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Abstract—In classical logic, the law of importation (p∧q)→
r ≡ p → (q → r) is a tautology, and it has been extensively
studied in fuzzy logics. This paper explores the law of importa-
tion in orthomodular quantum logic. Our investigation reveals
that the law of importation does not hold for five quantum
implications within the context of orthomodular quantum
logic. Furthermore, we examine six other quantum implication
functions in detail.

Index Terms—Quantum logic, orthomodular lattice, quantum
implication, law of importation.

I. INTRODUCTION

IN 1936, Birkhoff and von Neumann [1] proposed the
quantum logic as a logic of quantum mechanics. It is

currently defined as orthomodular lattices [2]. With the
rapid development of quantum computation, Ying [3], [4],
[5] studied the automata theory of computation based on
orthomodular lattices. This theory can be seen as a logical
approach to quantum computation [6], [7], [8], [9].

The law of importation, given by the equality

(p ∧ q)→ r ≡ p→ (q → r) (1)

is an important property of implication operators. In classical
logic, it is a tautology. In the framework of fuzzy logic, it
has been studied extensively for various fuzzy implication
operators [10], [11], [12]. Mas et al.[13], [14] studied the law
of importation for discrete implications and several uninorm
derived implications. Additionally, Massanet and Torrens
[15] examined the relationship between the law of impor-
tation and the exchange principle on fuzzy implications.
Massanet et al [16], [17], [18] studied the law of importation
with fixed a fixed t-norm (or uninorm) for fuzzy implications.
Li and Qin [19] investigated the characterization of a class
of fuzzy implications satisfying the law of importation with
respect to uninorms with continuous underlying operators. Li
et al. [20] considered the stability of the law of importation
for (S,N)-implications. Furthermore, Wang et al. [21], [22]
introduced the derivations on fuzzy implication algebras, and
Zhu et al. [23], [24], [25] studied implicative derivations on
residuated lattices. In the side of quantum logic, we have a
corresponding problem: does Eq.1 hold for some quantum
implication operators?
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In this paper, we consider the law of implication in the
setting of quantum logic. Furthermore, we consider the case
that the multiplication & replaces ∧ in Eq. (1), i.e.,

(p&q)→ r ≡ p→ (q → r). (2)

We also consider the case that p = q in Eq. (1), i.e.,

p→ r ≡ p→ (p→ r), (3)

owing to the property that p ∧ p = p in an orthomodular
lattice. Eq.(3) is called the derived iterative Boolean law.

Moreover, we consider the distributivity of quantum im-
plications, i.e.,

p ∧ q → r = (p→ r) ∨ (q → r), (4)

p ∨ q → r = (p→ r) ∧ (q → r), (5)

p→ (q ∧ r) = (p→ q) ∧ (p→ r), (6)

p→ (q ∨ r) = (p→ q) ∨ (p→ r). (7)

This article is structured as follows. In Section 2, some
preliminaries concerning orthomodular lattices are given.
In Section 3, we study the quantum implication functions
Eqs.(1-7) in orthomodular quantum logic. In Section 4,
concluding remarks are given.

II. ORTHOMODULAR LATTICE

For the sake of readability, this section gives some prelim-
inaries concerning orthomodular lattice, and the details are
referred to refs. [26], [27].

An orthocomplemented lattice L is a lattice with an
orthocomplement ⊥: L→ L satisfying: ∀p, q ∈ L,

(i). p⊥⊥ = p;
(ii). p ∧ p⊥ = 0, p ∨ p⊥ = 1 ;
(iii). p ≤ q ⇒ q⊥ ≤ p⊥

An orthomodular lattice is an orthocomplemented lattice
satisfying the orthomodular law:

p ≥ q ⇒ p ∧ (p⊥ ∨ q) = q, ∀p, q ∈ L. (8)

Eq.(8) also can be represented as follows

p ∨ (p⊥ ∧ (p ∨ q)) = p ∨ q, ∀p, q ∈ L. (9)

By using the above conditions (i-iii), Eq.(9) can be equiva-
lently stated as:

p⊥ ∧ (p ∨ (p⊥ ∧ q⊥)) = p⊥ ∧ q⊥, ∀p, q ∈ L. (10)

In an orthomodular lattice, a reasonable implication con-
nective is required to satisfy the Birkhoff-von Neumann
condition [1]:

p ≤ q if and only if p→ q = 1, ∀p, q ∈ L. (11)
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Fig. 1. Chinese lantern.

Indeed, it has been verified [28], [29] that there are ex-
actly five implications satisfying the Birkhoff-von Neumann
condition:

(Sasaki): p→1 q = p⊥ ∨ (p ∧ q);
(Dishkant): p→2 q = q ∨ (p⊥ ∧ q⊥);
(relevance): p→3 q = (p⊥ ∧ q)∨ (p∧ q)∨ (p⊥ ∧ q⊥);
(non-tollens): p →4 q = (p⊥ ∧ q) ∨ (p ∧ q) ∨ ((p⊥ ∨
q) ∧ q⊥);
(Kalmbach): p →5 q = (p⊥ ∧ q) ∨ (p⊥ ∧ q⊥) ∨ (p ∧
(p⊥ ∨ q)).

In classical logic, these five implications are equivalent to
”material implication” →0, i.e., p→0 q = p⊥ ∨ q. Note that
→0 does not satisfy the Birkhoff-von Neumann condition.
The multiplication & is defined as p&q = q∧ (p∨ q⊥). Note
that p&q = p ∧ q in classical logic.

III. MAIN RESULTS

A. (p ∧ q)→ r ≡ p→ (q → r) in orthomodular lattice
Theorem 1. There exists an orthomodular lattice, such that
none of the above implications →i (1 ≤ i ≤ 5) satisfies
Eq.(1).

Proof: Consider the orthomodular lattice visualized by
Fig. 1.

For →1, we have

p ∧ q →1 r = (p ∧ q)⊥ ∨ (p ∧ q ∧ r)

= (0)⊥ ∨ (0)

= 1.

and

p→1 (q →1 r) = p→1

(
q⊥ ∨ (q ∧ r)

)
= p→1 q⊥

= p⊥ ∨ (p ∧ q⊥)

= p⊥.

Thus p ∧ q →1 r 6= p→1 (q →1 r).
For →2, we have

p ∧ q →2 r = r ∨
(
(p ∧ q)⊥ ∧ r⊥

)
= r ∨

(
(0)⊥ ∧ r⊥

)
= r ∨

(
1 ∧ r⊥

)
= r ∨ r⊥

= 1.

and

p→2 (q →2 r) = p→2

(
r ∨ (q⊥ ∧ r⊥)

)
= p→2 r

= r ∨
(
p⊥ ∧ (r⊥)

)
= r.

Thus p ∧ q →2 r 6= p→2 (q →2 r).
For →3, we have

p ∧ q →3 r

=
(
(p ∧ q)⊥ ∧ r

)
∨
(
p ∧ q ∧ r

)
∨
(
(p ∧ q)⊥ ∧ r⊥

)
= r ∨ 0 ∨ r⊥

= 1.

and

p→3 (q →3 r)

= p→3

(
(q⊥ ∧ r) ∨ (q ∧ r) ∨ (q⊥ ∧ r⊥))

)
= p→3 0

= (p⊥ ∧ 0) ∨ (p ∧ 0) ∨ (p⊥ ∧ 0⊥)

= 0 ∨ 0 ∨ p⊥

= p⊥.

Thus p ∧ q →3 r 6= p→3 (q →3 r).
For →4, we have

p ∧ q →4 r

=
(
(p ∧ q)⊥ ∧ r

)
∨
(
p ∧ q ∧ r

)
∨
(
((p ∧ q)⊥ ∨ r) ∧ r⊥

)
= r ∨ 0 ∨

(
(1 ∨ r) ∧ r⊥

)
= r ∨ r⊥

= 1.

and

p→4 (q →4 r)

= p→4

(
(q⊥ ∧ r) ∨ (q ∧ r) ∨ ((q⊥ ∨ r) ∧ r⊥))

)
= p→4 r⊥

= (p⊥ ∧ r⊥) ∨ (p ∧ (r⊥)⊥) ∨ ((p⊥ ∨ r⊥) ∧ (r⊥)⊥)

= 0 ∨ 0 ∨ r

= r.

Thus p ∧ q →4 r 6= p→4 (q →4 r).
For →5, we have

p ∧ q →5 r

=
(
(p ∧ q)⊥ ∧ r

)
∨
(
(p ∧ q)⊥ ∧ r⊥

)
∨
(
(p ∧ q) ∧ ((p ∧ q)⊥ ∨ r)

)
= r ∨ r⊥ ∨

(
p ∧ q

)
= 1.

and

p→5 (q →5 r)

= p→5

(
(q⊥ ∧ r) ∨ (q⊥ ∧ r⊥) ∨ (q ∧ (q⊥ ∨ r))

)
= p→5 q

= (p⊥ ∧ q) ∨ (p⊥ ∧ q⊥) ∨ (p ∧ (p⊥ ∨ q))

= 0 ∨ 0 ∨ (p ∧ 1)

= p.
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Fig. 2. Greechie lattice G12.

Thus p ∧ q →5 r 6= p→5 (q →5 r).
From above theorem, we know that all the relatively

reasonable five implication operators in quantum logic do
not satisfy the law of importation. In their book [26] (see
page 167), the authors presented a list of critical logical truths
that are violated, among which is the Eq. (1). This equation’s
proof, however, was not provided. Here, a detailed proof is
included.

B. (p&q)→ r ≡ p→ (q → r) in orthomodular lattice

Theorem 2. There exists an orthomodular lattice , such that
none of the above implications →i (1 ≤ i ≤ 5) satisfies
Eq.(2)

Proof: Consider the orthomodular lattice (Greechie lat-
tice G12) represented in Fig. 2.

We have a&e = e ∧ (a ∨ e⊥) = e and a⊥&b⊥ = b⊥ ∧
(a⊥ ∨ (b⊥)⊥) = b⊥ ∧ a⊥ = c

For →1, we have

a&e→1 d = e→1 d

= e⊥ ∨ (e ∧ d)

= e⊥.

and

a→1 (e→1 d) = a→1 e⊥

= a⊥ ∨ (a ∧ e⊥)

= a⊥.

Thus a&e→1 d 6= a→1 (e→1 d).
For →2, we have

a⊥&b⊥ →2 e⊥ = c→2 e⊥

1.

and

a⊥ →2 (b⊥ →2 e⊥)

= a⊥ →2 (e⊥ ∨ ((b⊥)⊥ ∧ (e⊥)⊥)

= a⊥ →2 (e⊥ ∨ 0)

= a⊥ →2 e⊥

= e⊥ ∨ ((a⊥)⊥ ∧ (e⊥)⊥)

= e⊥ ∨ (a ∧ e)

= e⊥ ∨ 0

= e⊥.

Thus a⊥&b⊥ →2 e⊥ 6= a⊥ →2 (b⊥ →2 e⊥).
For →3, we have

a&e→3 d = e→3 d

= (e⊥ ∧ d) ∨ (e ∧ d) ∨ (e⊥ ∧ d⊥)

= d ∨ 0 ∨ c

= e⊥.

and

a→3 (e→3 d) = a→3 e⊥

= (a⊥ ∧ e⊥) ∨ (a ∧ e⊥) ∨ (a⊥ ∧ (e⊥)⊥)

= 0 ∨ 0 ∨ 0

= 0.

Thus a&e→3 d 6= a→3 (e→3 d).
For →4, we have

a&e→4 d = e→4 d

= (e⊥ ∧ d) ∨ (e ∧ d) ∨ ((e⊥ ∨ d) ∧ d⊥)

= d ∨ 0 ∨ (e⊥ ∧ d⊥)

= d ∨ 0 ∨ c

= e⊥.

and

a→4 (e→4 d) = a→4 e⊥

= (a⊥ ∧ e⊥) ∨ (a ∧ e⊥)

∨ ((a⊥ ∨ e⊥) ∧ (e⊥)⊥)

= 0 ∨ 0 ∨ (1 ∧ e)

= e.

Thus a&e→4 d 6= a→4 (e→4 d).
For →5, we have

a&e→5 d

= e→5 d

= (e⊥ ∧ d) ∨ (e⊥ ∧ d⊥) ∨ (e ∧ (e⊥ ∨ d))

= d ∨ c ∨ (e ∧ e⊥)

= d ∨ c ∨ 0

= e⊥.

and

a→5 (e→5 d)

= a→5 e⊥

= (a⊥ ∧ e⊥) ∨ (a ∧ (e⊥)⊥) ∨ (a ∧ (a⊥ ∨ e⊥))

= 0 ∨ 0 ∨ (a ∧ 1)

= a.
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Thus a&e→5 d 6= a→5 (e→5 d).
From above theorem, we know that all five relatively

reasonable implication operators in quantum logic do not
satisfy (p&q)→ r = p→ (q → r).

C. p→ r ≡ p→ (p→ r) in orthomodular lattice

Theorem 3. For any orthomodular lattice, the implications
→i, i ∈ {1, 2}, satisfies Eq.(3).

Proof: For →1, we have

p→1 (p→1 r)

= p→1

(
p⊥ ∨ (p ∧ r)

)
= p⊥ ∨

(
p ∧

(
p⊥ ∨ (p ∧ r)

))
= p⊥ ∨ (p ∧ r) (by the orthomodular law Eq.9)
= p→1 r.

Thus p→1 (p→1 r) = p→1 r.
For →2, we have

p→2 (p→2 r)

= p→2

(
r ∨ (p⊥ ∧ r⊥)

)
=

(
r ∨ (p⊥ ∧ r⊥)

)
∨
(
p⊥ ∧

(
r ∨ (p⊥ ∧ r⊥)

)⊥)
.

Since

p⊥ ∧
(
r ∨ (p⊥ ∧ r⊥)

)⊥
= p⊥ ∧

(
r⊥ ∧ ((p⊥)⊥ ∨ (r⊥)⊥)

)
= p⊥ ∧

(
r⊥ ∧ (p ∨ r)

)
= (p⊥ ∧ r⊥) ∧ (p ∨ r)

= (p ∨ r)⊥ ∧ (p ∨ r)

= 0.

Then p→2 (p→2 r) =
(
r ∨ (p⊥ ∧ r⊥)

)
∨ 0 = r ∨ (p⊥ ∧

r⊥) = p→2 r.

Theorem 4. There exists an orthomodular lattice, such that
none of the implications →i, i ∈ {3, 4, 5}, satisfies Eq.(3).

Proof: Consider the orthomodular lattice visualized by
Fig. 1.

For →3, we have

p→3 q = (p⊥ ∧ q) ∨ (p ∧ q) ∨ (p⊥ ∧ q⊥)

= 0 ∨ 0 ∨ 0

= 0.

and

p→3 (p→3 q) = a→3 0

= (p⊥ ∧ 0) ∨ (p ∧ 0) ∨ (p⊥ ∧ 0⊥)

= p⊥.

Thus p→3 (p→3 q) 6= p→3 q.
For →4, we have

p→4 q = (p⊥ ∧ q) ∨ (p ∧ q) ∨ ((p⊥ ∨ q) ∧ q⊥)

= 0 ∨ 0 ∨ (1 ∧ q⊥)

= q⊥.

and

p→4 (p→4 q)

= p→4 q⊥

= (p⊥ ∧ q⊥) ∨ (p ∧ q⊥) ∨ ((p⊥ ∨ q⊥) ∧ (q⊥)⊥)

= 0 ∨ 0 ∨ (1 ∧ q)

= q.

Thus p→4 (p→4 q) 6= p→4 q.
For →5, we have

p→5 q = (p⊥ ∧ q) ∨ (p⊥ ∧ q⊥) ∨ (p ∧ (p⊥ ∨ q))

= 0 ∨ 0 ∨ (p ∧ 1)

= p.

and

p→5 (p→5 q) = p→5 p

= 1.

Thus p→5 (p→5 q) 6= p→5 q.
From above theorems, we know that →1 and →2 satisfy

the equality p → r ≡ p → (p → r), but →3, →4 and →5

do not satisfy this equality.
We have confirmed that the equivalence p → r ≡ p →

(p → r) holds for both Sasaki and Dishkant implications,
whereas (p∧q)→ r ≡ p→ (q → r) does not. It’s important
to note that p → r ≡ p → (p → r) is a specific instance of
(p ∧ q)→ r ≡ p→ (q → r) when p = q.

If we substitute r = p → r, then r → (p → r) can be
rewritten as (p → r) → (p → (p → r)). It also should be
noted that the expression r → (p → r) is violated for both
Sasaki and Dishkant implications [26], whereas (p→ r)→
(p→ (p→ r)) is not.

D. p ∧ q → r = (p→ r) ∨ (q → r) in orthomodular lattice

Theorem 5. There exists an orthomodular lattice such that
none of implications →i, i ∈ {1, 4, 5} satisfies Eq. (4).

Proof: Consider the orthomodular lattice (Greechie lat-
tice G12) represented in Fig. 2.

For →1, we have

a⊥ ∧ d⊥ →1 c⊥ = c→1 c⊥

= c⊥ ∨ (c ∧ c⊥)

= c⊥ ∨ 0

= c⊥

and

(a⊥ →1 c⊥) ∨ (d⊥ →1 c⊥)

= (a ∨ (a⊥ ∧ c⊥) ∨ (d ∨ (d⊥ ∧ c⊥)

= (a ∨ b) ∨ (d ∨ e)

= 0 ∨ 0

= 0.

Thus a⊥ ∧ d⊥ →1 c⊥ 6= (a⊥ →1 c⊥) ∨ (d⊥ →1 c⊥).
For →4, we have

a ∧ e→4 d = 0→4 d

= 1

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1071-1078

 
______________________________________________________________________________________ 



and

(a→4 d) ∨ (e→4 d)

=
(
(a⊥ ∧ d) ∨ (a ∧ d) ∨ ((a⊥ ∨ d) ∧ d⊥)

)
∨
(
(e⊥ ∧ d) ∨ (e ∧ d) ∨ ((e⊥ ∨ d) ∧ d⊥)

)
=

(
0 ∨ 0 ∨ (1 ∧ d⊥)

)
∨
(
0 ∨ 0 ∨ (1 ∧ d⊥)

)
= d⊥ ∨ d⊥

= d⊥.

Thus a ∧ e→4 d 6= (a→4 d) ∨ (e→4 d).
For →5, we have

a ∧ e→5 d = 0→5 d

= 1

and

(a→5 d) ∨ (e→5 d)

=
(
(a ∧ d) ∨ (a⊥ ∧ d⊥) ∨ (a ∧ (a⊥ ∨ d))

)
∨
(
(e ∧ d) ∨ (e⊥ ∧ d⊥) ∨ (e ∧ (e⊥ ∨ d))

)
=

(
0 ∨ c ∨ (a ∧ 1

)
∨
(
0 ∨ c ∨ (e ∧ e⊥)

)
= b⊥ ∨ c

= b⊥.

Thus a ∧ e→5 d 6= (a→5 d) ∨ (e→5 d).

Theorem 6. There exists an orthomodular lattice such that
none of implications →i, i ∈ {2, 3} satisfies Eq. (4).

Proof: Consider the orthomodular lattice visualized by
Fig. 1.

For →2, from the proof of Theorem 1, we have p∧ q →2

r = 1. Moreover,

(p→2 r) ∨ (q →2 r)

= (r ∨ (q⊥ ∧ r⊥) ∨ (r ∨ (p⊥ ∧ r⊥)

= (r ∨ 0) ∨ (r ∨ 0)

= r ∨ r

= r.

Thus p ∧ q →2 r 6= (p→2 r) ∨ (q →2 r).
For →3, from the proof of Theorem 1, we have p∧ q →3

r = 1. Moreover,

(p→3 r) ∨ (q →3 r)

=
(
(p⊥ ∧ r) ∨ (p ∧ r) ∨ (p⊥ ∧ r⊥)

)
∨
(
(q⊥ ∧ r) ∨ (q ∧ r) ∨ (q⊥ ∧ r⊥)

)
= (0 ∨ 0 ∨ 0) ∨ (0 ∨ 0 ∨ 0)

= 0.

Thus p ∧ q →3 r 6= (p→3 r) ∨ (q →3 r).
From above two theorems, we know that all five relatively

reasonable implication operators in quantum logic do not
satisfy p ∧ q → r = (p→ r) ∨ (q → r).

E. p ∨ q → r = (p→ r) ∧ (q → r) in orthomodular lattice

Theorem 7. There exists an orthomodular lattice such that
none of implications →i, i ∈ {1, 2} satisfies Eq. (5).

Proof: Consider the orthomodular lattice (Greechie lat-
tice G12) represented in Fig. 2.

For →1, we have

a ∨ b→1 d = c⊥ →1 d

= c ∨ (c⊥ ∧ d)

= c ∨ d

= e⊥

and

(a→1 d) ∧ (b→1 d)

= (a⊥ ∨ (a ∧ d)) ∧ (b⊥ ∨ (b ∧ d))

= (a⊥ ∨ 0) ∧ (b⊥ ∨ 0)

= a⊥ ∧ b⊥

= c.

Thus a ∨ b→1 d 6= (a→1 d) ∧ (b→1 d).
For →2, we have

a ∨ c→2 e = b⊥ →2 e

= e ∨ (b ∧ e⊥)

= e ∨ 0

= e

and

(a→2 e) ∧ (c→2 e)

= (e ∨ (a⊥ ∧ e⊥)) ∧ (e ∨ (c⊥ ∧ e⊥))

= (e ∨ c) ∧ (e ∨ d)

= d⊥ ∧ c⊥

= 1.

Thus a ∨ b→2 d 6= (a→2 d) ∧ (b→2 d).

Theorem 8. There exists an orthomodular lattice such that
none of implications →i, i ∈ {3, 4, 5} satisfies Eq. (5).

Proof: Consider the orthomodular lattice visualized by
Fig. 1.

For →3, we have

p ∨ q →3 r = 1→3 r

= (0 ∧ r) ∨ (1 ∧ r) ∨ (0 ∧ r⊥)

= 0 ∨ r ∨ 0

= r

and

(p→3 r) ∧ (q →3 r)

= (p⊥ ∧ r) ∨ (p ∧ r) ∨ (p⊥ ∧ r⊥)

∧(q⊥ ∧ r) ∨ (q ∧ r) ∨ (q⊥ ∧ r⊥)

= (0 ∨ 0 ∨ 0) ∧ (0 ∨ 0 ∨ 0)

= 0.

Thus a ∨ b→3 d 6= (a→3 d) ∧ (b→3 d).
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For →4, we have

p ∨ q →4 r

= 1→4 r

= (0 ∧ r) ∨ (1 ∧ r) ∨ (r⊥ ∧ (0 ∨ r))

= 0 ∨ r ∨ 0

= r

and

(p→4 r) ∧ (q →4 r)

= (p⊥ ∧ r) ∨ (p ∧ r) ∨ (r⊥ ∧ (p⊥ ∨ r))

∧(q⊥ ∧ r) ∨ (q ∧ r) ∨ (r⊥ ∧ (q⊥ ∨ r))

= (0 ∨ 0 ∨ r⊥) ∧ (0 ∨ 0 ∨ r⊥)

= r⊥ ∧ r⊥

= r⊥.

Thus a ∨ b→4 d 6= (a→4 d) ∧ (b→4 d).
For →5, we have

p ∨ q →5 r

= 1→5 r

= (0 ∧ r) ∨ (0 ∧ r⊥) ∨ (1 ∧ (0 ∨ r))

= 0 ∨ 0 ∨ r

= r

and

(p→5 r) ∧ (q →5 r)

= (p⊥ ∧ r) ∨ (p⊥ ∧ r⊥) ∨ (p ∧ (p⊥ ∨ r))

∧(q⊥ ∧ r) ∨ (q⊥ ∧ r⊥) ∨ (q ∧ (q⊥ ∨ r))

= (0 ∨ 0 ∨ p) ∧ (0 ∨ 0 ∨ q)

= p ∧ q

= 0.

Thus a ∨ b→5 d 6= (a→5 d) ∧ (b→5 d).
From above two theorems, we know that all five relatively

reasonable implication operators in quantum logic do not
satisfy p ∨ q → r = (p→ r) ∧ (q → r).

F. p→ (q∧r) = (p→ q)∧ (p→ r) in orthomodular lattice
Theorem 9. There exists an orthomodular lattice such that
none of implications →i, i ∈ {2, 3, 4} satisfies Eq. (6).

Proof: Consider the orthomodular lattice visualized by
Fig. 1.

For →2, we have

p→2 (q ∧ r)

= p→2 0

= 0 ∨ (p⊥ ∧ 1)

= 0 ∨ p⊥

= p⊥

and

(p→2 q) ∧ (p→2 r)

= (q ∨ (p⊥ ∧ q⊥)) ∧ (r ∨ (p⊥ ∧ r⊥))

= (q ∨ 0) ∧ (r ∨ 0)

= q ∧ r

= 0.

Thus p→2 (q ∧ r) 6= (p→2 q) ∧ (p→2 r).
For →3, we have

p→3 (q ∧ r)

= p→3 0

= (p⊥ ∧ 0) ∨ (p ∧ 0) ∨ (p⊥ ∧ 0⊥)

= 0 ∨ 0 ∨ p⊥

= p⊥

and

(p→3 q) ∧ (p→3 r)

=
(
(p⊥ ∧ q) ∨ (p ∧ q) ∨ (p⊥ ∧ q⊥)

)
∧
(
(p⊥ ∧ r) ∨ (p ∧ r) ∨ (p⊥ ∧ r⊥)

)
= (0 ∨ 0 ∨ 0) ∧ (0 ∨ 0 ∨ 0)

= 0.

Thus p→3 (q ∧ r) 6= (p→3 q) ∧ (p→3 r).
For →4, we have

p→4 (q ∧ r)

= p→4 0

= (p⊥ ∧ 0) ∨ (p ∧ 0) ∨ ((p⊥ ∨ 0) ∧ 0⊥)

= 0 ∨ 0 ∨ (p⊥ ∧ 1)

= p⊥

and

(p→4 q) ∧ (p→4 r)

=
(
(p⊥ ∧ q) ∨ (p ∧ q) ∨ ((p⊥ ∨ q) ∧ q⊥)

)
∧
(
(p⊥ ∧ r) ∨ (p ∧ r) ∨ ((p⊥ ∨ r) ∧ r⊥)

)
= (0 ∨ 0 ∨ q⊥) ∧ (0 ∨ 0 ∨ r⊥)

= 0.

Thus p→4 (q ∧ r) 6= (p→4 q) ∧ (p→4 r).

Theorem 10. There exists an orthomodular lattice such that
none of implications →i, i ∈ {1, 5} satisfies Eq. (6).

Proof: Consider the orthomodular lattice (Greechie lat-
tice G12) represented in Fig. 2.

For →1, we have

c⊥ →1 (d ∧ e) = c⊥ →1 0

= c ∨ (c⊥ ∧ 0)

= c ∨ 0

= c

and

(c⊥ →1 d) ∧ (c⊥ →1 e)

=
(
c ∨ (c⊥ ∧ d)

)
∧
(
c ∨ (c⊥ ∧ e)

)
= (a ∨ d) ∧ (a ∨ e)

= c⊥ ∧ c⊥

= c⊥.

Thus p→1 (q ∧ r) 6= (p→1 q) ∧ (p→1 r).
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For →5, we have

a⊥ →5 (c ∧ e)

= a⊥ →5 0

= (a ∧ 0) ∨ (a ∧ 0⊥) ∨ (a⊥ ∧ (a ∨ 0))

= 0 ∨ a ∨ (a⊥ ∧ a)

= 0 ∨ a ∨ 0

= a

and

(a⊥ →5 c) ∧ (a⊥ →5 e)

=
(
(a⊥ ∧ c) ∨ (a⊥ ∧ c⊥) ∨ (a ∧ (a⊥ ∨ c))

)
∧
(
(a⊥ ∧ e) ∨ (a⊥ ∧ e⊥) ∨ (a ∧ (a⊥ ∨ e))

)
= (c ∨ b ∨ (a ∧ c)) ∧ (e ∨ c ∨ (a ∧ 0))

= (c ∨ b ∨ 0) ∧ (e ∨ c ∨ 0)

= a⊥ ∧ d⊥

= c.

Thus p→5 (q ∧ r) 6= (p→5 q) ∧ (p→5 r).
From above two theorems, we know that all five relatively

reasonable implication operators in quantum logic do not
satisfy p→ (q ∧ r) = (p→ q) ∧ (p→ r).

G. p→ (q∨r) = (p→ q)∨(p→ r) in orthomodular lattice

Theorem 11. There exists an orthomodular lattice such that
none of implications →i, i ∈ {1, 3, 5} satisfies Eq. (7).

Proof: Consider the orthomodular lattice visualized by
Fig. 1.

For →1, we have

p→1 (q ∨ r) = p→1 1

= 1

and

(p→1 q) ∨ (p→1 r)

= (p⊥ ∨ (p ∧ q)) ∧ (p⊥ ∨ (p ∧ r))

= p⊥ ∨ p⊥

= p⊥.

Thus p→1 (q ∨ r) 6= (p→1 q) ∨ (p→1 r).
For →3, we have

p→3 (q ∨ r)

= p→3 1

= 1

and

(p→3 q) ∧ (p→3 r)

=
(
(p⊥ ∧ q) ∨ (p ∧ q) ∨ (p⊥ ∧ q⊥)

)
∨
(
(p⊥ ∧ r) ∨ (p ∧ r) ∨ (p⊥ ∧ r⊥)

)
= (0 ∨ 0 ∨ 0) ∨ (0 ∨ 0 ∨ 0)

= 0.

Thus p→3 (q ∨ r) 6= (p→3 q) ∨ (p→3 r).

For →5, we have

p→ (q ∨ r) = p→5 1

= 1

and

(p→5 q) ∨ (p→5 r)

=
(
(p⊥ ∧ q) ∨ (p⊥ ∧ q⊥) ∨ (p ∧ (p⊥ ∨ q))

)
∨
(
(p⊥ ∧ q) ∨ (p⊥ ∧ q⊥) ∨ (p ∧ (p⊥ ∨ q))

)
= (0 ∨ 0 ∨ p) ∨ (0 ∨ 0 ∨ p)

= p.

Thus p→5 (q ∨ r) 6= (p→5 q) ∨ (p→5 r).

Theorem 12. There exists an orthomodular lattice such that
none of implications →i, i ∈ {2, 4} satisfies Eq. (7).

Proof: Consider the orthomodular lattice (Greechie lat-
tice G12) represented in Fig. 2.

For →2, we have

a⊥ →2 (c ∨ e)

= a⊥ →2 d

= d ∨ (a ∧ d⊥)

= d ∨ 0

= d

and

(a⊥ →2 c) ∨ (a⊥ →2 e)

=
(
c ∨ (a ∧ c⊥)

)
∧
(
e ∨ (a ∧ e⊥)

)
= (c ∨ a) ∧ (e ∨ 0)

= b⊥ ∧ e

= 0.

Thus p→2 (q ∨ r) 6= (p→2 q) ∨ (p→2 r).
For →4, we have

a⊥ →4 (c ∨ e)

= a⊥ →4 d

= (a ∧ d) ∨ (a⊥ ∧ d) ∨ ((a ∨ d) ∧ d⊥)

= 0 ∨ 0 ∨ (c⊥ ∧ d⊥)

= 0 ∨ e

= e

and

(a⊥ →4 c) ∨ (a⊥ →4 e)

=
(
(a ∧ c) ∨ (a⊥ ∧ c) ∨ ((a ∨ c) ∧ c⊥)

)
∧
(
(a ∧ e) ∨ (a⊥ ∧ e) ∨ ((a ∨ e) ∧ e⊥)

)
= (0 ∨ c ∨ (b⊥ ∧ c⊥)) ∨ (0 ∨ 0 ∨ (c⊥ ∧ e⊥))

= c ∨ a ∨ d

= b⊥ ∨ d

= 1.

Thus p→4 (q ∨ r) 6= (p→4 q) ∨ (p→4 r).
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TABLE I
SEVEN FUNCTIONAL EQUATIONS IN QUANTUM LOGIC

→1 →2 →3 →4 →5

p ∧ q → r ≡ p→ (q → r) × × × × ×
p&q → r ≡ p→ (q → r) × × × × ×
p→ r ≡ p→ (p→ r)

√ √
× × ×

p ∧ q → r ≡ (p→ r) ∨ (q → r) × × × × ×
p ∨ q → r ≡ (p→ r) ∧ (q → r) × × × × ×
p→ (q ∧ r) ≡ (p→ q) ∧ (p→ r) × × × × ×
p→ (q ∨ r) ≡ (p→ q) ∨ (p→ r) × × × × ×

From above two theorems, we know that all five relatively
reasonable implication operators in quantum logic do not
satisfy p→ (q ∨ r) = (p→ q) ∨ (p→ r).

IV. CONCLUDING REMARKS

In this paper, our investigation focuses on seven quantum
implication functions under five reasonable implication op-
erators. Our main results are summarized as follows, and are
also illustrated in Table I.

(i) We prove that all the five relatively reasonable impli-
cation operators in quantum logic do not satisfy the
law of importation, as demonstrated by Theorem 1.

(ii) We show that none of the five relatively reasonable
implication operators in quantum logic satisfy the Eq.
(2), as proven by Theorem 2.

(iii) We observe that Sasaki implication →1 and Dishkant
implication→2 adhere to the derived iterative Boolean
law, whereas relevance implication →3, non-tollens
implication→4, and Kalmbach implication→5 do not,
as confirmed by Theorems 3 and 4.

(iv) We prove that all the five relatively reasonable impli-
cation operators in quantum logic do not satisfy the
the distributivity of implications, as demonstrated by
Theorems 5-12.

It is important to note that our study exclusively examines
three specific implication functions with respect to quantum
implication operators. However, a more comprehensive ex-
amination of other quantum implication functions would be
both necessary and interesting for future research.
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