figure 7). However, if we want all cells of
both networks to have the same pattern, we need to increase
the value of the coupling strength such that it is larger than
the necessary threshold value [6], [7]. Then all cells in both
networks will have the same pattern (see Figure 9). In Fig.
9, we take gsyn = 2, this value is big enough to get the same
behavior for all cells of networks (25) and (26).

Clearly, Figure 8(a), 8(b), 8(c), and 8(d) represent the
synchronization errors of the coupled solutions, respectively:

(u1(x1, x2, t), u1(x1, x2, t)) ,

(u2(x1, x2, t), u2(x1, x2, t)) ,

(u1(x1, x2, t), u2(x1, x2, t)) ,

and
(u1(x1, x2, t), u2(x1, x2, t)) ,

where t ∈ [0;T ] and for all (x1, x2) ∈ Ω, with gsyn =
2, r1 = 0.1, r2 = 0.2. This figure shows that the synchro-
nization errors reach zero, which means:

u1(x1, x2, t) ≈ u1(x1, x2, t),

u2(x1, x2, t) ≈ u2(x1, x2, t)

u1(x1, x2, t) ≈ u2(x1, x2, t),

and
u1(x1, x2, t) ≈ u2(x1, x2, t),

for all (x1, x2) ∈ Ω.
Figure 9(a), 9(b) represent the solutions

ui(x1, x2, 499), i = 1, 2, of the drive network (25),
and Figure 9(c), 9(d) perform the solutions ui(x1, x2, 499),
i = 1, 2, of the response network (26). We can see that they
have the same shape, i.e., the synchronization is performed
for all cells of both networks.

IV. CONCLUSION

This paper investigates the identical synchronization of
drive-response neural networks of n reaction-diffusion sys-
tems of FitzHugh-Nagumo type with arbitrary topological
structures. We design the nonlinear adaptive controllers and
construct a suitable Lyapunov function so that the desired
synchronization is achieved. The numerical results showed
the effectiveness of the proposed method. The synchronous
controllers are complex and actually necessary for identical
synchronization in this work. How to simplify the controllers
and investigate the drive-response networks of n different
reaction-diffusion systems will be a problem to be studied in
the future.
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Fig. 8. Synchronization errors of the drive-response networks (25) and (26) with controllers and big enough coupling strength. We can see that the
synchronization errors asymptotically reaches zero which means the synchronization occurs.

Fig. 9. Synchronization patterns of the drive-response networks (25) and (26) with controllers and large enough coupling strength. Figure 9(a), 9(b)
represent the solutions ui(x1, x2, 499), i = 1, 2, of the drive network (25), and Figure 7(c), 7(d) perform the solutions ui(x1, x2, 499), i = 1, 2, of the
response network (26). We can see that all the patterns of two networks have the same shape. In other words, all the nodes of the response network (25)
and the drive network (26) identically synchronize with a large enough value of coupling strength.
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