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 Abstract—Despite the ongoing advancements in deep learning, 
challenges persist in the domain of change detection in remote 
sensing imagery. Objects with intricate structures and features 
may exhibit different shapes or appearances at different times or 
spatial locations. While most models aim to improve the perfor-
mance of change detection tasks, these enhancements may lead 
to significantly increased computational efficiency. In this paper, 
we propose a global context enhancement network. Firstly, 
we use ResNet18 to extract dual-temporal features, which 
are then represented as concise semantic labels by an image se-
mantic extractor. Subsequently, we process these semantic labels 
through a contextual transformer encoder to generate more re-
fined remote sensing semantic labels enriched with abundant 
contextual information. The refined semantic labels are integrat-
ed with the original features and processed through a Trans-
former decoder to generate enhanced dual-temporal feature 
maps. Finally, through the processing of the classification head, 
we obtain pixel-level predictive images. Extensive experiments 
conducted on two public change detection datasets yielded im-
pressive results, achieving an F1 score of 89.95% on the WHU-
CD dataset and 95.16% on the SVCD dataset. When compared to 
state-of-the-art change detection models, our approach not only 
achieves significant performance gains but also maintains rela-
tively high computational efficiency. Our method excels in cap-
turing relevant features and relationships within input data, 
thereby enhancing the model's ability to repre-
sent relationships between different features. This results in a 
significant performance improvement without adding to the 
computational complexity. 

Index Terms— Change Detection, Global Context Information, 
Attention Mechanism, Computational Efficiency, High-
Resolution Remote Sensing Images. 

I. INTRODUCTION  
emote sensing image change detection [1] is a tech-
nique used to identify and analyze real-world object 
variations by comparing remote sensing images cap-

tured at different points in time. In the field of remote sensing 
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imagery, change detection has garnered widespread attention 
due to its significance in understanding the evolution and al-
terations within geographical regions. Research in this field 
has played a crucial role in practical applications, including 
land change detection [2, 3], environmental change monitoring 
[4], disaster assessment [5], urban change studies [6], and eco-
logical environment research [7]. While manual annotation is 
typically required for most high-resolution remote sensing 
images, the development of deep learning technologies has 
increasingly highlighted methods for change detection. 

The deep learning-based change detection methods still face 
a series of challenges, mainly covering the following two as-
pects: 1) objects present in some remote sensing image scenes 
exhibit complex structures and features; 2) the same object 
may appear with different shapes or appearances at different 
times or spatial locations. Due to variations in lighting angles, 
buildings in the reference image and target image may have 
different color features. 

In recent times, a series of deep convolutional neural net-
works (CNNs)[8-10] have been applied to high-resolution 
remote sensing image change detection. However, these CNNs 
still face certain limitations, preventing them from fully ad-
dressing the two challenges mentioned earlier. Some models 
attempt to enhance feature extraction by either stacking more 
convolutional layers or utilizing dilated convolutions [11] to 
increase the receptive field. Meanwhile, other models intro-
duce attention mechanisms such as spatial attention, cross-
entropy attention, and channel attention [12, 13] to broaden 
the receptive field, thus preserving global contextual infor-
mation. Nevertheless, many existing methods still encounter 
difficulties when handling high-resolution remote sensing im-
ages. They either focus solely on enhancing the internal fea-
tures of each temporal image, neglecting the correlations be-
tween global contextual information, or emphasize only on 
weight-fusing dual temporal features through attention in ei-
ther the channel or spatial dimensions to enhance the interrela-
tionships of contextual information. Consequently, existing 
methods often struggle to effectively correlate spatiotemporal 
feature information, especially when dealing with remote 
sensing images exhibiting complex changes. This issue be-
comes particularly evident. 

To address the limitations and challenges outlined, we pro-
pose the Global Context Enhancement Net (GCENet) model, 
designed to efficiently correlate global contextual features in 
dual-temporal images. Leveraging a deep convolutional neural 
network to extract semantic features from input images, ad-
vanced semantic features are transformed into a set of seman-
tic labels through max-pooling. The model enhances the fea-
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ture representation of the original pixel space by exploiting the 
relationship between pixels and semantic labels. Subsequently, 
we introduce the Contextual Transformer (COTR) encoder, 
utilized for contextual modeling of semantic labels, to gener-
ate enriched semantic labels with contextual information. 
These are then reprojected back into pixel space through a 
Transformer decoder, enhancing both feature information ex-
traction and contextual correlation. Finally, a prediction mod-
ule is employed for change prediction. The COTR encoder 
effectively prevents a reduction in the correlation between 
feature channels, thereby strengthening the capture of suffi-
cient feature information. 

The main contributions of this paper are summarized as fol-
lows:  

1) We propose a novel framework for remote sensing 
change detection, termed the GCENet. GCENet adopts a 
Transformer decoder structure to map semantic labels contain-
ing rich global information back to pixel space, thereby en-
hancing the original pixel features. This approach efficiently 
and effectively addresses the task of change detection. 

2) We designed an image semantic extractor to process in-
put images of the same location at different times, generating a 
set of concise semantic labels. This allows for the effective 
capture of semantic information at the same location across 
different time points. 

3) We establish a COTR encoder structure and propose a 
context feature interaction attention mechanism. Introducing 
convolutional operations into the attention mechanism enables 
more effective capture of relevant features and relationships 
within the input data. This contributes to a better understand-
ing of contextual relationships among features, allowing the 
model to adapt more effectively to complex input data. 

Numerous experiments were conducted on the WHU-CD 
and SVCD datasets, comparing our method with other change 
detection models. The results confirm the effectiveness and 
efficiency of our approach. Additionally, our model outper-
forms other change detection models in terms of parameter 
count and floating-point operation count, demonstrating supe-
rior performance. 

II. RELATED WORK 

A. Convolution-Based Models for Remote Sensing Image 
Change Detection 

With the evolution of deep learning, an increasing number 
of methods have been applied to remote sensing image change 
detection. To the best of our knowledge, the first work to ap-
ply convolutional neural networks for change detection tasks 
was proposed by Caye Daudt et al.[14]. In this work, the au-
thors proposed two distinct approaches. The first method em-
ployed a pixel-level fusion strategy, FC-EF, which merged 
images from two different time points into a single input pro-
cessed through a U-Net. The second method adopted a fea-
ture-level fusion strategy, utilizing twin U-Nets to process 
each image separately, extracting multi-level features that 

were subsequently fused through concatenation and subtrac-
tion. Lei et al.[15] introduced a pyramid pooling fully convo-
lutional network, efficiently explore the surrounding environ-
ment of dual-temporal remote sensing images through multi-
ple convolutions. This achieved a well-balanced trade-off be-
tween enlarging the perception range and fully utilizing con-
textual information. Tang et al.[16]. proposed an unsupervised 
change detection method based on graph convolutional net-
works and metric learning, which generates reliable difference 
maps through Siamese Fully Convolutional Network (FCN), 
multi-scale dynamic graph convolutional networks and metric 
learning. Wu et al.[17] proposed an unsupervised change de-
tection method, which extracts features from multi-temporal 
ultra-high resolution images through deep Siamese networks, 
realizes unsupervised binary and multi-category change detec-
tion, leading to effective and robust experimental results. Shen 
et al.[18] proposed an unsupervised change detection method 
based on an improved non-subsampled Shearlet transform and 
a multi-scale feature fusion convolutional neural network. At 
the same time, a multi-scale feature fusion block was designed 
to retain more detailed information, aiming to achieve the goal 
of obtaining change detection results directly from the original 
image. 

B. Attention Mechanism-Based Models for Remote Sensing 
Image Change Detection 

In recent years, attention mechanisms have demonstrated 
significant effectiveness in capturing crucial differences in 
feature space and channels across various computer vision 
tasks. Notably, self-attention, spatial attention, and other atten-
tion mechanisms enable the modeling of global spatial rela-
tionships, effectively assisting networks in recognizing objects 
undergoing change and those remaining unchanged. Zhang et 
al.[19] introduced channel and spatial attention mechanisms 
and applied them at various levels of the decoder. By 
weighting the fusion of multi-layer deep features from the 
original image, the network was able to focus more on captur-
ing key information in changing regions. Similarly, Liu et 
al.[12] also used the dual attention module. Jiang et al.[13] 
introduced a global co-attention mechanism to effectively im-
prove the long-range dependence of features, and then further 
enhanced the model's feature extraction of target information 
by training convolutional neural networks in a pyramid struc-
ture to capture possible changes. Chen et al.[20] introduced a 
time attention mechanism. The time attention mechanism in-
volves extracting features from dual-temporal feature maps, 
generating a query matrix and a value matrix, and performing 
dot product operations. The resulting numerical matrix was 
then matched with the feature map generated from the target 
image. Lei et al.[21] proposed a network for high-resolution 
remote sensing image change detection. This network 
achieved more accurate detection results and reduced compu-
tational complexity through difference enhancement, spatial-
spectral non-locality, and asymmetric dual convolution com-
bined with spatial multi-scale features. 
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Fig. 1. Diagram of the GCENet Model. 

 

C. Transformer-Based Models for Remote Sensing Image 
Change Detection 

With the introduction of the Transformer [22, 23], it has not 
only found widespread application in natural language pro-
cessing but has also exhibited superior performance in the 
visual domain compared to models based on convolution, as 
observed in recent years. Chen et al.[24] extracted bi-temporal 
features using ResNet, converted them into semantic tags, and 
then enhanced the features with global information through 
the Transformer structure for change detection. Bandara et 
al.[25] initially utilized the Transformer for feature extraction, 
followed by the feature difference module to calculate feature 
discrepancies at different scales and generate prediction results. 
By leveraging the Swin Transformer [26] and a Siamese struc-
ture, Liu et al.[27] achieved parallel processing of dual-
temporal images and extraction of multi-scale features. Dai et 
al.[28] introduced the Vision Transformer into change detec-
tion, used multi-scale feature differentiation to improve the 
discrimination of multi-level context information, resulting in 
high-precision change detection tasks being accomplished at a 
faster speed. Feng et al.[29] proposed a change detection net-
work that combines Transformer and convolution. This net-
work introduced an intra-scale cross-interaction mechanism to 
effectively capture both local and global features. 

III. EFFICIENT CHANGE DETECTION BASED ON GLOBAL CON-
TEXT ENCODER 

The overall flow of our model for GCENet is shown in Fig. 
1. We aim to incorporate the advantages of convolution and 
transformer into the change detection model. Our model con-
sists of five main components:  

1) Feature extractor: Utilizing ResNet18 as the backbone, it 
is responsible for extracting the bi-temporal feature maps. 

2) Image semantic extractor, which takes images of the 
same location at different times as input and produces a con-
cise set of semantic labels. 

3) COTR encoder. Performs context modeling for the se-
mantic labels to generate semantic labels with rich global in-
formation. 

4) Transformer decoder, maps semantic labels with rich 
global information back to the pixel space and enhances the 
original pixel features. 

5) Classification header, which generates pixel-level change 
predictions to identify whether a change has occurred at each 
pixel point in the image.  

The process of running the model begins with the feature 
extractor module, which performs feature extraction for each 
input image. Subsequently, these features are fed into the 
model, which undergoes an image semantic extractor to gen-
erate a concise set of semantic labels. Next, we improve the 
new raw pixel features using the COTR encoder and the 
Transformer decoder. Finally, pixel-level features are predict-
ed by a classification header consisting of convolution, nor-
malization, and activation functions to generate pixel-level 
change predictions. 

A. Image Semantic Extractor 
To describe the changes in interest in the images, we em-

ploy a set of high-level concepts, namely semantic labels. To 
achieve this objective, we introduce the Image Semantic Ex-
tractor, as depicted in Fig. 2. Its task is to extract concise se-
mantic labels from the feature maps at each time step. Differ-
ing from tokenizers in natural language processing, this ex-
tractor does not segment the input image into visual words and 
generate corresponding token vectors for each word. Instead, 
it aggregates the feature maps in the spatial dimension by 
learning a set of spatial attention maps. This process generates 
a set of features corresponding to the semantic labels of the 
image. These generated semantic labels can be shared across 
images at different time steps, providing more detailed and 
global information for the change detection task. 

 

 
Fig. 2. Image semantic extractor. 

 
We define the dual-temporal feature maps as 

1 2{ , } HW CX X ×∈ , where H , W , and C  represent the 
height, width, and channel dimensions of the feature maps, 
respectively. Simultaneously, we introduce two sets of labels

1 2{ , } HW CT T ×∈ . 
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Fig. 3. Contextual Transformer Encoder. 

 
When processing each pixel i

pX  on the feature map 

( 1,2)iX i ∈ , we use an adaptive max-pooling operation to 
create semantic groups, where each group represents a seman-
tic concept. Subsequently, we utilize the softmax function to 
operate on the HW  dimensions of each semantic group, cal-
culating an attention map. Finally, we use the attention map to 
compute the weighted average of pixels to obtain a concise 
label set ( 1, 2)iT i ∈ . The formula is as follows: 
 ( )i i T iT A X=  (1) 
 ( ax ( ))i iA M pool Xσ=  (2) 
where ( )Maxpool ⋅  represents the adaptive max-pooling opera-
tion, and ( )σ ⋅  denotes the softmax function. The softmax 
function is used to normalize each semantic group and gener-
ate an attention map i HW CA ×∈ . Finally, the label set iT  is 
obtained by multiplying the attention map iA  with the input 
feature map iX . 

B. Contextual Transformer Encoder 
As illustrated in Fig. 3, we propose using the COTR to cap-

ture the contextual relationships among these semantic labels. 
In a token-based spatiotemporal space, we believe that utiliz-
ing the COTR encoder can effectively model global semantic 
relationships, thus producing token representations with abun-
dant contextual information for each time step. The COTR 
encoder module is primarily composed of n layers of COTR-
MSA, n layers of MLP modules, and a normalization layer. 

We start by merging these two sets of labels 1T  and 2T , to 
form a unified label set HW CT ×∈ . Subsequently, we intro-
duce the COTR encoder module, applying layer normalization 
before the COTR-MSA and MLP modules. Pre-normalization 
has been proven to be advantageous in improving model sta-
bility and performance. Additionally, we use a residual con-
nection to add the outputs of these two modules with the fea-
ture map before normalization, generating a completely new 
label set newT . Finally, we partition these labels into two sub-
sets ( 1, 2)i

newT i ∈ . This series of processing steps contributes to 
enhancing model performance by enabling the output features 
to balance local and global contextual information representa-
tions, thereby enriching the semantic information. The compu-
tational formula is as follows: 

 ( ( ))i i
COTR MSA COTRT MSA LN T− =  (3) 

 ( (( ))i i i
MLP COTR MSAT MLP LN T T−= +  (4) 

 i i i
new COTR MSA MLPT T T−= +  (5) 

In the classic Transformer architecture, the multi-head self-
attention mechanism learns weight matrices for query vector 
Q , key vector K , and value vector V  by providing multiple 
representation subspaces. It generates self-attention scores by 
computing the dot product of the query vector Q  and the key 
vector K  across the entire sequence, thereby assessing the 
correlation between input features. This self-attention mecha-
nism is employed to model the correlation among all tokens, 
allowing the model to effectively integrate global information 
and inter-channel information to search for information across 
global space and channels. This ensures that the model focuses 
on contextual information so that the final output features en-
compass global information. Finally, the SoftMax function is 
applied to prevent gradient vanishing, and the result is multi-
plied by the value vector V  to obtain the ultimate output. 

We observed that in the classic multi-head self-attention 
mechanism, the direct dot product operation between Q  and 
K  processed by linear layers may reduce the correlation be-
tween feature channels. Additionally, each self-attention head 
focuses on only a subset of input tokens, which could impact 
network performance in certain cases, especially when the 
channel dimensions of each subset are relatively low. This 
situation can lead to insufficient information capture in the dot 
product between Q  and K , thereby diminishing the ability to 
gather contextual information. Specifically, for data like high-
resolution remote sensing images, increasing spatial or chan-
nel dimensions may result in a rapid rise in computational 
complexity. Furthermore, the handling of V  in the classic 
self-attention mechanism also has limitations. V  is typically 
used for a linear combination and weighting of the representa-
tions of each token. However, direct linear combinations may 
not fully explore complex relationships in the input data, thus 
limiting the model's understanding of certain tasks or data. In 
our ablation experiments, we further investigated the impact of 
linear layer processing and dot product operations in the clas-
sic multi-head self-attention mechanism on model perfor-
mance. The specific effects of these changes on model 
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Fig. 4. Transformer decoder. 

 
performance and contextual information retrieval are detailed 
in Table Ⅳ based on our experimental results. 

To address these challenges, we introduced the COTR-
MSA mechanism. The COTR-MSA executes multiple inde-
pendent attention heads in parallel, concatenates their outputs, 
and then performs projection. The advantage of COTR-MSA 
lies in its ability to simultaneously focus on information from 
different representation subspaces at different positions. By 
introducing convolution operations on Q , K , and V , the 
model better captures relevant features and correlations in the 
input data. The introduction of these convolution operations is 
significant in our experiments, as detailed in Tables Ⅰ and Ⅱ. 
This enhances the model's ability to model relationships be-
tween different features, further strengthening the correlation 
between feature channels, providing the model with a deeper 
understanding of the data. The formula is as follows: 

 
( 1)

1 2
( 1) ( 1) ( 1)

( ) ( , ,... ) ,

( , , )

l O
COTR h

l Q l K l V
CFI

MSA T Concat head head head W

head Att T W T W T W

−

− − −

=

=
 (6) 

where , ,Q K V C dW W W ×∈ , O hd CW ×∈  is the weight matrix. 
Firstly, we map the input token sets 1T  and 2T  to 
, , b h n dQ K V × × ×∈  through a linear layer, where b  represents 

the batch size, h  denotes the number of attention heads, n  is 
the sequence length of the token set, and d  is the feature di-
mension. Next, pointwise convolution operations are applied 
separately to Q , K , and the numerical values V  through the 
COTR-MSA. The purpose of this step is to introduce local 
perception capability, enabling the aggregation of semantic 
information across channels for different representations with-
in the input data. A further extension to the pointwise product 
of Q  and K  is performed through a fully connected layer to 
ensure no reduction in dimensionality. Finally, the results of 
the dot product are optimized through batch normalization and 
softmax operations to ensure they effectively match the fea-
ture information within. The entire process aims to thoroughly 
explore the intricate relationships in the input data. For this 
purpose, we propose a novel attention mechanism called Con-
textual Feature Interaction (CFI) Attention. 

( ) ( )( , , ) ( ( ( ))) ( )
T

CFI
conv Q conv KAtt Q K V BN FC conv V

d
σ= (7) 

The MLP module primarily consists of a linear layer, GE-
LU activation function, and a dropout layer. The dimensions 
of both the input and output are C, while the internal dimen-

sion of the linear layer is 2C. The formula for the MLP mod-
ule is as follows: 
 ( 1) ( 1)

1 2( ) ( ( ( )) )l lMLP T Dropout Dropout GELU T W W− −=  (8) 

where 1 2C CW ×∈ , 2 2C CW ×∈  represents the weight matrix. 

C. Transformer Decoder 
As shown in Fig. 4, we introduce a Siamese Transformer 

decoder structure to map the compact high-dimensional se-
mantic information in the mark set ( 1, 2)i

newT i ∈  to a low-
dimensional pixel space, thereby obtaining a pixel-level fea-
ture representation in remote sensing images. The dual-
temporal feature maps 1X  and 2X  are separately input into a 
Siamese Transformer decoder. By exploiting the relationship 
between each pixel feature and the mark set, we ultimately 
obtain more refined fine-grained features 1

newX  and 2
newX . The 

Transformer decoder we use consists of m layers of Multi-
head Cross-Attention, m layers of MLP modules, and LN lay-
ers. In the Cross-Attention mechanism, the Q  comes from the 
original image pixels, while K  and V  come from 

( 1,2)i
newT i ∈ . The MLP modules and LN layers used are the 

same as those in the COTR encoder. For each layer l , the 
formula for Multi-head Cross-Attention is as follows: 

 
,( 1)

1 2
,( 1)

( , ) ( , ,... )

( , , )

i l i O
new h

i l Q i K i V
CFI new new

MA X T Concat head head head W

head Att X W T W T W

−

−

=

=
 (9) 

D. Other Details 
CNN Backbone Network: We employed an enhanced Res-

Net18 as the backbone of the CNN to extract temporal-cross-
dimensional feature maps. The standard ResNet18 comprises 
four stages, each undergoing downsampling twice. We modi-
fied the downsampling stride to 1 for the last two stages and 
added a pointwise convolutional layer after ResNet. Subse-
quently, a bilinear interpolation layer was applied to generate 
the output feature map, mitigating the loss of spatial details. 

COTR encoder and Transformer decoder: Based on the pa-
rameter ablation experiments in Table Ⅴ, we set the number of 
layers for the COTR encoder (n) and Transformer decoder (m) 
to 1 and 2, respectively. 

Classification Head: High-level refined features 1 2,X X , 
extracted through the CNN backbone network, COTR encoder, 
and Transformer decoder, undergo upsampling to obtain the 
original images 0 01 2

* *, H W CX X × ×∈ , where 0H  and 0W  repre-
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sent the height and width of the original images. Subsequently, 
pixel-level offset calculation is performed on the two feature 
maps, followed by the generation of a predicted change prob-
ability map 0 0 2H WP × ×∈  using a change classifier and a non-
linear transformation function. The calculation formula is as 
follows: 
 1 2

* *( ( ))P D X Xρ= −  (10) 

where ( )ρ ⋅  denotes the sigmoid function and ( )D ⋅  denotes the 
change classifier, which consists of a convolutional layer, a 
BN layer and a RELU activation function. 

The loss function, which we use to minimize the cross-
entropy loss during training to optimize the network parame-
ters, is given in the following formula: 

 
,

1, 10 0

1 ( , )
H W

hw hw
h w

Loss l P Y
H W = =

=
× ∑  (11) 

where ( , ) log( )hw hwyl P y P= −  is the cross-entropy loss function 
and hwY  is the label of the pixel at the coordinate ( , )h w . 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Environment and Parameters 
The experiments were conducted on GPU A100. The net-

work parameters are set as follows: we use a stochastic gradi-
ent descent (SGD) optimizer with momentum to optimize the 
model. The momentum of the SGD optimizer is set to 0.9, and 
the weight decay of the regularization term is set to 5e-4. The 
initial learning rate is a linear decay of the learning rate, which 
can be used to gradually reduce the learning rate during the 
training of the neural network. Rate in order to converge more 
stably in the later stages of training. The formula is as follows: 

 
max

1
1

epochlr
epoch

= −
+

 (12) 

where epoch  is the current number of training rounds and 

maxepoch  denotes the total number of training rounds 200, 
after each training, the best model from the validation set is 
used to evaluate the test set. 

B. Experimental Datasets 
We conducted experiments on two change detection da-

tasets: 
The Wuhan University Building Change Detection (WHU-

CD) dataset is designed for remote sensing image change de-
tection, created and distributed by a research team at the 
School of Remote Sensing Information Engineering of Wuhan 
University. The dataset consists of a pair of high-resolution 
aerial images with a size of 15354 × 32507. The focus is on 
architectural changes. The original images were cropped into 
7434 images of size 256 × 256 without overlapping regions. 
These images were randomly divided into 5947 pairs for the 
training set, 743 pairs for the validation set, and 744 pairs for 
the test set. As shown in Fig. 5, the reference image represents 
the initial image in the dataset, i.e., the image from the first 
time period of the region. The target image represents the im-
age acquired after the reference image in the dataset. 

 

   
reference image target image label 

Fig. 5. Visualization of WHU-CD dataset. 
 

The Season-Varying Change Detection (SVCD) involves 
analyzing real remote sensing images obtained from Google 
Earth that exhibit seasonal changes. The spatial resolution of 
these images ranges from 3cm to 100cm per pixel. The dataset 
has 16000 pairs of remote sensing images, each of size 
256×256. These pairs are divided into a training set of 10000 
pairs, a validation set of 3000 pairs, and a test set of 3000 pairs. 
Each pair of images contains at least one element of change. 
The dataset will be labeled as change in the label only if there 
is a change in the semantic category. Seasonal changes such as 
vegetation growth, snow cover, and foliage fading etc. will not 
be labeled as change. This places greater demands on the ac-
curacy of change detection methods and the utilization of se-
mantic information. As shown in Fig. 6.. 

 

   
reference image target image label 

Fig. 6. Visualization of SVCD dataset. 
 

C. Evaluation Metrics 
We used the F1-score as the main evaluation metric and also 

used Precision, Recall, Intersection over Union (IoU), and Over-
all Accuracy (OA). Precision indicates the proportion of correct-
ly predicted positive categories out of all samples predicted by 
the model to be positive categories. Recall, on the other hand, 
indicates the proportion of all actual positive category samples 
that are successfully detected by the model as positive category 
samples. The F1 value, on the other hand, is the harmonized 
average of the precision and recall. The cross-merge ratio is used 
for precision in the change detection task, while the overall accu-
racy is used for overall performance evaluation. 

 2( )1 Precision RecallF
Precision Recall

⋅
=

+
 (13) 
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where TP , TN , FP , and FN  are true cases, true negative 
cases, false positive cases, and false negative cases, respec-
tively. 

D. Baseline Model 
We compare the following 11 baseline models as shown be-

low. 
1) FC-EF [14]: This model uses a pixel-level fusion ap-

proach that combines images from two different time points 
into a single input. The combined input is then processed by a 
fully convolutional neural network. 

2) FC-Siam-Conc [14]: This model uses a feature-level fu-
sion approach that incorporates a Siamese U-Net to extract 
features at multiple levels and fuses the information from the 
diachronic states by connecting these features in one dimen-
sion. 

3) FC-Siam-Di [14]: This model uses a feature-level fusion 
method, employing a Siamese U-Net to extract features at 
multiple levels and integrating the information of the dia-
chronic state by comparing the differences between these fea-
tures as a basis. 

4) FCN-PP [15]: This model uses a fully convolutional net-
work with pyramidal pooling to effectively analyze the sur-
roundings of a bi-chronological remote sensing image through 
multiple convolutions. This approach achieves a good balance 
between expanding the perceptual range and leveraging the 
context to its fullest extent. The method demonstrates superior 
performance in terms of automation, noise resistance, im-
proved context utilization, and overcoming the limitations of 
global pooling of classical methods. 

5) DTCDSCN [12]: This model uses a multi-scale feature 
splicing approach, which produces more distinctive features 
by incorporating a channel-attention mechanism and a spatial-
attention mechanism into the Siamese FCN. In addition, su-
pervised learning is used to ensure the quality of the labeled 
graph output by the network. 

6) IFNet [19]: This model employs a multi-scale feature 
cascading strategy that applies channel and spatial attention 
mechanisms at each level of the decoder to deal with dia-
chronic features. Additionally, a deep supervision approach is 
used to compute the loss at different levels of the decoder, 
enhancing the training of the intermediate layers of the net-
work. This strategy contributes to enhancing the model per-
formance and effectiveness. 

7) STANet [30]: This model improves performance by us-
ing a self-attentive mechanism to capture the relationships 
between different temporal and spatial pixels. It also employs 
a multi-scale sub-region approach to accommodate different 
object sizes. 

8) FDCNN [31]: This model utilizes migration learning to 
build a two-channel network that can share weights to gener-
ate multi-scale and multi-depth feature disparity maps. It also 
introduces a loss function guided by the magnitude of varia-
tion, which uses a small number of pixel-level samples for 
training to reduce pseudo-variation. 

9) SNUNet [32]: This model employs a network that com-
bines the twin network structure and NestedUnet, and employs 
a channel attention module to extract features with different 
semantic information, aiming to effectively retain location 
information and fully consider shallow features. In addition, a 

deep supervision module is introduced to enhance the differ-
entiation of intermediate features. 

10) DSAMNet [33]: This model employs a metric-based 
deep supervised attention network. It learns directly from the 
feature extractor through a change decision module to enhance 
the learning ability of the feature extractor and generate more 
useful features. In addition, the intermediate hidden layers are 
better trained through the deep supervised module. 

11) USSFCNet [34]: This model uses an efficient and 
lightweight approach for fusing spatial and spectral features. It 
uses cyclic multiscale convolution to capture changing object 
features at various scales, significantly reducing the number of 
parameters and redundant computations. In addition, a strategy 
capable of learning 3D features is introduced for more com-
prehensive feature extraction. 

 

    

    

    

    

    

    
Image1 Image2 Ground truth GCENet (Ours) 

Fig. 7. Visualization of GCENet predictions on the WHU-CD dataset. 
 
12) BIT [24]: This model obtains semantic labels by ex-

tracting diachronic image features and then introduces the 
Transformer encoder-decoder structure, which efficiently 
models contextual information across the spatio-temporal do-
main. 
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E. Comparison Experiment  
We tested several baseline models on the WHU-CD and 

SVCD datasets. Our GCENet model achieved an F1 evalua-
tion metric of 89.95% and SOTA in the three main evaluation 
metrics of F1, IoU, and OA. As shown in Table I, on the 
WHU-CD dataset, our F1 metrics improved by 20.58, 23.32, 
and 31.14 points compared to the classical change detection 
models FC-EF, FC-Siam-Conc, and FC-Siam-DI, respectively. 
Compared to some of the top models using convolutional 
methods in recent years, such as DTCDSCN, STANet, 
SNUNet, IFNet, and DSAMNet, our F1 metrics improved by 
18.00, 7.63, 6.45, 6.55, and 3.24 points, respectively. In addi-
tion, our F1 metric also improves by 5.97 points compared to 
the best recent model BIT using the Transform method. 

 

    

    

    

    

    

    
Image1 Image2 Ground truth GCENet (Ours) 

Fig. 8. Visualization of GCENet predictions on the SVCD dataset. 
 
As shown in Table Ⅱ, on the SVCD dataset, the F1 evalua-

tion metric of our GCENet model achieves 95.16%. In com-
parison with the classical change detection models FC-EF, 
FC-Siam-Conc, and FC-Siam-DI, our F1 metrics show im-
provements of 30.36, 38.22, and 26.68 points, respectively. 
Furthermore, when compared to some of the recent top models 
utilizing convolutional methods like FCN-PP, FDCNN, 
SNUNet, IFNet, STANet, DSAMNet, and USSFCNet, our F1 
metrics demonstrate enhancements of 9.38, 38.22, and 26.68  

TABLE Ⅰ 
COMPARATIVE RESULTS ON THE WHU-CD DATASET, THE 

BOLD FONT REPRESENTS THE OPTIMAL VALUE 
Network Pre(%) Rec(%) F1(%) IoU(%) OA(%) 

FC-EF 71.63 62.75 69.37 53.11 97.61 
FC-Siam-Conc 60.88 73.58 66.63 49.95 97.04 

FC-Siam-DI 47.33 77.66 58.81 41.66 95.63 
STANet 79.37 85.50 82.32 69.95 98.52 

DTCDSCN 63.92  82.30 71.95 56.19 97.42 
SNUNet 85.60  81.49 83.50 71.67 98.71 

IFNet 96.91 73.19 83.40 71.52 98.83 
BIT 86.64 81.48 83.98 72.89 98.75 

DSAMNet 83.90 90.18 86.71 76.53 99.05 
GCENet(ours) 91.53 88.42 89.95 81.74 99.21 

 
TABLE Ⅱ 

COMPARISON RESULTS ON THE SVCD DATASET, THE BOLD 
FONT REPRESENTS THE OPTIMAL VALUE 

Network Pre(%) Rec(%) F1(%) IoU(%) OA(%) 

FC-EF 52.67 84.20 64.80 - - 
FC-Siam-Conc 44.07 80.44 56.94 - - 

FC-Siam-DI 61.85 76.69 68.48 - - 
FCN-PP 81.69 90.31 85.78 - - 
FDCNN 83.61 91.70 87.47 - - 
SNUNet 90.92 94.75 92.79 - - 

IFNet 85.33 91.76 88.43 - - 
STANet 88.92 90.83 89.86 81.59 97.58 

BIT 92.49 91.22 91.85 84.92 98.09 
DSAMNet 91.84 94.14 92.97 86.97 98.32 
USSFCNet 93.45 96.08 94.74 90.02 - 

GCENet(ours) 95.84 94.58 95.16 90.78 98.87 

 
TABLE Ⅲ 

COMPARISON OF COMPUTATIONAL EFFICIENCY AND EVALU-
ATION METRICS OF DIFFERENT MODELS OF GCENET ON WHU-
CD DATASET, THE BOLD FONT REPRESENTS THE OPTIMAL VAL-

UE 
Network F1(%) Params.(M) FLOPs(G) 

FC-EF 69.37 0.85 3.34 
FC-Siam-Conc 66.63 0.85 3.33 

FC-Siam-DI 58.81 1.07 4.08 
STANet 82.32 16.93 6.58 

DTCDSCN 71.95 41.07 7.21 
SNUNet 83.50 12.03 27.44 

IFNet 83.40 50.71 41.18 
BIT 83.98 3.55 4.35 

DSAMNet 86.71 16.95 75.29 
GCENet(ours) 89.95 3.08 8.81 

 
points, respectively. Our F1 metrics improve by 9.38, 7.69, 
2.37, 6.73, 5.30, 2.19, and 0.42 points compared to some of 
the top models in recent years using the convolutional ap-
proach, such as FCN-PP, FDCNN, SNUNet, IFNet, STANet, 
DSAMNet, and USSFCNet, respectively. In addition to our F1 
metrics improving by 9.38, 7.69, 2.37, 6.73, 5.30, 2.19, and 
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0.42 points compared to the best model in recent years using 
the Transform approach BIT, our F1 metric also improves by 
3.31 points. 

Fig. 7 and Fig. 8 below show our visualization results on the 
WHU-CD and SVCD datasets. Our GCENet model performs 
well on these datasets, and these significant performance im-
provements are not only shown in terms of F1 metrics, but 
also visualized on the images. This demonstrates the unique 
advantages of our model in change detection tasks, providing 
more accurate results for remote sensing image analysis. 

It is worth mentioning that some of these baseline models 
employ complex network structures such as Feature Pyramid 
Network (FPN) structures and UNet structures. These struc-
tures achieve superior change. 

Enhancing detection performance by fusing high-level se-
mantic features with low-level semantic features. Although the 
backbone network in our GCE-Net model only employs a 
simple ResNet18 structure, the GCE-Net-based network mod-
el is also able to achieve superior performance. This can be 
attributed to the COTR encoder in our GCE-Net model, which 
more effectively captures relevant features of the data and 
enhances the connections between them, thus improving the 
model's ability to model the relationships between different 
features. 

 
Fig. 9. Comparison of different models in terms of accuracy (F1) and number 
of model parameters (Params) on the WHU-CD dataset. 

 
We visually tested and analyzed our GCE-Net model, along 

with other baseline models, for remote sensing image change 
detection from various perspectives. Our focus was on three 
key metrics: the number of model parameters, the number of 
floating-point operations, and the F1 metrics on the WHU-CD 
dataset. Detailed results are shown in Table Ⅲ and Fig. 9, 
comparing our model to the baseline models with fewer model 
parameters and floating-point operations. Among the baseline 
models, our method achieves the highest performance in terms 
of F1 values. 

F. Ablation Experiments 
In conducting the ablation experiments for the COTR model, 

we diversified the treatments of Q , K  and V  in order to 
deeply investigate their effects on the model performance. 

Specifically, we introduced the convolution operation for Q  , 
K  and V  respectively and performed the following different 
ablation experiments: 

1) Convolutional operation on Q  only: In this experiment, 
we perform a convolutional operation on the query infor-
mation Q  only, while keeping the key information K  and 
value information V  unchanged. The purpose of this experi-
ment is to evaluate the performance of the model in handling 
changes in the query information.  

2) Convolution operation on K  only: In this experiment, 
we only perform convolution operation to the key information 
K , while keeping the query information Q  and value infor-
mation V  unchanged. This helps understand how the model 
reacts to changes in key information. 

3) Convolution operation on V  only: In this experiment, we 
perform convolution to the value information K  only, while 
keeping query information Q  and key information V  un-
changed. This helps to investigate how the model behaves 
when dealing with changes in value information. 

4) Convolution operations on Q  and K  while keeping V  
unchanged: This experiment evaluates the performance of the 
model when processing both query and key information while 
keeping the value information unchanged. 

5) Convolutional operations on Q  and V  while keeping K  
unchanged: This experiment helps to understand how the 
model performs when processing both query and value infor-
mation while keeping the key information unchanged. 

6) Convolutional operations on K  and V  while holding Q  
constant: This experiment helps to investigate how the model 
behaves when processing both key and value information 
while keeping the query information constant. 

 
TABLE Ⅳ 

ABLATION EXPERIMENTS ON THE WHU-CD DATASET WITH OR 
WITHOUT THE USE OF CONVOLUTION FOR Q , K  AND V . THE 

BOLD FONT REPRESENTS THE OPTIMAL VALUE 
Q

+conv 
K

+conv 
V

+conv 
Pre(%) Rec(%) F1(%) IoU(%) OA(%) 

√ × × 87.41 89.38 88.38 79.19 99.07 
× √ × 88.68 89.87 89.27 80.63 99.14 
× × √ 89.15 89.88 89.51 81.02 99.16 
√ √ × 82.54 90.34 86.25 75.83 98.85 
× √ √ 86.78 89.70 88.21 78.91 99.04 
√ × √ 90.45 85.11 87.70 78.09 99.05 
√ √ √ 91.53 88.42 89.95 81.74 99.21 

 
As shown in Table IV, after comparing various ablation ex-

periments, we observe that the model achieves the best per-
formance when using the convolution operation on Q , K  and 
V  simultaneously. This result suggests that convolutional 
operations have a positive combined effect on the COTR 
model in processing query, key, and value information. These 
findings provide important insights into the design and per-
formance of the model. 
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TABLE Ⅴ 
PARAMETER ABLATION OF DECODER LAYERS (E.L) AND EN-

CODER LAYERS (D.L) ON WHU-CD DATASET, THE BOLD FONT 
REPRESENTS OPTIMAL VALUES 

E.L D.L Pre(%) Rec(%) F1(%) IoU(%) OA(%) 

1 1 91.77 86.89 89.27 80.62 99.17 
1 2 91.53 88.42 89.95 81.74 99.21 
1 4 85.07 90.31 87.61 77.96 98.99 
1 8 84.26 88.49 86.32 75.94 98.88 
2 1 86.94 89.29 88.09 78.73 99.04 
4 1 85.28 88.44 86.83 76.10 98.97 
8 1 86.59 88.67 87.61 78.19 99.08 

 
In examining the effect of the number of layers of encoders 

and decoders on performance in COTR models. We conducted 
a series of experiments involving encoders and decoders with 
different numbers of layers, including 1, 2, 4, and 8 layers. 
Notably, our study reveals a remarkable result as shown in 
Table Ⅴ: the model performance reaches an optimal level 
when we maintain the COTR encoder at layer 1 and set the 
Transformer decoder to layer 2. This result has been verified 
with a high degree of consistency across multiple experiments, 
highlighting the fact that optimal performance may be 
achieved with a combination of a shallow encoder and a mod-
erately deep decoder for a given task and dataset. This finding 
is not only important for optimizing model performance but 
also helps save computational resources.  

V. CONCLUSION 
We have proposed GCENet, a global context-enhanced net-

work that aims to address the complexity and performance 
bottlenecks that exist in the field of change detection in remote 
sensing images. Through comprehensive experiments and 
result analysis, GCENet has achieved a significant perfor-
mance improvement on two change detection datasets. This 
indicates that GCENet can more accurately recognize changes 
in remote sensing images, effectively solving the issue where 
the same object may present different shapes or appearances at 
different times or spatial locations. Moreover, the relatively 
low computational complexity of GCENet, while maintaining 
high performance, makes it an efficient change detection mod-
el. When compared to other models, GCENet shows superior 
efficiency in both the number of parameters and the number of 
floating-point operations. This implies that GCENet is able to 
improve the change detection effectiveness in practical appli-
cations while maintaining high computational efficiency. In 
summary, the GCENet proposed in this paper has achieved 
satisfactory results in the field of remote sensing image change 
detection, effectively solving the limitations of existing mod-
els in complex scenes. Future research directions can include 
further improving the generalization ability of the model, op-
timizing computational efficiency, and extending the applica-
tion to more change detection scenarios. GCENet, as an inno-
vative global context-enhanced network, provides new ideas 
and solutions for the development of remote sensing image 
change detection field. 
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