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Feed Forward Cascade PID Based Predictive
Control of the PH Value of Desulfurization
Slurry in Thermal Power Units

Shijie Wang, Li Zhang, Peng Wang, Jie Li, Wenqgiang Jiang, Bao Liu

Abstract—Aiming at the problems of large lag and inertia in
the PH control system of gypsum wet desulfurization in thermal
power units, this paper proposes a cascade multi-step feed
forward predictive control strategy based on proportional
integral derivative (PID). Firstly, the paper establishes
mechanism model through the transfer function of PH value
influence factor to ensure a strong correlation between the
control system parameters and the PH value; Secondly, based
on the traditional PID control strategy, the paper introduces
cascade and multi-step feed forward control mechanisms to
solve the strong inertia of the control system; Then, the
three-step predictive value of SOz content in raw flue gas based
on long short term memory network (LSTM) is introduced as
the feed forward value, so as to better eliminate system lag
characteristics and track the PH setting value; Finally, the
simulation experiment is carried out using the desulfurization
data of the plant. The simulation results show that, compared
with the traditional PID and cascade PID control strategies, the
control strategy proposed in this paper achieves more accurate
and stable control of the PH value of desulfurization slurry in
thermal power units, and improve the desulfurization
efficiency.

Index Terms—wet desulfurization of gypsum, PID control,
multi-step feed forward predictive control, long and short term
memory network.

I. INTRODUCTION

ITH the development of the power industry, the
content of SO produced by coal-fired power plants in
China has been increasing in the proportion of SO, emissions
nationwide, and has become the main source of SO, pollution
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in China’s atmosphere reducing SO, emissions from thermal
power plants is of great significance for China’s
environmental protection [1], [2]. However, there are many
technological processes for flue gas desulfurization. Among
them, the vast majority of thermal power units in China use
the limestone gypsum wet desulfurization system. This
method uses limestone slurry to react with SO» in the inlet
flue gas in the absorption tower, and the final gypsum can be
used again. The key to affecting the desulfurization
efficiency in the desulfurization process is the PH value of
slurry in the absorption tower. Therefore, taking the PH value
of slurry in the absorption tower as the controlled object to
reduce SO, emission and improve desulfurization efficiency
is the first choice to reduce the sulfur emission of thermal
power units [3]-[6].

The limestone gypsum wet desulfurization system is a
typical control system with nonlinearity, time-varying,
hysteresis, and uncertainty [7]-[9]. In the desulfurization
process, the slurry PH control strategy is mainly divided into
three categories: traditional manual operation, PID control
algorithm, and model predictive control. References [10]-[11]
control the model output through manual parameter tuning,
but manual operation requires rich experience and knowledge,
is time-consuming and laborious, and has large operating
errors; References [12]-[17] indicate that traditional PID
control has a simple structure, high degree of automation, low
cost, and certain robustness. However, for nonlinear, large
inertia, and time-varying systems, traditional PID control
cannot adjust parameters based on changes in object
characteristics, and its adaptive ability is poor, which affects
control accuracy. Therefore, references [18]-[21] proposed a
cascaded PID control method to solve the nonlinear and large
inertia problems of control systems. This method is divided
into the main control loop of the main PID control and the
auxiliary control loop of the auxiliary PID control. Through
the coarse and fine tuning of two circuits, the output of the
controlled object is jointly controlled to approach the set
value faster, while maintaining system stability and
improving process characteristics. However, the cascade PID
control method also has its own shortcomings. Cascade PID
control cannot solve the lag problem of the control system
[22]-[24], and cannot transmit errors to the desulfurization
control system in a timely manner, which may lead to
overshoot. In reference [25], to improve the control accuracy
of the Dynamic Matrix Algorithm (DMC) for desulfurization
systems and enable automatic optimization of controller
parameters, an adaptive hybrid particle swarm optimization
algorithm was proposed to optimize the parameters in DMC.
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Reference [26] proposes a control scheme based on a
multivariable model predictive control algorithm, A linear
variable parameter model of the desulfurization system is
established with boiler load as the scheduling variable.
Although DMC and model predictive control have
accelerated response speed, there are still shortcomings in
overshoot and stable output.

In order to solve the above problems, this paper proposes a
cascade PID strategy based on feed forward multi-step
prediction to adapt to the multi disturbance control systems.
The main contributions are summarized as follows.

(1) By selecting the main influencing factors of PH value,
constructing a mechanism model of the control system, and
calculating the transfer function between various interference
parameters and PH value, the strong correlation between
system parameter factors is improved.

(2) In response to the problem of high inertia in control
systems, this paper introduces a feed-forward mechanism
based on PID cascade, which accelerates the response speed
of the system and improves the stability of the output value of
the control model through the joint action of the outer and
inner loops.

(3) Introducing a third step SO, content feed-forward
prediction model based on LSTM to solve the lag difficulty
of the system, transmitting future predicted values to the
control system in advance, and controlling in a timely manner
when disturbances occur, rather than waiting for deviations to
occur before controlling, effectively eliminating the
influence of lag disturbances on controlled parameters.

The rest of this paper is organized as follows. The Section
II introduces the relevant knowledge of wet desulfurization;
The Section III section introduces the modeling process of
the control system mechanism model; The Section IV
provides a detailed introduction to the feed forward cascade
multi-step prediction system; The Section V conducts
simulation verification and result analysis; The Section VI
provides the conclusion.

II. WET DESULFURIZATION SYSTEM

A. System Process Flow

A typical limestone gypsum wet desulfurization system is
shown in Fig. 1, which is composed of a flue gas system, an
SO, absorption system, an absorbent preparation system, a
gypsum dehydration system, an evacuation system, a process
water system, and a desulfurization wastewater treatment
system. The key to achieving high desulfurization efficiency
lies in the SO, absorption system, where the absorption tower
serves as the main equipment for all absorption reaction
processes. Therefore, it plays a crucial role in the overall
desulfurization system.

B. System Principle

Before the reaction occurs in the absorption tower, the
limestone stored in the bin is first ground into powder using a
ball mill. The limestone slurry is then adjusted by a vortex
pump. Subsequently, the raw flue gas, which contains a
significant amount of pollutants, enters the absorption tower
through the inlet of the equipment. In the tower, the CaCOs3 in
the limestone slurry reacts with the SO, in the flue gas,
facilitated by sufficient air, resulting in the production of
reusable gypsum. The remaining flue gas undergoes further
treatment before being discharged into the atmosphere.

To ensure a more thorough reaction, the flue gas,
containing a high concentration of pollutants, enters the
absorption tower from below through the oxidation fan. It is
then mixed with the limestone slurry in a countercurrent
manner, promoting a more comprehensive reaction.

The chemical reaction formulas for the absorption and
oxidation processes are shown in equations (1) and (2),
respectively.

1
2CaCO, + H,0+280, — 2CaS0,«— H,0+2C0, (1)
2

1
2CaS0,+~H,0+0, +3H,0 — 2CaSO,2H,0  (2)
2
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Fig. 1. Limestone-gypsum wet desulfurization system
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III. MECHANISM MODEL

By analyzing the actual desulfurization data of a 1000MW
thermal power plant, this article studies the correlation
between PH value and other characteristics. Through the
analysis, paper find that there are four main factors that affect
the PH value, namely slurry flow rate, slurry density, flue gas
flow rate, and flue gas concentration. These factors are
considered as perturbations of PH measurement values,
which are then used to calculate the transfer function and
construct a mechanistic model.

A. Building Mechanism Model

The constructed mechanism model is shown in Fig. 2,
where PID is a PH controller that can adjust the valve
opening angle based on the PH set value and the feedback PH
measurement value; Fn is the function relationship between
slurry flow rate and valve opening, and the amount of slurry
flow rate is controlled by valve opening; The four influencing
factors are expressed as disturbance quantities in the form of
transfer functions to represent the relationship between PH
measurement values, where Gl is the transfer function of
slurry flow rate to PH value; Gy is the transfer function of
slurry density to PH value; G3 is the transfer function of
flue gas flow rate to PH value; G4 is the transfer function of
SO, concentration to PH value.

Gas flow
G3(S)
Slurry density SO, concentration
CRE
' PH ValYe Slurry PH
setting value‘ - opening ‘ ‘ﬂOW rate‘ p | | measurement value
\ | L]

L]

Fig. 2. Mechanistic model based on the transfer function

Due to the real-time measurement of the four parameters of
slurry flow rate, slurry density, flue gas flow rate, and flue
gas SO, concentration, so as long as the four transfer
functions Gl), G2¢), G3(), and G4 can be accurately
obtained, the mechanism model of the PH value of the
absorption tower slurry can be obtained.

B. Determine Transfer Function

The transfer function with delay elements can be mainly
divided into three types, namely: first-order inertia link,
second-order inertia link, and n-order inertia link. The
parameters of the transfer function mainly include: time
constant T, delay time t, and gain k. Fig. 3 shows the
calculation process of the transfer function.

The equations (3) - (6) display the results of each transfer
function derived from the actual data and the parameter
calculation process.

The transfer function of slurry flow rate to slurry PH value
is:
ke ™ _0.03147
Ts+1 49.81s+1€

-10.8s

Gle= 3

{ Chemical reaction mechanism ] ke
e

First-order inertial link:
l Judge (Ts+1)
[ Delay and inertia links } Second-order inertial link: m
lDetermine -
N-order inertial link: 87
[ Form of the transfer function } (Is+1)

|

[ Curve under step response and method combined with two-point method }

l Solve

[ Solving transfer function parameters: time constant, delay time and gain ]

Fig. 3. Flow chart of the transfer function calculation

The transfer function of slurry density to slurry PH value
is:
k,e™ 0.00026225 105
Ts+1  4981s+1 €

The transfer function of flue gas flow rate to slurry PH
value is:

G2 =

“

0.005 —4s

k —73
< el O

G3e) = =
(Iis+1)  (15.12s+1)
The transfer function of the concentration of SO, in the
flue gas to the PH value of the slurry is:

ke ™ 0.00031 —4s
G =——= e ©
(T,s+1)  (3827s+1)
where § is a complex variable that represents the frequency
in the laplace transform domain, 7 represents the time
constant of the transfer function, 7 represents the delay time

parameter, and k represents the gain value of the function.

IV. FEED FORWARD CASCADE PID CONTROL STRATEGY

A. Introduction to LSTM

The LSTM model was proposed by Hochreiter et al. in
1997, and its main principle is to continuously change the
weight through three gating units: forget gate, input gate, and
output gate. (Fig. 4, ¢.7 and h.; represent the cell state and
final output at t-1 time, respectively; X, ¢;, and A, represent
the input at t time, the output of the cell state, and the final
output of LSTM,; i, f;, and o; represent the input gate output,
forget gate output, and output gate output, respectively; o is
the sigmoid function; tanh is the tanh function; multiple sign
represents multiplication by elements; plus representing
summation), it achieves long-term memory of time series in
traditional Recurrent Neural Network (RNN).

&)

Fig. 4. LSTM schematic
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B. Feed Forward Prediction Process and Analysis

Based on the LSTM model, predict the third step content of
SO, in the raw flue gas, and use its predicted value as a feed
forward to control the PH value. Among them, the input of
the prediction model LSTM is the “raw flue gas SO» content
(mg/m®)”, “total coal amount (t/h)”, “generator power
(MW)”, “raw flue gas temperature (°C)”, and “raw flue gas
flow rate (km/h)” in the actual desulfurization data; The
output is based on the three-step prediction of the original
flue gas SO, content (mg/m®). The actual data of the input
quantity is represented by a curve graph, as shown in Fig. 5.
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Fig. 5. LSTM model input amount

The third step prediction principle of SO, content in raw
flue gas based on LSTM is shown in Fig. 6. In this prediction
model, the five model inputs at time t are fed into the LSTM
three-step model for prediction, and the predicted SO,
content in the original flue gas at time t+3 is output. This
feed-forward prediction system consists of an input quantity,
a prediction model, and an output quantity.

Through the learning and memory capabilities of the
LSTM model, this prediction model is able to capture the
time series characteristics of the input quantity and use these
features to predict the SO, content in the original flue gas. By
transmitting the input at time t to the LSTM model, the model
can automatically learn the correlation and trend of the input,
thereby predicting the original SO, content in the flue gas at
time t+3. This LSTM based feed-forward prediction system
can provide prediction of the future SO, content in the
original flue gas, providing important reference for the
control and optimization of desulfurization systems in
thermal power units.
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Fig. 6. There-step prediction input-output diagram
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C. Prediction Results and Evaluation

The paper selects 3456 samples from actual data and uses
the LSTM model based on the third step prediction to predict
the SO, content in the original flue gas. At the same time,
compare the predicted values with the third step prediction
values of the neural network (BP) model [27] and support
vector machine (SVM) model [28]. The comparison results
of different prediction models are shown in Fig. 7.

From Fig. 7, it can be observed that the predicted values
based on the LSTM model exhibit a roughly consistent trend
with the actual values, with data points that almost overlap.
However, the predicted values based on the SVM model lag
slightly behind the actual value data, and the predicted values
based on the BP model differ significantly from the actual
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Fig. 7. Comparison of three-step prediction value of raw flue gas SO, content with the actual value of different predict model

value data points. Additionally, in order to provide a more
intuitive comparison between different prediction models and
actual values, the original flue gas SO, content of samples
2200-2400 was enlarged in the interval. From the enlarged
sub graph, it can be seen that the predicted values based on
the LSTM model follow the same pattern as the actual value
data, with a small difference between the peak and valley data
of the curve. Therefore, compared with the BP model and
SVM model, the third step prediction of SO, content in raw
flue gas based on LSTM has a better effect.

To better quantify the accuracy of the model, the average
absolute percentage error (MAPE), root mean square error
(RMSE), mean absolute error (MAE), and coefficient of
determination (R?) of the model are selected as measurement
indicators. The calculation formulas for these four indicators
are obtained from equations (7) - (10), and the evaluation
index results of different prediction models are shown in
Table I.

> (i) 7

RMSE =
N
N —
MAPE = L 30| (®)
NZ| oy
N
MAE="-%|y -y, ©)
N i=1
(10)

2_1 NV (yi_yr)2
R =l Zi:l(yi_)’o)z

where N represents the number of samples; ); is the true

value of the i-th sample; y  is the predicted value of the i-th

sample; ), is the average of the true values.

TABLEI
PERFORMANCE COMPARISON OF PREDICTION MODELS
Index RMSE/% MAE/% MAPE/% R?
BP 32.476 25.029 2.708 0.854
SVM 31.884 23.177 2.582 0.895
LSTM 31.297 22.972 2.194 0.924

From the above evaluation indicators, it can be seen that
the LSTM prediction model shows lower error values in
RMSE, MAE, and MAPE compared to the BP prediction

model and SVM prediction model. This means that the
LSTM prediction values are closer to the actual data and
have a smaller error range. Meanwhile, compared with the
other two prediction models, the R? of the LSTM model is
relatively large, indicating that the LSTM model has good
effectiveness and applicability. Based on the analysis
results of these evaluation indicators, we choose LSTM as
the predictive model for the feed-forward module.

This selection is based on a comprehensive evaluation
of different prediction models, taking into account the
prediction accuracy and reliability of the models. The
LSTM model has advantages in processing time series
data, as it can capture long-term dependencies and make
better predictions of future trends. Therefore, selecting
LSTM as the prediction model for the feed-forward
module can improve the accuracy and stability of the
system's prediction.

D. Design of Feed Forward Cascade PID Control

Based on traditional PID control, a cascade PID control
system can be constructed through series combination to
improve process characteristics and maintain stability.
However, the cascade PID control system has a time delay
problem, and the entire system and the opening of the slurry
valve also have significant time delay. To solve this problem,
a feed-forward control system can be introduced and the
LSTM model can be used to predict the original SO, content
in the third step of the flue gas. The purpose of the
feed-forward control system is to adjust the output of the
controller in advance by predicting the future process
variables to reduce the delay of the system. In this case, the
LSTM model can convert the predicted raw flue gas SO- as a
feed-forward quantity.

According to the calculation process of the transfer
function mentioned above, the transfer function of the feed
forward output quantity to the slurry flow rate is obtained as
follows.

kss+1  Ss+1
Tis+1  50s+1

By combining the feed forward predictive control with the
cascade PID control part, a feed forward cascade PID control
strategy is designed, and its principle is shown in Fig. 8.

Gs(s) = (11)
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Fig. 8. Schematic diagram of the feed forward-cascade PID

According to the feed-forward cascade PID control
strategy shown in Figure 8, this control strategy aims to
control the PH value of the absorption tower slurry tank at
around 5.5 to achieve the best desulfurization effect.

The control system is divided into an outer loop and an
inner loop, corresponding to the main control circuit and the
secondary control circuit, respectively. The main control
circuit includes a main PID controller, which is used to
calculate the error between the set PH value and the actual PH
value, and the output result is used as the given value of the
limestone slurry flow rate.

The inner loop part includes a sub PID controller, which is
used to calculate the error between the given value of
limestone slurry flow rate and the actual limestone slurry
flow rate, and the output result is used as a control command
for the speed of the slurry pump to adjust the increase or
decrease of limestone slurry flow rate. The variation of
limestone slurry flow rate directly affects the PH value in the
slurry tank. During the entire adjustment process, the sub
controller plays a coarse adjustment role, while the main
controller plays a fine adjustment role, and the two cooperate
with each other.

This feed-forward control strategy can respond to
disturbances in a timely manner, rather than waiting for
errors to occur before controlling, thus more effectively
eliminating the influence of disturbances on the controlled
parameters. By predicting the SO, content of the original flue
gas in the third step and converting it into the ideal value of
slurry flow as the feed-forward quantity, the parameter
changes required by the control system can be adjusted in
advance, thus improving the accuracy and efficiency of the
control system.

V. SIMULATION ANALYSIS AND VERIFICATION

A. Simulation Model Establishment

According to the principle of this model, Simulink
software can be used to build simulation diagrams. In the
transfer function, the delay values can be achieved by using
the Transport Delay module in Simulink [29]. The simulation
model building diagram is shown in Fig. 9. In Figure 9, by
adjusting the parameters K, Kj, and Kq in the main PID and
sub PID controllers to achieve more stable control system
output. The adjustment of these parameters has a significant
impact on the performance of the control system.

Among them, Kp, as a proportional coefficient, has a rapid
adjustment effect. When there is a deviation in the system,
the regulator will immediately amplify the deviation and
output a control signal. A larger K, value can accelerate the
response speed of the system, but an excessively large K
value may lead to overshoot in the system.

The impact of input bias on system output is adjusted using
the integration coefficient Kj. A larger K; value can shorten
the time to eliminate static errors, but an excessively large K;
value may lead to overshoot in the system, especially in
systems with inertia.

Kg serves as a differential coefficient to adjust the degree
of influence of deviation variation on system output. A larger
Kq4 value can make the system more sensitive to deviation
changes, respond in advance, and suppress overshoot, but an
excessively large K4 value may lead to system oscillations.

The parameter tuning of the PID controller can be
optimized in engineering based on the PID adjustment law,
and the optimal value can be obtained by updating the
controller parameters. The optimal parameter results of the
feed-forward cascade PID controller are shown in Table II.

TABLEII
SIMULATE OPTIMAL PARAMETERS
Parameter K, Ki Ky
Main PID 650 0.6 0
Sub PID 0.3 0.000025 0

B.

Taking the PH value of the control system slurry as the
research and comparison object, qualitative analysis of the
mechanism model with and without interference was
conducted under the premise of the same PID controller
parameters. The comparison of experimental results is shown
in Fig. 10. At the same time, the effectiveness of the third step
feed-forward prediction model proposed in this article is
verified, and the positive effect of feed-forward prediction on
the entire control model is analyzed. As shown in Fig. 11, a
comparison chart of the PH trend of the slurry with and
without the effect of a feed-forward prediction model is
presented. The PH value setting value is selected as 5.5, and
the actual thermal power unit data of the factory is
transmitted to the established simulation model. The optimal
tuning parameters in Table II are selected to set the main PID
and sub PID. The simulation time for the three control

Simulation Results and Analysis
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TABLEIII

COMPARISON OF EVALUATION INDICATORS FOR ABLATION EXPERIMENTS
Interference amount Cascade PID Step 3 feed-forward quantity Response speed/s  Overshoot/%  Adjust time/s Stable PH value
23.4 1.547 2750.6 5.385(-0.115)
20.5 1.908 2747.7 5.390(-0.110)
N 17.4 5.425 2749.5 5.431(-0.069)
N N 16.7 2.251 2747.0 5.551(+0.051)
N N 16.5 1.232 2746.5 5.548(+0.048)
v v v 13.7 1.244 2746.2 5.544(0.044)

strategies is set to 1600 seconds.

From Fig. 10, it can be seen that the slurry density, flue gas
flow rate, and SO; content in the mechanism model have a
positive effect on the tracking of the set PH value in the
control model. Compared with without interference, when
there is interference, on the one hand, it can effectively avoid
overshoot phenomenon, and on the other hand, it can better
track the set PH value and maintain stable transition. The
reason for this phenomenon is that the desulfurization system
of thermal power units has a large inertia, and the addition of
interference can enhance the model's anti-interference ability
to the outside world, better adapt to the inertia in the model,
and avoid unstable output. As shown in Fig. 11. When
integrating multi-step feed-forward prediction models, it has
better response speed and faster arrival at a stable state. Due
to the large lag characteristic of the desulfurization system,
the model needs to predict the content value of future steps in
advance. If the predictive multi-step values cannot be
provided as feed-forward for the mischievous model, the
response speed of the model will slow down, and the
feedback link will also experience lag and delay, resulting in
a longer time required to reach the set PH value. Therefore,
the multi-step feed-forward prediction model proposed in this
article is effective and feasible.

The comparison of indicators for different ablation
experiments is shown in Table III. The advantages and
disadvantages of the model were comprehensively compared
from four evaluation indicators: response speed, overshoot
rate, adjustment time, and PH stability value. From Table III,
it can be seen that introducing interference in the control
strategy can enhance the anti-interference performance of the
model. Compared with no interference, it can have faster
response speed and adjustment time, and the stable value of
PH is also closer to the set value; When designing a
single-stage PID control as a cascade PID, although there is
some overshoot phenomenon in the middle period, it has
better effects in response speed, adjustment time, and PH

stability value. The introduction of the third step SO
feed-forward in response to the time delay of the model can
provide the model with accurate values at this time in
advance, accelerate the response time, prevent overshoot, and
perform best in ablation experiments, demonstrating good
superiority.

In order to further verify the superiority of the control
strategy proposed in this article, it is compared with other
advanced control methods in the desulfurization system of
thermal power units. Figures 12, 13, and 14 show the
comparison curves of slurry PH value, slurry flow rate, and
desulfurization amount for different control methods,
respectively. The comparison of evaluation indicators for
different methods is shown in Table IV.

Fig. 12 shows that MPC, DMC, and IMC-PID perform
poorly in control systems with high inertia and hysteresis.
Unable to track the set value of slurry PH well, in addition,
MPC and IMC-PID exhibit significant overshoot, and the
DMC model has a slow response speed, which cannot meet
the basic response requirements.

The slurry flow rate consumed by different control
methods is shown in Fig. 13. Compared with other methods,
traditional PID and MPC consume more slurry flow and
perform poorly in desulfurization efficiency. The
desulfurization amount is shown in Fig. 14, and the
desulfurization efficiency of traditional PID and MPC shows
a significant decrease trend. Compared with other control
methods, feed-forward cascade PID achieves the best
desulfurization effect by consuming less slurry flow and
significantly higher desulfurization amount.

Table IV shows that MPC has the fastest response speed
among different control methods, but this method exhibits
serious overshoot, and the performance of adjustment time
and PH stability value is also poor. Fuzzy PID control,
control have significant advantages over traditional PID
control, IMC-PID, MPC, and DMC, with faster response
speed and the ability to reach set values more quickly;

TABLE IV

COMPARISON OF INDICATORS OF DIFFERENT CONTROL STRATEGIES
Index Response speed/s Overshoot/% Adjust time/s Stable PH value
Traditional PID 23.4 1.547 1216.6 5.385(-0.155)
Fuzzy PID 17.2 7.693 1208.2 5.422(-0.080)
Cascade PID 17.4 5.425 1192.5 5.431(-0.069)
IMC-PID 20.8 8.049 1255.0 6.481(+0.981)
MPC 114 9.872 1236.5 5.697(+0.197)
DMC 27.8 4.201 1233.9 5.702(+0.202)
Step 1 14.3 1.539 1189.7 5.563(+0.063)
Feed forward cascade PID Step 2 14.1 1.313 1185.1 5.557(+0.057)
Step 3 13.7 1.244 1178.2 5.544(+0.044)
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However, cascade PID control and fuzzy PID control still
cannot avoid overshoot, and there are still their own
limitations in the presence of disturbances, which cannot
effectively overcome the impact of disturbances;
Compared with other strategies, feed-forward cascade PID
control has almost no overshoot phenomenon and quickly
tends to a constant value within the control error range.
The effect is close to the ideal simulation without
interference. At the same time, compared with the first and

second steps, the third step feed-forward control can more
accurately correspond to the time delay problem of the
model. During the control cycle, it outputs the current
value to the model in advance, with a shorter adjustment
time and a stable PH value of 5.544, there is a difference
of 0.044 from the PH set value. This facilitates the control
of the desulfurization tower as the reaction vessel of the
desulfurization system, and the accurate control of flue gas
SO, emissions and PH values will also be achieved.
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VI. CONCLUSION

In response to the problems of large lag and large inertia in
existing wet flue gas desulfurization control systems, this
paper designs a feed forward-cascade dual closed-loop PID
predictive control scheme with the PH value in the absorption
tower as the control object. Firstly, analyze the influencing
factors of PH value to obtain the transfer function and
establish a mechanism model; Then, establish a control
strategy based on feed forward prediction, using LSTM based
three-step prediction values as feed forward variables;
Finally, establish a simulation model and compare it with
traditional PID and cascade PID control strategies to verify
the effectiveness and superiority of the feed forward cascade
PID predictive control method. This not only enables the PH
value to track the set value well, but also better solves the
overshoot phenomenon. This article only takes the PH value
as the control object, and the control effect is limited. In the
future, multiple aspects such as SO, concentration, liquid gas
ratio, and desulfurization efficiency can be considered to
achieve efficient desulfurization of thermal power units.
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