

Abstract—Research in the field of malware detection is

currently leaning toward methods based on artificial

intelligence algorithms due to the increasing limitations of

traditional detection methods and the increasing accuracy of

these methods. This study therefore introduces a novel

approach to malware detection. This method integrates a deep

learning model's autoencoder network with a grayscale graphic

depiction of malware. By looking at the autoencoder's

reconstruction error, we may assess if the grey-scale picture

approach is feasible to use for malware detection. Additionally,

it differentiates between malicious and safe software by

utilizing the autoencoder's dimensionality reduction

capabilities. Using the Android dataset, our newly introduced

detection model attained a 95% accuracy and maintained a

consistently high F-score of approximately 95%. This

outperformed more conventional methods of machine learning

detection.

Index Terms—Malware detection, autoencoders, malware

images, machine learning.

I. INTRODUCTION

N an era dominated by digital interconnectedness, the

ubiquity of computing devices has propelled society into

an age of unprecedented technological advancement.

However, this progress has also ushered in a parallel

evolution in cyber threats, particularly in the form of

malware. Malicious software, encompassing a wide array of

code designed to infiltrate, damage, or exploit computer

Manuscript received January 6, 2024; revised July 4, 2024.

Venu Madhav Panchagnula is Assistant Professor of Electronics and

Communication Engineering Department, Prasad V Potluri Siddhartha

Institute of Technology, Vijayawada, Andhra Pradesh, India. (e-mail:

venumadhav@pvpsiddhartha.ac.in)

Ch. Satya Keerthi N.V.L is Assistant Professor of Computer Science

and Engineering Department, Koneru Lakshmaiah Education Foundation,

Guntur, Andhra Pradesh, India. (e-mail: satyakeerthinvl@gmail.com)

S. Surekha is Assistant Professor of AIML Department, Vignana

Bharathi Institute of Technology, Ghatkesar, Hyderabad, India. (e-mail:

surekhasatram@gmail.com)

R. Sujatha is Assistant Professor of Information Technology

Department, M. Kumarasamy College of Engineering, Karur, India. (e-

mail: sujathar.it@mkce.ac.in)

Duggineni Veeraiah is Professor of Computer Science and Engineering

Department, Lakireddy Bali Reddy College of Engineering, Mylavaram,

Andhra Pradesh, India. (e-mail: veeraiahdvc@gmail.com)

Eluri Ramesh is Assistant Professor of Computer Science and

Engineering Department, R.V.R & J. C. College of Engineering, Guntur,

India. (e-mail: eluriramesh@rvrjc.ac.in)

B. Lakshmi is a Scholar of Electronics and Communication Engineering

Department, Rajiv Gandhi University of Knowledge Technologies, Nuzvid,

Andhra Pradesh, India. (e-mail: blakshmith@gmail.com)

systems, poses a persistent challenge to information security.

Traditional methods of malware detection, reliant on static

signatures, have struggled to keep pace with the rapid

mutation and sophistication exhibited by contemporary

malware variants.

The dynamic nature of modern malware, characterized by

polymorphic and metamorphic traits, demands a paradigm

shift in detection methodologies. As a response to this

challenge, deep learning, a subset of machine learning, has

emerged as a promising avenue for developing adaptive and

robust malware detection systems. Within the realm of deep

learning, autoencoders, a class of neural networks primarily

employed for unsupervised learning tasks, offer a unique

approach to learning data representations and detecting

anomalies [1] – [3].

The primary objective of this research is to investigate the

efficacy of autoencoders in the context of malware detection.

Autoencoders, known for their ability to capture latent

features within data, present an attractive option for

discerning the subtle patterns indicative of malicious

activity. By exploring the potential of autoencoders in this

domain, we seek to contribute to the development of more

resilient and responsive defenses against the ever-evolving

landscape of malware threats [4] – [5]. Through rigorous

experimentation and analysis, this research aims to: Evaluate

the performance of autoencoders in detecting diverse

malware samples. Compare the results with traditional

signature-based methods and other deep learning

approaches. Assess the adaptability and scalability of the

proposed autoencoder-based malware detection system.

Identify the strengths and limitations of autoencoders in

addressing the challenges posed by contemporary malware

[6] – [7].

A. Traditional Malware Detection

Historically, malware detection has heavily relied on

signature-based methods, where predefined patterns or

signatures of known malware are compared against files or

system activities. While effective against known threats, this

approach falters in the face of polymorphic and

metamorphic malware. Polymorphic malware dynamically

alters its code while retaining its original functionality,

challenging static signature-based systems. Metamorphic

malware goes further by completely changing its code

structure, rendering signature-based detection even less

effective [8] – [9]. The limitations of traditional methods

necessitate the exploration of more adaptive and intelligent

approaches to malware detection [10] – [11].

A Deep Learning Approach for Detecting

Malware Using Autoencoder

Venu Madhav Panchagnula, Ch. Satya Keerthi N.V.L, S. Surekha, R. Sujatha, Duggineni Veeraiah,

Eluri Ramesh, Lakshmi B.

I

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1051-1059

__

mailto:venumadhav@pvpsiddhartha.ac.in
mailto:satyakeerthinvl@gmail.com
mailto:surekhasatram@gmail.com
mailto:sujathar.it@mkce.ac.in
mailto:veeraiahdvc@gmail.com
mailto:eluriramesh@rvrjc.ac.in
mailto:blakshmith@gmail.com

B. Deep Learning in Malware Detection

The limitations of conventional approaches can be

somewhat addressed by deep learning techniques, which can

automatically learn hierarchical representations from data.

Improved malware detection systems have been made

possible through the use of Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs) to extract

useful information from malware samples. While RNNs are

great at modeling sequential patterns in code behavior,

CNNs are great at capturing spatial relationships in data,

which makes them ideal for evaluating malware

representations in binary or picture form [12] - [13].

Malware, however, is constantly developing, necessitating

new approaches to detection.

C. Autoencoders in Anomaly Detection

Autoencoders, a type of unsupervised deep learning

model, have gained attention for their efficacy in anomaly

detection across various domains. An autoencoder comprises

an encoder and a decoder, with the latent space between

them serving as a compressed representation of input data.

During training, the autoencoder learns to reconstruct the

input data accurately, making it adept at capturing intrinsic

features while highlighting anomalies as deviations from the

learned norm [14] – [15]. Previous studies have

demonstrated the utility of autoencoders in identifying

anomalous patterns in diverse datasets, from medical images

to network traffic. This adaptability makes autoencoders a

compelling candidate for detecting the subtle and dynamic

characteristics of malware [16] – [17]. The literature

suggests that autoencoders, with their capacity to discern

anomalies in an unsupervised manner, hold significant

promise for addressing the challenges posed by polymorphic

and metamorphic malware, providing a foundation for the

exploration of their application in malware detection [18] –

[19].

II. METHODOLOGY

A. Data Collection

To evaluate the effectiveness of autoencoders in malware

detection, a diverse and representative dataset of malware

samples is essential. The dataset should encompass a variety

of malware types, including polymorphic and metamorphic

variants, to ensure the robustness and generalizability of the

trained model. Publicly available malware repositories, such

as the Malware Genome Project or the Microsoft Malware

Classification Challenge dataset, can serve as valuable

sources for this purpose [20] – [22].

B. Auto encoder Architecture

The design of the autoencoder architecture is a critical

component of the methodology. The autoencoder should be

capable of learning compact and meaningful representations

of the input data, distinguishing between normal and

malicious patterns effectively. The architecture may include

multiple layers with varying activation functions, and hyper

parameters such as the learning rate and batch size must be

carefully tuned through experimentation to optimize the

model's performance [23]. Given the dynamic nature of

malware, a robust architecture may incorporate

convolutional layers for spatial feature extraction, recurrent

layers for capturing sequential dependencies, or a

combination of both to enhance the model's ability to detect

diverse types of malware [24].

C. Training and Evaluation

So that the model may be trained on a well-rounded

sample of malware and then tested on new cases, the dataset

is split into two parts: the training set and the testing set. By

reducing reconstruction errors, the autoencoder learns to

encode data with regular patterns during training. A number

of metrics are used to assess the model's performance,

including recall, accuracy, precision, and F1-score [25]. In

order to evaluate the autoencoder's anomaly detection

capabilities, we compare it to other deep learning

algorithms, such as RNNs or CNNs, and to more

conventional signature-based methods. The model's

resilience to changes in the dataset, including unequal

distribution of classes or the appearance of new viruses, is

also investigated [26]. To prevent overfitting and make sure

the results are robust, you can use cross-validation methods

like k-fold cross-validation.

III. APPROACH

Our malware detection approach is built on top of the

automatic encoder network. Our malware detection method's

general structure and primary duties are shown in Figure 1.

The process begins with decompiling the APK files, which

turns benign and malicious files into appropriate greyscale

graphics. The binary codes are extracted from software

methods and converted to decimal data bytes before being

filled with pixel values. After that, in order to finish two

tasks, the grayscale photos are fed into two deep learning

networks. In the first, known as automatic encoder network -

1(AE-1), we analyze the viability of representing software

features using greyscale images; in the second, known as

automatic encoder network - 2(AE-2), we classify malicious

software from benign software.

A. The Autoencoder's Structure

One kind of unsupervised neural network used in deep

learning models is the autoencoder network structure. Figure

2 shows that it consists of two networks: one for encoding

and one for decoding. The encoding network compresses the

data and decreases the number of dimensions, while the

decoding network successfully recreates the input. The goal

of training and updating the parameters of an autoencoder

network is to minimize the loss function, which is defined as

the difference between the input and the corresponding

output of the model.

We created two model constructions, AE-1 and AE-2,

with the former being designed initially and the latter

following. The primary goal in creating the AE-1 network

was to evaluate potential feature extraction techniques for

greyscale photos; the primary goal in creating the AE-2

network was to identify malware. We recommended the AE-

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1051-1059

__

2 network as an upgrade from the AE-1 network because the

former had more problems and was less stable during the

experimental portions of the classification task. We built the

two networks for this very reason. You should be aware that,

unlike the unsupervised AE-1 network, which does not use

labels, the AE-2 network requires them during training.

Malicious and benign software samples are tagged

accordingly.

Model AE-1's architecture includes convolutional,

pooling, and up-sampling layers, as illustrated in Figure 3.

Figure 1. A summary of our suggested method

Figure 2. An autoencoder's schematic depiction

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1051-1059

__

Figure 3. (AE-1) The first automated encoder construction

Figure 4. The AE-2 structure is the second automated encoder structure

Figure 4 depicts the structure of model AE-2, which has

an autoencoder network topology identical to model AE-1.

Our primary distinction is the incorporation of an external

multi-layer perceptron network into our classification and

experimental processes. We begin by pre-training model

AE-1 to extract high-dimensional features that are relevant

to malicious and benign software. Then, we train the multi-

layer perceptron network using the output from model AE-

1's hidden layer. The multiple-layer perceptron network

generates two-dimensional vectors to perform the task of

classifying malware and benign software.

IV. RESULTS AND DISCUSSION

The results of the experiments conducted to evaluate the

efficacy of the autoencoder-based malware detection

approach are presented and discussed in this section. The

present section focuses on information relevant to the

experimental setup and is organized into three sections for

the following reason: the setting of the experiment setup, the

collection of data, and the training details. Based on their

intended use, we classified the datasets as follows: (1)

Dataset-1, which contains 8,121 malicious programs and

2,000 benign ones; it is used to train and evaluate AE-1

models. (2) Dataset-2, which includes 8121 malicious

programs and 7015 safe ones, is utilized for AE-2 model

training, validation, and testing. (3) Dataset-3, which

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1051-1059

__

contains 5,384 malicious programs and 5,000 safe ones, is

utilized to examine how well the AE-2 model detects

unknown software. It should be mentioned that when we

split Dataset-2 and Dataset-3, we purposefully included

older software samples in Dataset-2 for training purposes,

such as malware from 2016, and we included newer releases

in Dataset-3, such as 2017, 2018. This will make it easier to

analyze the model's performance in the future when it

identifies newly released softwear samples by simulating that

situation. To analyze the autoencoder's performance in

reconstructing feature pictures, the AE-1 network is

employed; Table 2 displays the specific characteristics of the

AE-1 model. During training, we employ the Adam

optimization method with an epoch of 100 and a learning

rate of 1e-4.

 The AE-1 network undergoes training using the DTrain

dataset and subsequently undergoes testing using the

DTest_mal and DTest_benign datasets, which contain

malicious and benign software, respectively. In order for a

test set to have a minimal reconstruction error, the new input

must be similar to the input of the training dataset.

Conversely, if the new inputs deviate from the inputs used in

training the dataset, a noticeable reconstruction error will be

observed in this test set. The main objective of our

experiment is to investigate the significant difference in error

data produced by these two test sets after AE-1. The

presence of extensive redundancy in the software dataset and

the distinct functional characteristics exhibited by various

malware families in the malware dataset can result in

significant fluctuations in experimental outcomes. This is

because our hypothesis is founded on the notion that

malware is uniformly similar, while benign software is not.

Consequently, we place less importance on the exact errors

exhibited by the two test sets and focus more on the

comparative disparities between them.

The responsibility of evaluating the performance of the

detection model lies with the AE-2 network. We partitioned

Dataset-2 into two equal parts, allocating 80% for training

and 20% for testing. During the training process, we

employed k-fold cross-validation with a value of k equal to 6

in order to train and validate the training set. Consequently,

we allocated 5/6 of the training set for training purposes and

reserved 1/6 for validation. We conducted this procedure on

six occasions prior to calculating the average. The test set is

used for testing purposes during the entire testing procedure.

The duration of training is quantified in minutes. AE-2's

training utilized the Adam optimization technique with a

learning rate of 0.0001 and 100 epochs.

We evaluate the effectiveness of our strategy by

comparing the overall error distribution in harmful and

benign reconstructions of malware images. Figure 5 displays

the error distributions of the combined test sets. The Y-axis

indicates the normalized reconstructed error value generated

by each program following the encoder network. To

normalize the image, the sum of the error values for all

pixels in the malware feature picture is computed and then

divided by the total number of pixels. The line statistics

graph displays the general trend of DTest_mal mistakes

through the blue line, while the yellow line reflects the

overall trend of DTest_benign errors. The inherent

unpredictability of the dataset plus the redundant nature of

the software files result in a non-zero error. Figure 5

illustrates a significant disparity in the average error values

between the two datasets. The blue line represents a

consistently steady error trend for the malware dataset, while

the yellow line represents an erratic and fluctuating error

trend for the benign software test set. This supports our

perspective.

Based on this experiment, we can show that the automated

encoder can accurately detect complex characteristics of

both harmless and harmful software. It can successfully

rebuild the pre-processed malware data from our dataset.

Next, we proceed to carry out the task of differentiating

between harmful and benign software.

A. Performance Metrics Comparison

The performance of the autoencoder model is assessed

using a range of metrics, including accuracy, precision,

recall, F1-score, false positive rate, and false negative rate.

These metrics provide a comprehensive view of the

model's ability to correctly identify malware instances while

minimizing false positives and false negatives. To

demonstrate the possible benefits of the autoencoder

method, the outcomes are contrasted with conventional

signature-based approaches. Malware that may change its

structure or behavior can easily evade signature-based

approaches because they are based on predetermined

patterns. The autoencoder is a more adaptive approach since

it can learn from the data's intrinsic properties without fixed

signatures.

The ROC curves depicted in Figure 6 illustrate the impact

of the model on the training set. It is evident that the model

demonstrates a consistently reliable performance on the

training set. Figure 7 illustrates the test set's performance of

the model, namely Dataset-2, using ROC curves. Our model

outperforms the other two models. The Datasets-3 are

employed as AE-2 test sets to further examine the detection

efficacy of our model on previously unidentified malware.

Based on the ROC curves presented in Figure 8, our model

exhibits high accuracy and shows promise in identifying

previously unidentified malware. Nevertheless, it also

demonstrates notable constraints as a result of the program's

alteration with each iteration.

Figure 9 depicts the quantitative measures of accuracy,

precision, recall, and F-score for the five models. Traditional

machine learning (ML) detection techniques, such as

decision trees, demonstrate superior accuracy and

outperform naive Bayes and support vector machines in

cross-sectional comparisons. However, for overall

performance, deep learning models are the preferred choice.

Our model surpasses the competitors in terms of search

accuracy and completeness. The performance of the two

deep learning models is compared in Figure 10. The chart

demonstrates that AE-2 has a shorter training time compared

to the CNN-0 model, although all the parameters, including

ACC, recall, Precision, and F-score, are nearly the same.

AE-2 exhibits a lower value for FPR.

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1051-1059

__

Figure 5. Mistake in reconstruction for two sets of data.

Figure 6. Shows the AE-2 ROC curve on the training set

Figure7: ROC curves for several models on the validation data.

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1051-1059

__

Figure 8. The ROC curve of many models on the unknown software

Figure 9. Shows the outcomes of comparing five distinct models

Figure 10. Two deep learning models' performance compared

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1051-1059

__

The complete set of experimental data is shown in Table

1. The total time required to train our model is around 23.45

hours, or 1407.32 minutes. Due to the high number of

parameters in the CNN-0 model, the picture data is

processed 28.14 hours following the convolution and

pooling methods. This is because there is just one

convolutional layer and one pooling layer in the model's

architecture.
TABLE 1

COMPREHENSIVE ANALYSIS OF SEVERAL INDICATIONS

Classifier
FPR

%
TPR%

ACC

%

Precision

%

Recall

%

Training

time

(minutes)

CNN-0 5.8 93.9 93.9 93.8 93.6 1699.4

SVM 10.9 91.1 90.2 90.0 89.1 2.01

Decision

Tree
7.89 91.6 91.8 92.9 91.9 0.59

Naïve

Bayes
19.0 80.9 82.1 81.1 79.9 1.67

AE-2 4.1 95.9 95.8 95.2 95.1 1389.4

V. CONCLUSION

The results of this research underscore the potential of

auto encoders in advancing malware detection capabilities.

By embracing the dynamic and unsupervised learning

paradigm, auto encoders offer a promising avenue for

enhancing the adaptability and effectiveness of cybersecurity

defenses in the ongoing battle against evolving malware

threats. As the digital landscape continues to evolve, the

insights gained from this research contribute to the ongoing

pursuit of innovative and resilient solutions to safeguard

digital ecosystems. The experimental outcomes validate the

viability of our suggested methodology, which involves

transforming the bytecode of every software method into a

grayscale image that visually represents the attributes of a

software sample. Our method is significantly more precise in

detecting malware than those developed using conventional

machine learning algorithms. Our approach demonstrates

reduced training and detection times in comparison to

alternative malware detection systems that rely on deep

learning models. Suggestions for future research directions

are outlined, such as exploring ensemble methods combining

autoencoders with other deep learning architectures,

incorporating temporal aspects for dynamic malware

detection, or leveraging adversarial training to enhance

model robustness. These recommendations aim to guide

subsequent investigations in the ongoing quest for more

effective and adaptive malware detection systems.

REFERENCES

[1] Dhoni, Pan & Kumar, Ravinder. (2023). Synergizing Generative AI

and Cybersecurity: Roles of Generative AI Entities, Companies,

Agencies, and Government in Enhancing Cybersecurity.

10.36227/techrxiv. 23968809.v1.

[2] Demertzi, V., Demertzis, S., & Demertzis, K. (2022). An Overview of

Cyber Threats, Attacks and Countermeasures on the Primary

Domains of Smart Cities. Applied Sciences, 13(2), 790.

https://doi.org/10.3390/app13020790

[3] Danial Javaheri, Mahdi Fahmideh, Hassan Chizari, Pooia Lalbakhsh,

Junbeom Hur, “Cybersecurity threats in FinTech: A systematic

review,” Expert Systems with Applications, Volume 241, 2024.

[4] Xing, Xiaofei & Jin, Xiang & Elahi, Haroon & Jiang, Hai & Wang,

Guojun. (2022). A Malware Detection Approach Using Autoencoder

in Deep Learning. IEEE Access. 10. 1-1.

10.1109/ACCESS.2022.3155695.

[5] Jin, Xiang & Xing, Xiaofei & Elahi, Haroon & Wang, Guojun &

Jiang, Hai. (2020). A Malware Detection Approach Using Malware

Images and Autoencoders. 1-6. 10.1109/MASS50613.2020.00009.

[6] D'Angelo, Gianni & Ficco, M. & Palmieri, Francesco. (2019).

Malware detection in mobile environments based on Autoencoders

and API-images. Journal of Parallel and Distributed Computing. 137.

10.1016/j.jpdc.2019.11.001.

[7] Kebede, Temesguen & Djaneye-Boundjou, Ouboti & Narayanan,

Barath & Ralescu, Anca & Kapp, David. (2017). Classification of

Malware programs using autoencoders based deep learning

architecture and its application to the microsoft malware

Classification challenge (BIG 2015) dataset. 70-75.

10.1109/NAECON.2017.8268747.

[8] Brezinski, Kenneth & Ferens, K. (2021). Metamorphic Malware and

Obfuscation -A Survey of Techniques, Variants and Generation Kits.

10.13140/RG.2.2.19702.52802.

[9] Zahoor-Ur Rehman, Sidra Nasim Khan, Khan Muhammad, Jong

Weon Lee, Zhihan Lv, Sung Wook Baik, Peer Azmat Shah, Khalid

Awan, Irfan Mehmood, “Machine learning-assisted signature and

heuristic-based detection of malwares in Android devices,”

Computers & Electrical Engineering, Volume 69, 2018.

[10] Ö. A. Aslan and R. Samet, "A Comprehensive Review on Malware

Detection Approaches," in IEEE Access, vol. 8, pp. 6249-6271, 2020,

doi: 10.1109/ACCESS.2019.2963724.

[11] N. Pachhala, S. Jothilakshmi and B. P. Battula, "A Comprehensive

Survey on Identification of Malware Types and Malware

Classification Using Machine Learning Techniques," 2021 2nd

International Conference on Smart Electronics and Communication

(ICOSEC), Trichy, India, 2021, pp. 1207-1214, doi:

10.1109/ICOSEC51865.2021.9591763.

[12] Ahmed, S.F., Alam, M.S.B., Hassan, M. et al. Deep learning

modelling techniques: current progress, applications, advantages, and

challenges. Artif Intell Rev 56, 13521–13617 (2023).

https://doi.org/10.1007/s10462-023-10466-8

[13] Abdel-Jaber, Hussein, Disha Devassy, Azhar Al Salam, Lamya

Hidaytallah, and Malak EL-Amir. 2022. "A Review of Deep Learning

Algorithms and Their Applications in Healthcare" Algorithms 15, no.

2: 71. https://doi.org/10.3390/a15020071

[14] Wasim Khan, Mohammad Haroon, “An unsupervised deep learning

ensemble model for anomaly detection in static attributed social

networks,” International Journal of Cognitive Computing in

Engineering, Volume 3, 2022.

[15] Sepehr Maleki, Sasan Maleki, Nicholas R. Jennings, “Unsupervised

anomaly detection with LSTM autoencoders using statistical data-

filtering,” Applied Soft Computing, Volume 108, 2021.

[16] Maleki, Sepehr & Maleki, Sasan & Jennings, Nicholas. (2021).

Unsupervised anomaly detection with LSTM autoencoders using

statistical data-filtering. Applied Soft Computing. 108. 107443.

10.1016/j.asoc.2021.107443.

[17] Mobtahej, Pooyan & Zhang, Xulong & Hamidi, Maryam & Zhang,

Jing. (2022). An LSTM-Autoencoder Architecture for Anomaly

Detection Applied on Compressors Audio Data. Computational and

Mathematical Methods. 2022. 1-22. 10.1155/2022/3622426.

[18] Wang, Weiping & Wang, Zhaorong & Zhou, Zhanfan & Deng,

Haixia & Zhao, Weiliang & Wang, Chunyang & Guo, Yongzhen.

(2021). Anomaly detection of industrial control systems based on

transfer learning. Tsinghua Science and Technology. 26. 821-832.

10.26599/TST.2020.9010041.

[19] Yuan, Xiaoyong. (2017). PhD Forum: Deep Learning-Based Real-

Time Malware Detection with Multi-Stage Analysis. 1-2.

10.1109/SMARTCOMP.2017.7946997.

[20] Tayyab, Umm-e-Hani, Faiza Babar Khan, Muhammad Hanif Durad,

Asifullah Khan, and Yeon Soo Lee. 2022. "A Survey of the Recent

Trends in Deep Learning Based Malware Detection" Journal of

Cybersecurity and Privacy 2, no. 4: 800-829.

https://doi.org/10.3390/jcp2040041

[21] Sewak, Mohit & Sahay, Sanjay & Rathore, Hemant. (2018). An

investigation of a deep learning based malware detection system. 1-5.

10.1145/3230833.3230835.

[22] Xing, Xiaofei & Jin, Xiang & Elahi, Haroon & Jiang, Hai & Wang,

Guojun. (2022). A Malware Detection Approach Using Autoencoder

in Deep Learning. IEEE Access. 10. 1-1.

10.1109/ACCESS.2022.3155695.

[23] Alzubaidi, L., Zhang, J., Humaidi, A.J. et al. Review of deep

learning: concepts, CNN architectures, challenges, applications,

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1051-1059

__

https://doi.org/10.3390/app13020790
https://doi.org/10.3390/jcp2040041

future directions. J Big Data 8, 53 (2021).

https://doi.org/10.1186/s40537-021-00444-8

[24] Alzubaidi, L., Zhang, J., Humaidi, A.J. et al. Review of deep

learning: concepts, CNN architectures, challenges, applications,

future directions. J Big Data 8, 53 (2021).

https://doi.org/10.1186/s40537-021-00444-8

[25] Alzubaidi, L., Zhang, J., Humaidi, A.J. et al. Review of deep

learning: concepts, CNN architectures, challenges, applications,

future directions. J Big Data 8, 53 (2021).

https://doi.org/10.1186/s40537-021-00444-8

[26] Antunes, Mário & Oliveira, Luís & Seguro, Afonso & Veríssimo,

João & Salgado, Ruben & Murteira, Tiago. (2022). Benchmarking

Deep Learning Methods for Behaviour-Based Network Intrusion

Detection. Informatics. 9. 29. 10.3390/informatics9010029.

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1051-1059

__

https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8

