
 

  

Abstract—The current deep learning-based multi-view stereo 

point cloud reconstruction method has been found to have low 

reconstruction accuracy for target boundary contours. This 

paper proposes a high-precision and high-completeness 

multi-view stereo reconstruction network (DL-PatchMatchNet) 

based on an improved PatchMatchNet. Firstly, to increase the 

robustness of the model's feature extraction, a deformable 

convolution-based feature extraction network is proposed. 

Secondly, to improve model reconstruction of target contours 

and boundaries, the Laplace pyramid residuals are introduced 

to guide the decoding process of the model. Lastly, a fused loss 

function (GSS) is proposed to enhance the accuracy of point 

cloud reconstruction by simultaneously considering geometric 

consistency loss, structural similarity metric and smoothing loss. 

The results of the experimental analysis on the DTU dataset 

demonstrate that the DL-PatchMatchNet model exhibits a 

lower mean absolute error (MAE) and error rate (ER) than 

other competing networks. This performance is reflected in the 

high accuracy and completeness of reconstruction achieved by 

the DL-PatchMatchNet model. 

 
Index Terms—Point cloud, Deformable convolution, Laplace 

pyramid residuals, PatchMatchNet 

 

I. INTRODUCTION 

n Computer Vision and Computer Graphics, Multi-view 

Stereo Reconstruction (MVS Reconstruction) has been a 

pivotal and challenging task. Its objective is to recover the 

three-dimensional information of a scene and reconstruct its 
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three-dimensional model using images captured by a camera 

from different viewpoints. This is achieved through the 

application of techniques such as feature point extraction and 

matching, camera pose estimation, triangulation and beam 

method leveling. Over the past few years, the application of 

3D point cloud reconstruction has become widespread in 

several areas, including the estimation of human poses, the 

detection of unmanned aerial vehicles (UAVs), the 

navigation of robots, and the development of autonomous 

vehicles [1]. 

The traditional MVS method [2] employs a number of 

techniques to compute the similarity of multiple views. These 

include photometric consistency and geometric consistency, 

which are employed to derive the three-dimensional structure 

of the scene based on the geometric relationship. This is 

accomplished by extracting feature points from images with 

multiple viewpoints and calculating the camera pose [3]. 

However, this approach is overly reliant on the initial 

reconstruction results, which can lead to limitations when 

dealing with complex scenes, missing textures and 

occlusions [4]. 

The advent of deep learning techniques has prompted 

numerous researchers to shift their research focus from 

traditional 3D reconstruction methods to 3D reconstruction 

of target scenes through the use of neural networks. In 

comparison to traditional methods, deep learning-based MVS 

methods employ convolutional neural networks to generate 

more comprehensive and accurate point clouds, which 

possess the advantages of self-learning, adaptability and 

scalability. Deep learning-based MVS methods can be 

classified into three categories: voxel-based MVS [5], point 

cloud-based MVS [6][7] and mesh-based MVS [8][9]. 

Voxels are an extension of pixels in three-dimensional 

space that discretise the scene into a three-dimensional mesh, 

which makes it easy to represent the position and shape of 

objects in three-dimensional space, making the 

reconstruction process more intuitive and easier to 

understand. The VoxNet network, first proposed by 

Maturana et al. [10], proposes using three-dimensional 

convolutional neural networks to process the meshed voxels 

of the target. Wu et al. [11] proposed the use of 3D ShapeNets 

models directly on 3D voxels for 3D convolutional 

operations. While this approach offers superior 

reconstruction results compared to traditional 3D 

reconstruction methods, the number of required voxels 

increases exponentially with scene complexity, leading to 

significant memory consumption challenges in large-scale 

reconstruction. In order to get around the inherent trade-off 
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between the amount of memory used and the accuracy of the 

reconstruction, Wang et al. [12] from Microsoft Research 

Asia devised O-CNN, which employs an adaptive voxel 

convolution technique with an octree data structure. This 

limits the computation of planar surfaces to the 

neighbourhood of planar surfaces, significantly reducing the 

overhead of voxel computation. However, it remains 

inadequate for complex shapes or objects with regular 

boundaries [13]. 

To address the shortcomings of 3D voxels in dealing with 

scene details, the point cloud-based MVS method [14] 

initially generates point clouds from disparate viewpoints and 

subsequently employs a distance metric function to derive a 

three-dimensional point cloud representation of the scene. 

However, this method often requires a significant amount of 

time to complete. In order to enhance the efficacy of point 

cloud generation, MVSNet [15] proposes the utilisation of 

depth maps in the context of 3D reconstruction. This 

represents a pioneering approach, whereby the depth of each 

view is initially estimated, and subsequently, the depth maps 

are subjected to regression and fusion in order to form the 

final point cloud model. Depth map-based multi-view stereo 

(MVS) methods [16-19] encode and extract both global and 

local information from the scene, thereby enhancing the 

robustness of MVS matching, facilitates the reconstruction of 

low-texture regions and Fellenberg surface regions, and 

significantly enhances the completeness and overall quality 

of the reconstruction. Although the MVS method based on 

depth map has been shown to greatly improve the 

reconstruction effect of the model, it still faces two major 

difficulties: a large computational volume and a long training 

time. To address this problem, Wang et al. [20] proposed to 

combine deep learning with the PatchMatch method to 

estimate the depth of the view by PatchMatch [21], which not 

only reduces model training time, but also effectively reduces 

the number of model parameters. Nevertheless, the method 

still encounters difficulties in processing thin structures or 

untextured surfaces and in achieving an optimal 

reconstruction of edges. 

The main contributions of this paper in response to these 

questions are as follows: 

1) We propose a novel feature extraction network that 

fuses deformable convolution (DeConv) into the feature 

extraction process. The property of deformable convolution 

is employed to replace some redundant convolutional blocks 

in the model, with the use of small convolutional kernels. 

This improves the model's ability to extract features while 

reducing the number of parameters. 

2) The introduction of Laplacian Pyramid Residual (LPR) 

calculation serves to guide the model decoding, thereby 

enhancing the network's ability to learn features on the target 

contour and boundary, and improving the reconstruction 

quality of the model on the target contour. 

3) A new fusion-type loss function is proposed that 

simultaneously considers geometric consistency loss, 

structural similarity metric, and smoothing loss, with the 

objective of improving the reconstruction quality of the 

model while ensuring model accuracy. 

II. RELATED WORK 

Over the past few years, researchers have devoted a great 

deal of attention to image-based 3D reconstruction in 

computer vision applications. This paper focuses on the 

enhancement of the existing network, PatchMatchNet, and 

the achievement of high accuracy 3D reconstruction of 

targets. 

A.  PatchMatch Algorithm 

Since its inception in 2009, the PatchMatch algorithm has 

been extensively employed due to its high efficiency and 

quality, which enhances the performance of image 

restoration in comparison to all preceding algorithms within 

the image restoration class. The PatchMatch algorithm is 

comprised of three primary components: initialisation, 

propagation, and random search. The initialisation phase 

involves the assignment of an initial value to the nearest 

neighbour field. This value may be completely random or 

may include the incorporation of a priori information. Once 

the initialisation phase is complete, the iterative process 

commences. Each iteration constitutes a full-field scanning 

process. Iterations are divided into two categories: odd and 

even. In order to scan the odd iterations, the scanning process 

begins at the top and progresses in a bottom-to-top, 

left-to-right direction. Conversely, the even iterations are 

scanned in a bottom-to-top, right-to-left direction. Each scan 

encompasses two processes: propagation and random search. 

The propagation process is employed to identify the optimal 

value within each iteration. Propagation can be expressed by 

the following formula for odd iterations: 

( ), arg min [ ( ( , )),

( ( 1, )), ( ( , 1))]

=

− −

ff x y D f x y

D f x y D f x y
                  (1) 

where ( ),f x y  denotes the value corresponding to 

scanning into row x  and column y ; ( 1, )f x y−  denotes 

the value corresponding to the left side of ( , )x y ; 

( , 1)f x y −  denotes the value corresponding to the upper 

side of ( , )x y ; and ( )D v  denotes the matching error. In 

contrast, random search involves introducing a random 

perturbation in order to escape the local optimum and identify 

the global optimum matching block. 

B.  PatchMatchNet Stereo Reconstruction Model 

The powerful feature extraction capability of deep learning 

has driven the rapid development of MVS. The utilisation of 

deep learning in MVS methods is gradually superseding the 

traditional approach. In light of the outstanding performance 

of the MVSNet model by Yao et al. on the outdoor dataset 

Tanks and Temples, researchers have identified the reduction 

of the model's memory consumption as a key objective. In 

comparison to the MVSNet family of models, 

PatchMatchNet exhibits superior performance in terms of 

speed, memory usage, image resolution, and suitability for 

resource-constrained devices. 

The network structure of PatchMatchNet comprises two 

components: feature extraction and learnable PatchMatch. 

The feature extraction component employs a feature pyramid 

structure analogous to that of FPN, which effectively fuses 

the semantic information present in the deep feature map with 

the positional information present in the shallow feature map. 

This enables the transmission of target feature information of 

varying sizes, and enhances the network's multi-scale 
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prediction capabilities. The Learnable PatchMatch 

component extends the core algorithm of PatchMatch to 

include a learning-based propagation and evaluation module 

that is based on deep features. This module provides a novel 

and teachable scheme for propagating and evaluating each 

iteration. It preserves the advantages of PatchMatch's small 

memory footprint, rendering the model disparity range 

independent and eliminating the need for three-dimensional 

cost-volume regularisation. This significantly enhances the 

model's computational speed. 

C.  Deformable Convolution 

Convolution plays a pivotal role in deep learning, enabling 

the model to effectively process data with structural 

information such as images and texts. This improves the 

performance and efficiency of the model. However, ordinary 

convolution has certain limitations in dealing with target 

deformation, such as target rotation or scale change. This 

results in an inability to accurately capture the characteristics 

of the target. To address this challenge, Dai et al. [22] put 

forth a novel deformable convolution approach, depicted in 

Figure 1. Understanding the deformations of the data allows 

the model to adapt its learning field to the input data, 

improving the model's ability to learn. The introduction of an 

offset allows the input feature map to be translated and 

deformed, increasing the expressiveness of the model.  

The conventional two-dimensional convolution process 

comprises two principal components: the sampling of the 

feature graph x  utilising a regular grid R ; and the 

subsequent weighted and summed calculation of the 

sampling values by W .  The grid size and expansion rate are 

defined by R . For illustrative purposes, if the convolution 

kernel size is 3 3  and the expansion rate is 1, R  can be 

expressed as follows: 

1 1 1 0 0 1 1 1= − − −{( , ),( , ),...,( , ),( , )}R           (2) 

The 0P  value of each pixel in the output feature map y  

can be calculated as follows: 

0 0( ) ( ) ( )


=  +
n

n n
P R

y P W P X P P           (3) 

Deformable convolution introduces an offset of 

{ | 1, 2,..., };( ) = nP n N N R  to each point in R , as 

calculated by Eq.3. This offset is derived from the input 

feature map and additional convolution, which is typically 

expressed in decimal form. The deformable convolution 

formula is expressed as follows: 

0 0( ) ( ) ( )


=  + + 
n

n n n
P R

y P W P X P P P       (4) 

The position calculated by the aforementioned equation is 

typically a decimal number and does not correspond to the 

actual pixel point on the feature map. Consequently, it must 

also be interpolated and calculated, typically using the 

bilinear interpolation method. The formula is expressed as 

follows: 

( )

( ) ( , ) ( )

( , ) ( , ) ( )

max(0,1 ) max(0,1 )

= 

=  

= − −  − − 







q

x x y y
q

x x y y
q

x p G q p x q

g q p g q p x q

q p q p x q

(5) 

where p  denotes an arbitrary position; q  enumerates all 

spatial positions in the feature map x ; and ( , ) G  is a 

bilinear interpolation kernel. 

 

III. METHODOLOGY 

This paper presents an improvement to the feature 

extraction backbone network of the PatchMatchNet stereo 

reconstruction framework. The network is enhanced by the 

use of deformable convolution instead of ordinary 

convolution, allowing it to adaptively extract features. 

Furthermore, Laplace pyramid residuals are introduced to 

enhance the edge information of the extracted feature maps, 

thereby improving the reconstruction effect of the edges of 

the objects. Its general layout can be seen in Figure 2. 
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Fig. 1. Deformable convolute on schematic diagram 
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Fig. 5. Plots of Laplace pyramid residuals at different scales, from left to right, original, residuals with 8-fold 

down-sampling, residuals with 4-fold down-sampling, residuals with 2-fold down-sampling 
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Fig. 4. Laplacian pyramid residual structure diagram 
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Fig. 3. Adaptive feature extraction network based on deformable convolution 
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Fig. 2. DL-PatchMatchNet stereo reconstruction network structure diagram 

IAENG International Journal of Computer Science

Volume 51, Issue 7, July 2024, Pages 896-905

 
______________________________________________________________________________________ 



 

A.  Adaptive Feature Extraction 

In the context of 3D reconstruction, it is of paramount 

importance to enhance the model in order to extract 

discernible and dependable features, thereby improving the 

accuracy of the reconstruction. However, conventional 2D 

convolution is unable to extract the most efficacious features 

when dealing with reflective surfaces, untextured or less 

textured regions due to its fixed receptive field [23]. To 

address this issue, we propose that the 2D convolution be 

enhanced with a larger perceptual field. However, in the 

context of regions with a high degree of texture, a smaller 

perceptual field may be more effective in extracting more 

robust features. 

In order to improve the ability of the model to extract 

features from the data, deformable convolution is employed 

in this paper to extract features adaptively. The introduction 

of deformable convolution into the feature extraction 

network replaces some of the conventional convolution 

operations, as illustrated in Figure 3. This enables the 

network to adaptively aggregate contextual information over 

different texture richness and multi-scale regions, thereby 

obtaining more robust features. This methodology enhances 

the model's capacity to quantify the depth of an object. 

In the feature extraction network, this paper employs four 

distinct scales of feature maps, with dimensions of H W , 

2 2

H W
 , 

4 4

H W
 , and 

8 8

H W
 . The feature map of 

H W  serves as a shallow feature in the subsequent feature 

decoding process, while the feature maps of the latter three 

scales are processed using three single-step deformable 

convolutions with varying parameters. The smaller features 

are subsequently upsampled to the feature maps of H W  

using bilinear interpolation and skip-step concatenation. 

Notwithstanding, while the incorporation of deformable 

convolutions will enhance the model's feature extraction 

capacity, it will also necessitate an increase in the 

computational burden and parameters associated with the 

model. In order to reduce the cost of computation and to 

maintain the accuracy of the reconstruction of the model, in 

this work, the size of the receptive field adaptively adapts to 

the input by means of deformable convolution. The 

downsampling component of the feature extraction process 

has been optimised, with the convolution kernel size of the 

downsampling convolution being adjusted from the original 

value of 5 5  to 3 3 . This not only results in a reduction 

in network parameters, but also ensures that the model has a 

strong feature extraction capability. 

B.  Residual Bootstrap Decoding 

The majority of existing depth estimation models employ a 

feature extraction approach that utilises the features extracted 

from the encoder. Subsequently, the up-sampled features are 

converted into a depth map. This conversion is achieved 

through the use of a symmetric decoding structure, which 

up-samples the features back to their original dimensional 

size. However, this conversion does not take into account the 

depth boundary information of the target at different scale 

levels, which may result in an inaccurate estimation of the 

target's boundary depth [24]. 

To solve this problem, this paper makes use of the Laplace 

operator's capacity to retain the local information present in 

the input data. Furthermore, it employs the Laplace pyramid 

structure, which places emphasis on the differences in the 

space of different scales, which are highly correlated with the 

boundaries of the objects. This is illustrated in Figure 4. The 

encoded features are initially processed through stacked 

convolutional blocks, where residuals are computed at each 

pyramid layer. These residuals are then combined to generate 

a depth map, progressing from coarse to fine. This process 

enhances the model's capacity to predict the depth of object 

edges. The utilisation of Laplace pyramid residuals enables a 

more efficient utilisation of coded features to estimate the 

depth information of the target. 

The residual kL  for each level of the Laplace pyramid is 

calculated as follows: 

( ); 1, 2,3k k kL D U k= − =                    (6) 

Where k  denotes the level index of the Laplace pyramid; 

kD  is obtained by down-sampling the original input image; 

kU  a is obtained by up-sampling kD , and bilinear 

interpolation is used in the process of resizing the image. 

In the bootstrap model decoding process, assuming that 

kR  is the residual obtained from the k -th pyramid, the 

residual is obtained by concatenating the shallow features kx  

with kL  and the up-sampling result of the deep residual, 

which is obtained from the Laplace pyramid of the 

( 1)+k -th layer. This result is then added to kL  after 

stacking the convolution block kB . This process can be 

expressed by the following equation: 

( )1([ , , ( )]) ; 1, 2,3+= + =k k k k k kR B x L up R L k   (7) 

where kB  generates the result as a single-channel feature 

map of the same size as kL ; ( )up   denotes the up-sampling 

function. The decoding process guided by kL  is able to 

better recover local details on different scale spaces and 

improve the boundary prediction of the depth map. 

Figure 5 illustrates the Laplace pyramid residuals at 

varying scales. As evidenced by the figure, the Laplace 

pyramid residuals effectively retain the boundary information 

of the object at different scales, thereby enhancing the 

network's capacity to accurately reconstruct the target 

boundary. 

C.  Loss Function  

The loss function employed in the network proposed in 

this paper comprises three principal components: Geometric 

Consistency Loss( GCL ) [25], Structure Similarity Index 

Measure (SSIM) [26], and smoothing loss( smoothL ) [27]. The 

proposed fused loss function is designated as GSS. 

In the event that two adjacent images, designated aI  and 

bI ,  are provided, the depth of aI  is initially predicted by the 

network model. Subsequently, the predicted depth map, aD , 
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and the camera position, abP  ,  are employed to project aD  

to 
'

bD  via microscopic bilinear interpolation. The 

discrepancy between the predicted depth,  
'

bD , and its true 

depth, 
T
bD  , is then quantified using the following equation: 

'

'

( ) ( )1

( ) ( )

−
=

+


T
b b

GC T
p V b b

D p D p
L

V D p D p
                  (8) 

where V  denotes the number of valid points of the depth 

map 
'

bD  pixel points for the reconstruction target. 

However, in a real-world setting, light intensity fluctuates 

in real time. Therefore, in the aforementioned equation, an 

additional similarity metric is incorporated to normalise the 

brightness of pixels, thereby enabling the model to more 

effectively address light changes in images. The structural 

similarity loss function is as follows: 

'1 ( )

2

−
= bb

s

SSIM p
L                           (9) 

where 'bb
SSIM  is the similarity between 

'

bD  and 
T
bD  

computed by the SSIM  function. 

The generated depth maps are often characterised by the 

presence of noise, which is less effective in the bottom 

texture regions and in repetitive regions. In order to achieve a 

more effective output depth map, the depth map is adjusted 

using the smoothing loss function, as shown below: 
( ) 2( ( ))−=  aI p

smooth a
p

L e D p            (10) 

where   denotes the first order derivative in the spatial 

direction, which ensures the smoothness of the image edges. 

The weighted combination of the three losses is employed 

as a novel loss function, with the following formula: 

GC s smoothL L L L  = + +                 (11) 

where  ,  , and   are the weight values, which are 

taken in this paper as 0.3 = , 0.3 = , 0.5 =  

respectively, The details of the experiment are shown in 

Table 2. 

 

IV. EXPERIMENTS 

A.  Experimental Settings 

In this study, we implemented DL-PatchMatchNet on 

PyTorch 1.12.1 and trained it on the DTU training dataset. 

Subsequently, the trained model was subjected to an 

evaluation on the DTU test set. In this paper, the resolution of 

the input image is adjusted to 640 512 , the number of 

input images 5N = , and the optimiser 

( 1 0.9, 2 0.999)Adam  =  =  is used with an initial 

learning rate of 0.001, which is multiplied by 0.5 at 10, 12 

and 14 iterations. The training batch is set to 1, and 16 rounds 

of training are performed on the model. 

The computer configuration employed in this experiment 

was an AMD Ryzen 7 5800H CPU with a 3.20 GHz clock 

speed, 16 GB of RAM, a GeForce RTX 3060 graphics card, 

and the Windows 11 operating system with CUDA version 

11.6. 

B.  Evaluation Indicators 

The experiment employs the Mean Absolute Error (MAE) 

between the predicted depth and the true depth to quantify the 

overall magnitude of the error in the prediction results, as 

illustrated in Eq. 12. 

1=

−

=

n

m m
i i

i

X Y
V

n
                           (12) 

The depth value of each point in the predicted depth map 

for the reconstructed target (denoted by 
m
iX ) is calculated. 

Similarly, the depth value of each point in the true depth map 

for the reconstructed target (denoted by 
m
iY ) is calculated. 

Finally, the number of pixel points in the current depth map 

for the reconstructed target (denoted by n ) is calculated. The 

distance from each point in the predicted depth to the nearest 

true depth surface is calculated, averaged, and then its 

absolute value is taken as the result (denoted by V ). This 

metric is employed to assess the efficacy of the network 

reconstruction model in approximating the target model. The 

smaller the value of V , the more closely the prediction result 

aligns with the actual value. 

In addition, the predictive efficacy of the model is gauged 

through an examination of the error rate (ER) for absolute 

error between the predicted depth and the authentic depth in 

distinct threshold contexts. The calculation process is 

illustrated in Eq. 13: 

( )
1=

− 

=

n

m m
i i

i

X Y T
W

n
                (13) 

Where T  is a set threshold, in this paper T  is 1mm, 4mm, 

8mm. the smaller W  is, the higher the prediction accuracy 

of the model. 

C.  Experimental Results And Analysis 

A series of ablation experiments was conducted to validate 

the DL-PatchMatchNet network. Firstly, the aforementioned 

improvement methods were analysed in detail. Secondly, 

ablation experiments were designed for each improvement 

method, all of which were carried out in the same 

experimental environment. The process involved a total of 16 

rounds of iterations, model training on the DTU dataset, and a 

subsequent evaluation of the resulting model on the DTU test 

set. 

This paper employs the technique of migration learning to 

enhance the efficacy of the training process. This technique 

enables the model, at the outset of training, to leverage 

pre-trained network parameters. The outcomes of the model 

are presented in Table 1. 

The original network is employed as the base network, 

with DeConv, LPR and GSS being incorporated into the 

basic model as ablation experiments. The average absolute 

error of the original network is 4.93, with error rates of 

40.16%, 11.98% and 7.27% being observed for equal 
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distances of 1mm, 4mm and 8mm, respectively. This 

benchmark is used to assess the efficacy of the combined 

improved methods. The average absolute error of the model 

is 4.80, and the error rates are 36.67%, 11.22%, and 6.92%. 

The percentage decrease in error rates for threshold values of 

1mm, 4mm, and 8mm, respectively, was 3.49%, 0.76%, and 

0.35%, respectively, in comparison to the original network. 

The experimental results demonstrate that the 

reconstruction effect of the model is enhanced to varying 

degrees following the incorporation of the enhanced 

methodology proposed in this study. The reconstruction 

effect of the model with solely LPR incorporated is more 

pronounced, as illustrated in Figure 6, which depicts the 

comparison of the reconstruction effect of the model before 

and after the incorporation of LPR. This figure reveals that 

the reconstruction effect of the model on the edges is 

significantly enhanced. 

In order to reduce the influence of hyperparameter 

adjustment on the reconstruction effect of the model, we 

adjusted the parameters of the GSS function and conducted a 

comparison test, as shown in Table 2. In this test, the 

parameters of the GSS function,   ,   and  , respectively, 

were set to 0.3, 0.3 and 0.5. The reconstruction effect of the 

model is optimal, resulting in a reduction of the model's mean 

absolute error to 4.88. Furthermore, the error rate in the case 

of the thresholds T , respectively equal to 1mm, 4mm, and 

8mm, is 38.86%, 11.61%, and 7.26%. 

In conclusion, the enhancement of the PatchMatchNet 

model through the integration of DeConv, LPR, and GSS has 

led to a notable improvement in the reconstruction efficacy of 

the model. To further substantiate the advancement of the 

algorithm presented in this paper, we conducted performance 

comparison experiments with other 3D reconstruction 

network models operating within the same experimental 

environment. As illustrated in Table 3, the 

DL-PatchMatchNet network exhibits a markedly diminished 

average absolute error and error rate relative to other network 

models, thereby enhancing the model's capacity to predict the 

target depth. This, in turn, facilitates a more comprehensive 

and precise reconstruction of the point cloud (Figure 7). 

V.   CONCLUSION 

This paper presents a network model, DL-PatchMatchNet, 

which offers enhanced reconstruction accuracy compared to 

the PatchMatchNet multiview 3D reconstruction network. 

The paper outlines three key contributions. Firstly, in the 

feature extraction network, deformable convolution is 

employed in place of ordinary convolution, with adaptive 

feature extraction of deformable convolution implemented to 

enhance the model's feature extraction capabilities. Secondly, 

while the model is utilised for depth estimation from coarse 

to fine, Laplace pyramid residuals are fused at different 

scales to guide the decoding process of the model, thereby 

improving the model's ability to predict the details of the 

target boundaries. Finally, a fused type loss function is 

employed, which fuses geometric consistency loss, structural 

similarity metric and smoothing loss by weighting, thus 

improving the model's overall performance. The fused data is 

then utilised at different scales to guide the decoding process 

of the model, thereby improving the model's prediction 

capability of the details of the target boundaries. Finally, a 

fused type loss function is employed, which fuses geometric 

consistency loss, structural similarity metric and smoothing 

loss by weighting, thus improving the comprehensive 

performance of the model. A comparison of the 

DL-PatchMatchNet algorithm with other advanced 3D point 

cloud reconstruction methods on the DTU dataset indicates 

that the proposed algorithm achieves superior performance. 

 

 

TABLE I 

THE RESULTS OF THE ABLATION EXPERIMENTS 

PatchMatchNet DeConv LPR GSS MAE/mm ER(T=1)/% ER(T=4)/% ER(T=8)/% 

√    4.93 40.16 11.98 7.27 

√ √   4.88 39.66 11.88 7.20 

√  √  4.85 39.26 11.68 7.04 

√   √ 4.90 38.96 11.61 7.26 

√ √ √  4.88 38.27 11.75 7.02 

√ √ √ √ 4.80 36.67 11.22 6.92 

where DeConv, LPR, and GSS represent the improved methods in this paper, were added to the experiments for comparison. The data in bold in 

the table have the best results. 
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TABLE II 
Comparison of model experiments with different parameters of GSS 

PatchMatchNet       MAE/mm ER(T=1)/% ER(T=4)/% ER(T=8)/% 

√ 0.1 0 0 4.93 40.06 11.97 7.35 

√ 0.3 0 0 4.92 39.02 11.91 7.26 

√ 0.5 0 0 4.95 39.83 12.00 7.30 

√ 0.7 0 0 4.95 39.87 12.01 7.27 

√ 0.9 0 0 4.95 40.23 12.04 7.26 

√ 0.3 0.1 0 4.98 39.87 11.97 7.28 

√ 0.3 0.3 0 4.93 39.72 11.82 7.27 

√ 0.3 0.5 0 4.95 39.79 11.93 7.27 

√ 0.3 0.7 0 4.95 39.81 11.93 7.26 

√ 0.3 0.9 0 4.97 39.82 11.92 7.27 

√ 0.3 0.3 0.1 4.93 39.79 11.85 7.28 

√ 0.3 0.3 0.3 4.90 39.72 11.83 7.27 

√ 0.3 0.3 0.5 4.88 38.86 11.61 7.26 

√ 0.3 0.3 0.7 4.93 39.52 11.79 7.26 

√ 0.3 0.3 0.9 4.93 41.02 11.75 7.26 

where  ,  , and   denote the weighting coefficients of GCL , sL , and smoothL , respectively. The data in bold in the table have the 

best results. 

TABLE III 
Comparison of experimental results with other algorithms 

model MAE/mm ER(T=1)/% ER(T=4)/% ER(T=8)/% 

MVSNet[28] 9.40 43.20 14.26 9.87 

Fast-MVSNet 8.96 42.63 13.62 8.53 

AA-RMVSNet[29] 6.38 41.49 12.16 7.83 

R-MVSNet[30] 6.70 41.70 12.68 8.26 

PatchMatchNet 4.93 40.16 11.98 7.27 

DL-PatchMatchNet(ours) 4.80 36.67 11.22 6.92 

Compare with other 3D reconstruction network models and record their corresponding MAE, ER metrics The data in bold in the table 

have the best results. 
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