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Abstract- Isogeny-based cryptography holds significant promise 

in the realm of post-quantum cryptography, primarily due to its 

perceived resilience against attacks from quantum computers, 

based on our current understanding of the underlying 

mathematical problems. However, it's essential to acknowledge 

the dynamic nature of post-quantum cryptography, where 

ongoing research may yield profound insights or lead to the 

development of novel cryptographic approaches. This study delves 

into the analysis of Hessian form curves within the framework of 

isogeny-based cryptography (IBC). We specifically investigate the 

computational costs associated with deriving Hessian form curves 

for constructing sections, particularly when employing 

compression functions. The square-root Velu method is utilized 

for handling Hessian form curves, and we introduce a novel 

formula for calculating the curve's coefficient at a specific point on 

a Hessian curve. Our results indicate that the operational costs of 

the Hessian form and the Montgomery curve are comparable. 

Furthermore, we propose the Hessian-Edwards hybrid model, 

optimizing Hessian-CSIDH and determining the coefficient for the 

codomain's curve using Edwards curves. According to our 

findings, various Isogeny-based cryptosystems can be 

implemented by leveraging Hessian curves. 

 

Keywords- Hessian curves, post-quantum cryptography, Isogeny, 

SIDH, CSIDH, Montgomery curves, square-root Velu formula. 

 

I. INTRODUCTION 

he emergence of quantum computers proficient in 

executing Shor's algorithm has sparked a necessity for post-

quantum cryptography (PQC) approaches, which could 

potentially replace current public-key cryptography systems. 

Isogeny-based cryptography (IBC) is among the PQC 

primitives actively under exploration and is considered a 

leading candidate due to its capacity to yield shorter key lengths 

compared to other PQC primitives. The CRS method originated 

from Stolbunov's rediscovery of Couveignes' initial use of 

isogenies for quantum-resistant cryptography [1]-[2]. However,  
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the vulnerability of the CRS technique to quantum sub-

exponential attacks [3]-[4] renders it unsuitable for practical 

applications. In response to these limitations, De Feo 

introduced the supersingular isogeny-based scheme. 

Diffie-Hellman (SIDH), later refined by Jao [5], within the 

context of IBC for enhanced security and utility. The non-

commutative nature of the endomorphism rings of 

supersingular curves provides protection against attacks 

outlined in [3]-[6]. Additionally, the quantum-exponential 

complexity of establishing an isogeny between two isogenous 

elliptic curves on a finite field underscores the reliability of 

SIDH, in contrast to the vulnerability of discrete logarithm 

problems to Shor's A The SIDH-based key encapsulation 

technique, Supersingular Isogeny Key Encapsulation (SIKE), 

has been proposed as an alternative for NIST PQC 

standardization [5]-[7], emerging as a substitute option for 

Round 3. Research by De Feo, Kieffer, and Smith [9] provides 

updated parameter selections and effective techniques for 

determining the CRS group action. Addressing parameter 

selection concerns in CRS, Castryck et al. introduced 

commutative SIDH (CSIDH) in [10]-[11]. While CSIDH's full 

key transfer is slower than SIDH, taking around 80 ms at a 128-

bit traditional security level, it proves effective for digital 

signatures, as demonstrated by CSI-FiSh [12]-[13], signing 

messages in 390 ms. Although SIDH and CSIDH offer unique 

benefits, their common drawback is slower performance 

compared to other quantum-resistant algorithms. The 

implementation of IBC involves elliptic curve arithmetic and 

isogeny actions, with the isogeny's degree determined by the 

prime used in the scheme. The choice of prime  for 

cryptographic techniques relies on SIDH, which takes the form 

, where  and  are coprime and denotes the 

degrees of the isogenies used in the method. As determining 

isogenies becomes more challenging with increasing degrees, 

implementations often focus on isogenies of degrees 3 and 4. 

The selection of prime  for algorithms is influenced by 

CSIDH, represented as , where  are odd 

primes. The introduction of the CSIDH system has led to a 

growing demand for efficient odd-degree isogeny methods. In 

[14]-[15], Costello and Hisil proposed a practical method for 

generating random isogenies of odd degree on Montgomery 

curves. Traditional approaches for computing -isogeny 

involve significant fieldwork. The square-root Velu formula, 

which enables the computation of -isogeny in field 

operations, was first presented by Bernstein et al. in [16]. 
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Our work focuses on optimizing the computation of larger 

odd-degree isogenies, which is crucial for implementing B-

SIDH [17]-[18] and CSIDH. This is particularly pertinent given 

the current quantum analyses emphasizing the need for large 

odd-degree isogenies to ensure robust security. The choice of 

an elliptic curve shape is pivotal for facilitating efficient 

arithmetic operations. Montgomery curves, celebrated for their 

rapid isogeny estimation and efficient elliptic curve arithmetic, 

are extensively utilized in isogeny-based cryptography 

applications. They constitute the foundation of state-of-the-art 

implementations [19]-[20]. Twisted-Edwards curves, 

particularly when utilizing projective coordinates, are favored 

for their capability to map points from one curve to another, 

owing to their birational equivalence to Montgomery curves. 

Meyer et al. pioneered the use of Montgomery curves for 

isogeny determination and Twisted-Edwards curves for elliptic 

curve arithmetic, laying the groundwork in [21]-[22], which 

marked the initial application of Edwards curves in this context. 

This methodology was further developed in [23]-[24], where 

Montgomery curves were employed for elliptic curve 

mathematical computations, while Edwards curves were 

utilized for isogeny computation. However, as pointed out in 

[24] and [25], relying exclusively on Edwards curves for SIDH-

based approaches proves to be less effective compared to the 

use of Montgomery curves alone. The utility of employing 

Edwards curves became evident with the implementation of 

CSIDH, harnessing larger odd-degree isogenies. Moreover, a 

valid formula enables the reconstruction of a curve parameter's 

image on Montgomery curves. Montgomery curves excel in 

efficiently estimating isogenies of any odd degree [14], while 

Edwards curves offer a valuable method for computing the 

image curve's coefficient. Consequently, in [26]-[27], CSIDH 

was developed using Twisted-Edwards curves to derive the 

image curve's coefficient and Montgomery curves for isogeny 

determination. 

An enhanced formula for odd-degree isogenies was 

introduced in [28]-[29] using Edwards curves' -coordinates. 

Achieving a more efficient implementation of Edwards-only 

CSIDH compared to Montgomery-CSIDH [10]-[28] or Hybrid-

CSIDH [24] involves modifying the formula introduced in [26]. 

This study emphasizes the potential performance enhancements 

achievable by employing different elliptic curve types in 

various isogeny-based methods. Therefore, it's crucial to 

evaluate implementation outcomes across a range of elliptic 

curves. 

Isogeny, a surjective homomorphism between elliptic curves 

with finite-length kernels, is not confined to specific curve 

models. However, distinct curve models may entail different 

processing costs for isogeny calculations. Elliptic curves can be 

represented in various forms, including Weierstrass, Edwards, 

Hessian, and others. Currently, schemes like SIDH [31]-[32] 

and CSIDH [33]-[34] leverage Montgomery curves for rapid 

isogeny evaluation, contributing to the ongoing focus of IBC 

research. Edwards curves have also been explored for their 

potential in efficient isogeny computations [35]. Kim et al. 

utilized a system dependent on -coordinates [35]. 

Farashahi et al. [36] proposed -coordinates in 2010 for 

efficient field mathematics formulae on generalized-Hessian 

curves across a field with characteristics . Bernstein et al. 

[37] investigated group computation on Twisted Hessian 

curves. Zheng Tao et al. [38] introduced quicker isogeny 

estimation using a Twisted-Hessian form curve. 

This research employs various methodologies, including the 

compression function, square root Velu's formula, and an 

Edwards curve-based formula, to facilitate the creation of the 

Hessian-Edwards hybrid model and curve coefficient. Our 

findings reveal that the Hessian model exhibits significant 

similarity to the Weierstrass curve, outperforming the Edwards 

curve, and the operational cost of the Hessian form aligns 

comparably with that of the Montgomery curve. 

The paper is structured as follows: Section II provides a 

thorough review of Twisted Hessian curves, the SIDH-CSIDH 

scheme, and square root Velu's formula to establish background 

context. In Section III, we introduce the relationship between 

Montgomery and Twisted Hessian curves, followed by the 

presentation of the proposed scheme in Section IV. Section V 

includes figures, table comparisons, and bar chart analyses that 

contrast the Short Weierstrass, Edwards, and Hessian curves. 

Finally, Section VI concludes the paper and outlines future 

prospects. 

 

II. PRELIMINARIES 

This section provides the foundational information and 

background necessary for the paper. We begin by introducing 

two fundamental IBC protocols: the Supersingular Isogeny 

Diffie-Hellman (SIDH) protocol and the Commutative 

Supersingular Isogeny Diffie-Hellman (CSIDH) protocol. 

Additionally, we delve into the various variations of Hessian 

curves and their arithmetic properties. 

A. SIDH Protocol 

 Assume coprime numbers  and . Let and be 

positive integers satisfying , and let  

be a prime of the form with a specific integer cofactor . 

Construct a supersingular curve  with such that its order 

is . When  and  are chosen, 

we can determine the complete -torsion subgroup with order 

 over . Then, for the -torsion and -torsion 

subgroups, respectively, we select the basis  and 

.  

Let's consider Alice and Bob's process for transferring a 

secret key. Let  and  be the bases for Bob 

and Alice, respectively. Alice randomly selects elements  

and  from the ring  which is not divisible by  or 

, to generate the key. Using Velu's formula, Alice computes 

the subgroup and a curve 

, followed by an isogeny  of degree 



2q =
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, where  is the chosen prime. She then 

sends to Bob. Bob performs the same 

operation as Alice, obtaining . Alice 

determines the subgroup  in 

order to determine the key. Alice creates curve  

employing Velu's formula. Using this subgroup, Bob creates a 

curve employing Velu's formula. The -

invariant of , denoted , serves as the 

shared secret between Alice and Bob. 

B. CSIDH Protocol 

 A commutative group action over supersingular elliptic 

curves described over a finite field  forms the foundational 

concept of CSIDH. Let  denote the set of elliptic curves 

over  via the endomorphism ring , where  is an 

imaginary quadratic order. The class group interacts 

with  freely and transitively, as widely recognized. This 

interaction, known as the CM-action, involves the action of an 

ideal class on an elliptic curve by 

. 

Let's consider  as a smaller separate odd prime, 

taking the form . Assume is a 

supersingular elliptic curve over , where , a 

commutative subring of the quaternion order End(𝐸), serves as 

the endomorphism ring of under . Given the trace value 

of Frobenius is zero, it follows that . Moreover, 

due to , the ideal splits into , 

where  and are prime ideals. The 

group action  and can be computed using Velu's 

formulas through the isogenies (and ) over  (and  ). 

Let's suppose Alice and Bob aim to exchange a secret key. Alice 

selects a vector , where each component lies 

within the interval for some positive integer . This 

vector represents an isogeny corresponding to the group action 

by class , where  is an ideal in 

the endomorphism ring. Alice then computes her public key 

 and sends it to Bob. 

Similarly, Bob utilizes his private ideal and transmits his 

public key  to Alice. Upon receiving Bob's public 

key, Alice calculates determines .  and , and 

Bob computes 1. Alice and Bob can deduce a shared secret 

value from the elliptic curves due to commutativity, rendering 

 and  isomorphic. 

C. Twisted Hessian Curve and their Arithmetic 

 The Twisted Hessian curve over the finite field K is 

represented as follows: 

 

It is defined over the projective space , where 

elements belong to and must satisfy . 

The affine form equation of  is defined by 

,  where 

  and . When , the curve becomes a 

Hessian curve. The -invariant of the Hessian curve [38] of 

   is . 

Note that the point at infinity, denoted , serves 

as the neutral element. Therefore, the elements of 

form an additive group with the identity , and the inverse 

element of a point in  is 

. 

For the , two addition formulas are described  in [36]-

[39].  Let  and  be points of . The 

standard addition formula (also known as the Sylvester 

Formula) is given by , 

, and . The rotated 

formula is given by  and 

. 

Both formulas are considered 

complete because the resulting points  and 

 are distinct [39]. 

D. Isomorphism 

 The Weierstrass curve and the Twisted Hessian curve 

defined over the same field undergo a transformation. The 

following substitutions will convert a Twisted Hessian curve 

 specified by the formula:  

  

into a Weierstrass curve by the substitutions 

. By applying these changes, an equation for the 

Twisted Hessian curve becomes 

, which represents a Weierstrass curve E with coefficients 

coefficients   and  emerged. The 

following substitutions, however, can be employed to transform 

a Weierstrass curve E specified by the equation

into a Twisted Hessian curve. The equation for E becomes

Ai

Af A AKer L =  

( , ( ), ( ))A A B A BE J K 

( , ( ), ( ))B B A B AE J K 
' [ ] ( ) [ ] ( )A A B A A B AL x J y K   =  + 

'/AB B AE E L=  

'/BA A BE E L=   j

ABE ( ) ( )AB BAj E j E=

q

( )qll 

q  

( )Cl 

( )qll 

[ ] ( )p Cl  ( )qE ll 

[ ]p E

1,.... nf f

1 24 .... 1np f f f= − E

q [ ]

E q

( ) 1qE q= +

2 1 0mod if − =
if  i i if I I

−

 =

( , 1)i iI f = − ( , 1)i iI f 
−

= +

[ ]iI E [ ]iI E
−

iI
iI

− q q

1( ,...., ) n

ni i 

[ , ]x x− x

1

1[ ] [ ,..., ]nii

np I I= ( , 1)i iI f = −

: [ ]AE p E=

: [ ]BE q E=

[ ] Bp E [ ] Bp E [ ] Aq E

[ ] Bp E [ ] Aq E

3 3 3

, :p mH pR S T mRST+ + =

2 ( )P K

,p m
3(27 ) 0p p m− 

,p mH

3 3

, :p mH p s t mst+ + =

S
s

R
=

T
t

R
= 1p =

j

,p mH
3 3 3

, 3 3

( 216 )
( )

( 27 )
p m

m m p
j H

p m p

+
=

−

(0 : 1:1) = −

, ( )p mH K



( : : )J R S T=
, ( )p mH K

( : : )J R T S− =

,p mH

1 1 1( : : )R S T 2 2 2( : : )R S T ,p mH

2 2

3 1 2 2 2 1 1R R S T R S T= −

2 2

3 1 2 2 2 1 1S T R S T S R= − 2 2

3 1 2 2 2 1 1T S R R S R T= −

' 2 2

3 2 1 1 1 2 2S S S T PR R T= −

' 2 2

3 2 1 1 1 2 2T pR R S T T S= −

' 2 2

3 2 1 1 1 2 2R T R T S R S= −

3 3 3( : : )R S T

' ' '

3 3 3( : : )R S T

,p mH

,p mH

3 3 3pR S T mRST+ + =

( )
S

r m p
T

= −

( 2 )
R

s m p
T

= −

,p mH
2

2 3

2
432

( )

p
s r r

m p
= −

−

2

2
432

( )

p
p

m p
= −

−
0q =

2 3s r pr q= + +

IAENG International Journal of Computer Science

Volume 51, Issue 7, July 2024, Pages 906-917

 
______________________________________________________________________________________ 



with the substitutions 

, resulting in a Twisted 

Hessian curve  of coefficients and . 

The Twisted Hessian curve and Montgomery curve are 

isomorphic, although this relationship holds true only for fields 

where the characteristic is not equal to 2 or 3. The following 

substitutions can be utilized to transform a Twisted Hessian 

curve  (specified by equation ) 

into a Montgomery curve :  . The expression 

for changes to  as a result of these 

modifications, yielding a Montgomery curve with 

coefficients  and . The following replacements 

, on the other hand, can be utilized to 

transform a Montgomery curve , which is specified by the 

equation , into a Twisted Hessian curve. 

With these changes, the expression for the Montgomery curve 

becomes , and we are left with a 

Twisted Hessian curve with coefficients and 

. 

 

E. -Coordinates on Twisted Hessian Curve 

 In their research, Farashahi et al. [35] introduced a -

coordinate system tailored for efficient and streamlined field 

arithmetic operations on generalized Hessian-form curves, 

defined over fields where . Expanding upon their work, 

we extend the -coordinate scheme to Twisted Hessian-form 

curves. Specifically, we delineate the rational map on points of 

the curve  as , which can be computed 

efficiently and satisfies . 

Theorem [37]: Consider two points and  in , with 

 denoting the -coordinate for points. Specifically, we have 

 and . Let 

 and   

Consequently, we derived  these differential addition 

methods:  

 

. 

 

Theorem [37]: Consider a Twisted Hessian curve  

defined over field , and let  denote the value of the 

-coordinate at any point  on the curve. We can then 

derive the following equations:  

(i) The -isogeny  maps  to . We have  

,  

where the image curve coefficients are  and 

.  

(ii) The 3-isogeny  maps  to  is  

,  

where the image curve coefficients are  

and . 

Theorem [37]:  

Let    be a subgroup of 

 with a size of .  

Suppose  is the  -isogeny from  to . with 

finite length kernel G, and  be the value of the -

coordinate at any point  on . Let  for  

. We can derive the following equation:  

 

the image curve coefficients are  and 

. 

 

III. RELATIONSHIP WITH MONTGOMERY CURVES 

This section explores the relationship between the -

coordinate on a Hessian curve and the corresponding -

coordinate on a Montgomery curve. The conversion between 

Montgomery curves and Hessian curves is straightforward. To 

transform a point  into corresponding Hessian -

coordinates, we can utilize the -function as a compression 

method defined as:  

The utilization of Edwards curves to compute the image curve's 

coefficient can enhance efficiency when applying arbitrary 

isogenies of odd-degree on Montgomery curves, as seen in 

CSIDH. Edwards curves can also improve the efficiency of 

Hessian isogenies due to the conversion between the 

Montgomery curve. Switching between Hessian curves and 

Montgomery curves requires a straightforward transformation 

of coordinates, while the conversion between Montgomery 

curves and Edwards curves incurs minimal cost. 

 

IV. THE PROPOSED HESSIAN CURVE ISOGENY 

CALCULATIONS 

A recent efficient approach for determining -isogeny 

utilizing field operations was developed by Bernstein 

et al. [19]. This approach alleviates the computational burden 

imposed by traditional Vélu formulas for determining -

isogenies. The traditional Vélu formula requires extensive field 

operations. 
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The calculation of polynomials whose roots are determined 

by a function via a cyclic group can be conceptualized as 

utilizing the Vélu formula. A polynomial is defined using , a 

cyclic group with the generator , with a finite subset  in  

 

Given a curve  and a point  where  

is a kernel of an -isogeny , and  the -

coordinate of , which is obtained through scalar 

multiplication of . 

Let  denote a Montgomery curve, and let  be a 

point of prime order  (not equal to 2). The isogeny 

 with kernel can be expressed using equation 

(3) as follows: 

 

holds for all  such that .  

Here,   denotes the -coordinate of the point . 

When  is described in affine Montgomery equation form 

, the polynomials   and   are 

defined as follows [19]: 

 

We formulated the following biquadratic polynomials 

specifically tailored expressly for the form of Hessian curves 

 to facilitate the implementation of the square-root form. 

Likewise, the relationship between a point's -coordinate 

 and  on a Hessian curve can be expressed 

as follows:

For the curve  utilizing the -function, the polynomials 

  and  are defined in the following manner: 

 

 

  Where . 

Proposition 1 (Square-root formula on Hessian curves):  

Consider a point on the Hessian form curve  over a 

finite field ( ), which is of prime order. Additionally, let a 

compression function be applied on the points of  . This 

function is defined such that if  is compressed then 

. An isogeny  is defined with finite length kernel 

, and it is defined as ; the calculation of 

 proceeds as follows: 

 

Where  and 

.  

 

A. Recovering the Curve Coefficient 

We have outlined a methodology for recovering the 

coefficients of the Hessian form curve using the -coordinate 

of  and  points on the Hessian curve. Additionally, 

we have employed biquadratic polynomials for this purpose. By 

leveraging the Montgomery ladder, and   are 

regarded as pivotal for expedited kernel evaluation in the 

implementation of SIDH.   and  are 

computed and exchanged to evaluate the shared key potential, 

which may be viewed as enlarging the length of the public key. 

By utilizing the fact that the coefficient 'a' of the Montgomery 

curve relates with the -coordinates of  and   for 

. Therefore,  and 

 have been interchanged in the 

protocol during and after obtaining the public key, facilitating 

the recovery of the coefficient through this relationship. 

Similarly, for Hessian form curves, coefficients can also be 

generated through analogous relationships. Let  be a 

Hessian curve utilizing  as a compression function. For  

and   in , let , 

  and . Then the following 

relations hold: 

 

 

 
 

B. The Hessian-Edwards hybrid model and computational 

costs  

It is crucial to highlight the advantageous link between 

Montgomery curves and Edwards curves by leveraging the 

square-root Velu formula for computing the image coefficient 

of Montgomery curves [16]. This approach not only accelerates 

computations but also facilitates the determination of the image 

curve coefficient through the formulation of the square-root 

Velu formula for isogeny calculation. Montgomery curves 

solely necessitate the computation of  and , 

whereas Hessian curves mandate the computation of  

and  for  in . Indeed, given the absence of cost 

associated with converting between Montgomery and Hessian 
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curves, the same concept can be seamlessly applied to Hessian 

curves as well. Furthermore, by incorporating related Edwards 

curves, it becomes feasible to optimize the computation of the 

curve image coefficient in Hessian-form curves further. This 

approach extends the efficiency gains achieved through 

leveraging interrelationships between different curve forms, 

enhancing the overall performance of cryptographic protocols. 

Suppose   is a point on a Hessian curve   with prime 

order  . Let   be a compression function for points on 

, and let ,and be a 

quotient isogeny with kernel . Then, we can compute 

as , where 

. It is crucial to remember that utilizing 

Edwards curves to reconstruct curve image coefficients in the 

Hessian-Edwards hybrid model not only enhances efficiency by 

estimating  and  rather than  and 

, but also eliminates the need for coefficient 

translation. The image curve's percent value is calculated using 

the isogeny formula for Hessian curves in terms of the domain 

curve . Thus, since  is utilized for 

elliptic curve computations 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1 Graphical representation of proposed scheme  

and  must be preserved to proceed with isogeny evaluations, 

coefficient transition becomes necessary. However, when 

employing Edwards curves to recover the Hessian curve 

coefficient, the formula involves  and , eliminating the 

need for coefficient transition and the necessity to maintain  

for further isogeny evaluation. A graphical depiction of the 

proposed scheme is provided. 

 

V. RESULTS 

This section delves into the efficiency of Isogeny-Based 

Cryptography (IBC). We assessed the techniques by 

implementing them in Python and measuring their runtimes on 

a system running Windows 10 with a single core of an Intel 

Core i5-1035 CPU. The BIOS version used was X415A from 

American Megatrends Inc., with an SMBIOS version of 3.2 

maintained throughout the compilation process. Finally, we will 

compare the computational costs of biquadratic polynomials for 

Montgomery and Hessian curves. Regarding the computation 

of -isogenies, two phases are involved: isogeny evaluation 

and obtaining the image curve's coefficient.  

In Table I, the term "eval" denotes isogeny evaluation, while 

"coeff" pertains to the determination of the image curve's 

coefficient. Moreover, in Table I, "Hessian-Edwards" indicates 

the scenario where Hessian curves are utilized for isogeny 

evaluation and Edwards curves are utilized for coefficient 

determination. Table II illustrates the computational expenses 

of various components of isogeny-based cryptography using 

Montgomery and Hessian curves. The term " -isogeny eval" 

denotes the evaluation of a -isogeny, whereas " -isogeny 

coeff" refers to the computation of the coefficient of the -

isogenous image curve. "CoeffTrans" specifies the cost of 

translating coefficients for effective elliptic curve 

computations, which is relevant only for Hessian curves. The 

term "Mont" pertains to the Montgomery curve, while "Mont-

Edwards Hybrid" refers to a hybrid approach described in [39, 

40], where Montgomery curves are utilized for elliptic curve 

computations and isogeny evaluation, while Edwards curves 

are employed for determining the image curve's coefficient. In 

the table, " " indicates field multiplication, " " denotes field 

squaring, and " " signifies field coefficient multiplication.  

The Hessian-Edwards Hybrid method combines Hessian 

curves for elliptic curve arithmetic and isogeny evaluation with 

Edwards curves for computing the coefficient of the image 

curve. Fig 2 depicts a pie chart comparing the performance of 

Montgomery, Hessian, and Hessian-Edwards Curves. Fig 3 

presents the comparison among short Weierstrass, Edwards, 

and Hessian forms of elliptic curves over a finite field. For this 

comparison, set the coefficients of each of those curves equal to 

1. Subsequently, we computed the runtime of the code to 

determine the 2, 3-torsion points for different field 

characteristics  of the form , where are 

integers. Table III presents the runtime for the Weierstrass, 

Edwards, and Hessian curves with fixed values of the 

coefficient  and  on different prime characteristics. 
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Fig 4 illustrates the comparison between short Weierstrass, 

Edwards, and Hessian forms of elliptic curves with constant 

fields with characteristic . For this comparison, we 

utilized Python programming and set the value of the 

coefficient  of each of those curves equal to 0. Subsequently, 

we computed the code's runtime to find the 2, and 3-torsion 

points for different values of the coefficient . Table IV 

showcases the runtime for the Weierstrass, Edwards, and 

Hessian curves with a fixed constant field of characteristic 

and  on different values of coefficient . Fig 5 

illustrates the comparison between short Weierstrass, Edwards, 

and Hessian forms of elliptic curves with constant fields with 

characteristic . For this comparison, we used Python 

programming and set the value of the coefficient  of each of 

those curves equal to 0. Subsequently, we computed the code's 

runtime to find the 2 and 3-torsion points for different values of 

the coefficient . Table V showcases the runtime for the 

Weierstrass, Edwards, and Hessian curves with a fixed constant 

field of characteristic  and  on different values of 

coefficient . 

 

VI. CONCLUSION 

In the examination of computational costs involved in 

isogeny on Hessian-form curves for constructing sections, we 

utilize compression functions. The square-root Velu method is 

employed for handling Hessian-form curves, introducing an 

innovative formula for calculating the curve's coefficient at a 

specific point on the Hessian curve. Referring to Table I, the 

computation costs for -eval and -coeff for Montgomery, 

Hessian, and Hessian-Edwards curves are determined as 14, 20, 

and 14 operations, respectively. Fig  3, Fig 4, and Fig 5 clearly 

illustrate the resemblance of the Hessian model to the 

Weierstrass curve and its superior performance over the 

Edwards curve. Our results indicate that the operational costs 

of the Hessian form and the Montgomery curve are comparable 

Furthermore, we introduced the Hessian-Edwards hybrid model 

by optimizing Hessian-CSIDH and computing the coefficient 

for the image's curve using Edwards curves. According to our 

findings, implementing IBC using Hessian curves is feasible. 

 

 

 

 

 

Fig 2 Pie-Chart comparing the performance of 

Montogomery, Hessian, and Hessian-Edwards Curves 

 

 

 

 

Table I The expenses associated with computing biquadratic polynomials
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Table II   Computational cost of building-blocks of isogeny-based cryptography on Hessian curves and Montgomery curves 

 

 

Table III     Runtime (in second) of building-blocks of isogeny-based cryptography on Weierstrass, Edwards and Hessian curves 

(Value of the coefficient 𝑎 = 1 and 𝑏 = 1) 

 Runtime (in second) 

Prime Number Weierstrass Curve Edwards Curve Hessian Curve  

 1.20837 0.00618 0.00755 

 0.01054 0.00000 0.00666 

 0.01718 0.01616 0.02071 

 0.18353 0.40964 0.21954 

 2.37102 7.99440 4.79775 

 0.01130 0.00735 0.00656 

 0.01040 0.04411 0.03323 

 0.03771 0.07858 0.06862 

 0.70893 2.23435 1.43595 

 5.47615 21.46011 12.22071 

0 12 3  - 1

2 02 3  - 1

3 02 3  - 1
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Fig 3 Graph of comparison between Short Weierstrass, Edwards and Hessian Curve 

Table IV    Runtime (in second) of building-blocks of isogeny-based cryptography on Weierstrass, Edwards and Hessian curves 

(Constant field with characteristic  2631 − 1 and 𝑎 = 0) 

 Runtime (in second) 

Values of b Weierstrass Curve Edwards Curve Hessian Curve  

0 8.74824 5.52195 9.04185 

1 9.49638 13.63152 15.61121 

2 8.95949 12.86678 9.31599 

3 9.28498 13.65476 9.32817 

4 10.61281 13.94777 9.01942 

5 9.10469 13.21486 9.20848 

6 8.90128 14.12703 8.63578 

7 8.84155 13.98525 8.94770 

8 9.76750 13.15157 9.49855 

9 9.36304 15.78667 8.54008 
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Fig 4 Graph of the comparison between Short Weierstrass, Edwards and Hessian Curve over finite field (const.)

Table V Runtime (in second) of building-blocks of isogeny-based cryptography on Weierstrass, Edwards and Hessian curves 

(Constant field with characteristic and ) 

 Runtime (in second) 

Values of a Weierstrass Curve Edwards Curve Hessian Curve  

0 8.07339 4.67914 8.24526 

1 7.52350 15.32732 17.70590 

2 7.56521 14.79981 17.67328 

3 7.56031 16.57560 17.50555 

4 7.59240 16.55787 17.60001 

5 8.55207 16.51754 17.66080 

6 7.59787 16.47829 18.00116 

7 7.56619 16.78322 19.57871 

8 7.62691 16.72845 17.64307 

9 7.49035 16.56309 17.66482 

6 12 3  - 1 0b =
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Fig 5 Graph of the comparison between Short Weierstrass, Edwards and Hessian Curve finite field (Const.)
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